
QML: Explicit First-Class Polymorphism for ML

Claudio V. Russo
Microsoft Research Cambridge, UK

crusso@microsoft.com

Dimitrios Vytiniotis
Microsoft Research Cambridge, UK

dimitris@microsoft.com

Abstract
Recent years have seen a revival of interest in extending ML’s
predicative type inference system with impredicative quantification
in the style of System F, for which type inference is undecidable.
This paper suggests a modest extension of ML with System F
types: the heart of the idea is to extend the language of types
with unary universal and existential quantifiers. The introduction
and elimination of a quantified type is never inferred but indicated
explicitly by the programmer by supplying the quantified type itself.
Quantified types co-exist with ordinary ML schemes, which are
in turn implicitly introduced and eliminated at let-bindings and
use sites, respectively. The resulting language, QML, does not
impose any restriction on instantiating quantified variables with
quantified types; neither let- nor λ-bound variables ever require
a type annotation, even if the variable’s inferred scheme or type
involves quantified types. This proposal, albeit more verbose in
terms of annotations than others, is simple to specify, implement,
understand, and formalize.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features—abstract data
types, polymorphism

General Terms Languages, Theory

Keywords impredicativity, polymorphism, type inference

1. Introduction
Recent years have seen a revival of interest in extending ML’s
predicative type system (3), with impredicative quantification in the
style of System F. Since type inference for Curry-style System F
is known to be undecidable (25), many proposals have relied on
various type annotation schemes, restrictions on the typing rules to
make type inference possible, or even generalization of System F’s
type structure (16; 4; 19; 15; 23; 10; 9; 24; 11; 12; 18; 21).

Some of the recent approaches (23; 9; 24; 11) rely on sophisticated
specifications and implementations. This paper suggests a simple
approach to extending ML with System F universal and existential
types – albeit more verbose in terms of type annotations when
compared to recent work.

The heart of the idea is not fundamentally new, but appears inter-
spersed in the older literature. Like O’Toole and Gifford (16), we
take ordinary ML and extend the language of “monotypes” – over
which type variables range – with quantified types. Like Garrigue

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ML’09, August 30, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-1-60558-509-3/09/08. . . $5.00

and Rémy (4) we require explicit introduction of quantified types.
However, elimination of quantified types is never inferred but also
indicated explicitly by supplying the quantified type itself.

The idea of explicit introduction and elimination of polymorphism
appears in previous work (6; 12; 20), typically mediated by intro-
ducing and eliminating new datatypes, to reduce type inference to
simple structural unification. We refine this elegant idea by intro-
ducing (anonymous) quantified types that must still be explicitly
introduced and eliminated. Hence we can dispense with auxiliary
datatype definitions but our structural unification has to take quan-
tifiers into account, using standard techniques (13; 17).

Finally, as in ML, polymorphic schemes (which are not the same
as quantified types) are introduced implicitly via let-bound defi-
nitions; elimination of polymorphic schemes is always inferred.

Specifically, our contributions are:

• We present an ML-like language, QML, that combines implicit
let-bound polymorphism with explicit, System F-style, uni-
versal and existential polymorphism (Sections 3, 3.1). QML
supports partial type annotations that contain schematic type
variables (Section 3.2). We show that typeability is robust un-
der η-expansions and applications of polymorphic combinators
(Section 3.3). We give a direct, call-by-value reduction seman-
tics that preserves types (Section 3.4) and show that QML is as
expressive as System F with existentials (Section 3.5).

• By design, we interpret schematic variables in annotations flex-
ibly as locally scoped, logical metavariables (as in OCaml)
rather than as implicitly scoped, rigid type parameters (as in
Standard ML). The former interpretation is important to prov-
ing subject reduction (as originally observed by (4)) and key
to capturing the expressivity of System F. Schematic variables
also let programmers elide some type information from annota-
tions.

• We give purely syntactic derived forms for introductions / elimi-
nations of multiple quantifiers (quantifier prefixes) that collapse
several annotations into one. We also provide sugar for other
type annotations typically found in modern functional program-
ming languages (Section 4).

• QML enjoys type inference by a standard reduction to first-
order unification under a mixed prefix of quantifiers (Section 5).

• We discuss other features and design choices, and place our
proposal in the design space of type inference in the presence
of impredicative polymorphism (Sections 6,7,8).

This paper is accompanied by a Coq formalization of most of
the results and a prototype Caml light implementation, available
from http://research.microsoft.com/~crusso/qml. The
Coq formalization is based on existing proof infrastructure (1),
extending a sample formalization of Pure ML.

http://research.microsoft.com/~crusso/qml

2. Programming with explicit quantifiers
Central to our proposal is the distinction between polymorphic
schemes and (potentially quantified) types.

Schemes ς ::= Π(α)(τ)
Types τ, µ ::= ∀α.τ | ∃α.τ | τ → τ | α | τ × τ | τ list

| int | bool | . . .

Schemes bind a list of quantified variables α in their body τ . Types
are ordinary (potentially quantified) System F types.

Expressions that are let-bound, get assigned (as in ML) schemes,
which can be instantiated freely in the body of the let-definition.
For example:

let id x = x;; % inferred Π(α)(α → α)
(id 3, id false);;

By contrast, we have to explicitly introduce and eliminate any
other form of quantifiers by providing the quantified type itself.
For example, the first-class polymorphic identity is defined as:

let pid = {∀α.α → α} id;;

The variable pid receives scheme Π(ε)(∀α.α → α) (ε means that
there are no polymorphic variables in the scheme). To eliminate
pid’s ∀ type, we must explicitly provide the quantified type:

let test = (pid {∀α.α → α}) 3 ;;

Notice that the programmer did not give the instantiation (as she
would give when programming in System F) but rather the poly-
morphic type itself – a point that we return to in Section 7.

To a first approximation1 the introduction and elimination of uni-
versally quantified types is governed by these rules:

Γ � e : τ β#ftv(Γ, e)
∀I

Γ � {∀β.τ}e : ∀β.τ

Γ � e : ∀β.τ
∀E

Γ � e {∀β.τ} : [β �→ µ]τ

Rule ∀I introduces a specified universal quantifier and ∀E elimi-
nates a specified universal quantifier by instantiating it with some
unspecified type.

A function parameter receives a type, not a scheme, so it is impos-
sible to use the parameter at two different types in the body of the
function, as the following example demonstrates.

let poly f = (f 1, f true);; % rejected

Here, f has to be used at two different types, which is not possible
in both ML and QML. Rejecting this program is good: we do not
want to be left “guessing” the polymorphism of function parame-
ters that are used at two or more types as this results in losing the
principal types property (see, for instance, the related discussion
in (23)); similar non-determinism is the source of undecidability of
type inference for System F (25; 7).

On the other hand, if we explicitly eliminate a parameter, we may
as well use it at two different types:

let poly f = ((f {∀α.α → α}) 1,
(f {∀α.α → α}) true);;

To avoid code duplication, we may let-bind the eliminated param-
eter, as follows:

let poly f = let y = f {∀α.α → α}
in (y 1, y true);; % accepted

1 In this section, we only consider closed type annotations – full QML
allows partial type annotations with schematic type variables (Section 3).

In the previous examples, poly gets type

(∀α.α → α) → int × bool

Finally, our system supports derived forms that have the effect of
automatically eliminating polymorphic parameters that are anno-
tated at their introduction sites (Section 4). But this is syntactic
sugar, not built-in to the type system or algorithm.

Our system never infers introductions of quantifiers, as the follow-
ing examples show:

app : Π(α β)((α→ β) → α→ β)
revapp : Π(α β)(α → (α→ β) → β)

% rejected
let test0 = app poly (fun x → x);;
% passes
let test1 = app poly ({∀α.α → α} fun x → x);;
% passes
let test2 = revapp ({∀α.α → α} fun x → x) poly;;

In the above code, test0 fails, because fun x → x does not
have a first-class quantified type. On the other hand, test1 suc-
ceeds because we have explicitly introduced the quantified type for
fun x → x. Similarly for test2.

Via the addition of type annotations, the programmer may choose
between several incomparable System F types for an expression.

single : Π(α)(α → (α list))

% inferred Π()((∀α.α → α) list)
let ids = single ({∀α.α → α} fun x → x);;
% inferred Π(α)((α → α) list)
let ids0 = single (fun x → x);;

Interestingly, ids0 receives the same type as it would in ML – our
system is a conservative extension of the ML type system.

Finally, because quantified types are never implicitly instantiated,
we may pass expressions with quantified types around freely, and
instantiate the scheme variables of polymorphic combinators (such
as map and app) with quantified types, as shown below:

let idss = single ids;; % ok
let test1 = map head (single ids);; % ok
let test2 = app (map head) (single ids);; % ok

2.1 Existential types

The story is similar for existential types. Existential types must
be explicitly introduced; they are explicitly eliminated using a
scoped open syntax. As usual, existential witnesses are treated as
fresh parameters that must not escape the scope of the open. For
example, consider this existential type for a counter object (a triple
of a value, increment and query function):

∃α. α×(α → α)×(α → int)

We can introduce and eliminate this existential type as follows:

% introduce an existential package ...
let f = {∃α.α×(α → α)×(α → int)}

(0, (fun x → x + 1) , (fun x → x));;

% ... and eliminate it
open {∃α. α×(α → α)×(α → int)} g = f in
(snd (snd g)) (fst g);;

Terms
e, u ::= x | λx.e | e1 e2

| let x = u in e
| {α ∀β.τ} e ∀-introduction
| e {α ∀β.τ} ∀-elimination
| {α ∃β.τ} e ∃-introduction
| open {α ∃β.τ} x = u in e ∃-elimination

Schemes ς ::= Π(α)(τ)
Types τ, µ ::= ∀α.τ | ∃α.τ | τ → τ | α | . . .

Contexts Γ ::= ε | Γ, (x :ς)

Abbreviations α ≡ α1 · · ·αn(n ≥ 0)
ε ≡ empty sequence

Π(ε)(τ) ≡ τ
{∀β.τ} ≡ {ftv(∀β.τ) ∀β.τ}
{∃β.τ} ≡ {ftv(∃β.τ) ∃β.τ}

Church-style System F
M ,N ::= x | λx :τ.M | M N

| Λα.M | M [τ]
| pack(τ,M) as ∃α.µ | open (α, x) = M in N

Figure 1: Syntax.

Values of existential types are first-class (they may be passed
around and stored in data structures) and existential types may be
used to instantiate type parameters. Unlike in System F, the witness
for an existential is never specified, but inferred. We defer further
and more substantial examples with existentials to Section 4.

3. The language
Figure 1 defines the syntax of QML. As we have seen, types are
just System F types. A type scheme is a type prefixed with an
n-ary, (possibly empty) universal quantifier. We write Π and ∀
to distinguish universal quantification in schemes and types. Type
variables α, β range over all types, including quantified types (but
not schemes).

Terms include the familiar ML syntactic forms: variables, abstrac-
tions, applications and let expressions. Notice that abstractions do
not carry annotations for their arguments as argument types (even
quantified) will be inferred.

Terms include introduction and elimination forms for universal and
existential quantifiers. Compared to the examples in the introduc-
tion, these forms also include a list of variables α, which are bound
in the quantified type annotation (∀β.τ) or (∃β.τ). For both intro-
duction and elimination terms, the schematic variables in α have
flexible interpretations as placeholders for types. In general, each
typing rule will introduce or eliminate some (inferred) instance
[α �→ µ]∀β.τ or [α �→ µ]∃β.τ 2. The α are borrowed from and
serve the same rôle as Garrigue and Rémy’s (4) ∃∃-bound type vari-
ables in their syntax of type annotations. They provide the same
advantages: stability under substitution - useful for subject reduc-
tion - and implicit reference to otherwise inexpressible types.

Finally, although it is tempting to bind the type parameter β in e
(in ∀-introductions and ∃-eliminations) - in order to allow easy ref-
erence to β from inner annotations - it is, in fact, crucial to the def-

2 The OCaml programmer might recognize this as the flexible interpretation
of type variables appearing in type constraints.

(x :Π(α)(τ)) ∈ Γ
VAR

Γ � x : [α �→ µ]τ

Γ, (x :τ) � e : µ
ABS

Γ � λx.e : τ → µ

Γ � e1 : τ → µ
Γ � e2 : τ APP

Γ � e1 e2 : µ

Γ � u : τ α#ftv(Γ, u)
Γ, (x :Π(α)(τ)) � e : µ LET
Γ � let x = u in e : µ

Γ � e : [α �→ µ]τ β#α, ftv(Γ, µ, e)
ALLI

Γ � {α ∀β.τ} e : [α �→ µ]∀β.τ

Γ � e : [α �→ µ]∀β.τ
ALLE

Γ � e {α ∀β.τ} : [α �→ µ, β �→ µ]τ

Γ � e : [α �→ µ, β �→ µ]τ
SOMEI

Γ � {α ∃β.τ} e : [α �→ µ]∃β.τ

Γ � u : [α �→ µ]∃β.τ β#α, ftv(Γ, µ, µ, e)
Γ, (x :[α �→ µ]τ) � e : µ SOMEE

Γ � open {α ∃β.τ} x = u in e : µ

Figure 2: Typing relation Γ � e : τ .

inition of our reduction relation and the proof of type preservation
that type variables are never bound in terms.

3.1 Typing

Figure 2 defines the declarative typing relation of QML. Rules VAR,
ABS, APP and LET are completely standard. Note that we place no
restriction on type instantiation nor on the type inferred for λ-bound
variables. A minor deviation is the side condition that α#ftv(u),
which prevents us from generalizing over the (syntactically) free
type variables in a let-bound term. The side-condition is vacuous
in core ML (since terms have no type annotations) and imposed
just to match our formalization, which, for better or worse, allows
annotations to contain free variables apart from α and β. Such vari-
ables are essentially treated as parameters; preventing their gener-
alization ensures we will never have to substitute for them during
reduction. (We originally chose to allow free variables simply to
make it easier to extend QML with base types represented as free
type variables in some initial context.) Since we have a Coq for-
malization of QML, we allow ourselves some informality in eliding
side-conditions on term variables entering the context.

Rule ALLI introduces some instantiation [α �→ µ] of the universal
type ∀β.τ , provided we can show e has type τ modulo the same
instantiation for a suitably fresh parameter β.

Rule ALLE eliminates some instantiation [α �→ µ] of the universal
type ∀β.τ , provided we can show e has type ∀β.τ modulo the
same instantiation. The actual instantiation of β is chosen non-
deterministically, just as in rule VAR.

Rule SOMEI introduces some instantiation [α �→ µ] of existential
type ∃β.τ , provided we can show e has type τ modulo the same
instantiation extended with a witnessing type µ for β. The witness
for β, i.e. the representation for the abstract type, is chosen non-
deterministically, just as in rule ALLE.

Rule SOMEE eliminates some instantiation [α �→ µ] of existential
type ∃β.τ , provided we can show, for a suitably fresh witness β,
that the client continuation e has type µ, in the context extended
with a binding of x of type τ (modulo the same instantiation). As

usual for existential elimination, the type of the continuation must
not depend on β, enforced by the side-condition β#µ.

Note that Rules ALLI and SOMEE, like rule LET, employ a side con-
dition to prevent the accidental capture of any free type variables in
the body or continuation e . Taken together, these conditions mean
the reduction semantics need never substitute types in terms. In-
deed, if the reduction semantics did require type substitution then
we would be faced with the awkward problem of choosing which
types to substitute - the type arguments to variables, universal elim-
ination and existential introduction are implicit and thus not readily
available during reduction.

Each quantifier rule is applied modulo some instantiation [α �→ µ]
of the schematic variables α. Our side-conditions ensure that µ
(and in rule SOMEE, µ) cannot depend on the quantified variable
β, so that any equational constraints on µ may be solved using
first-order unification. The only higher-order constraints placed on
types, notably the dependency of τ on β, are explicitly resolved
by the syntax (module the choice of types µ that, by construction,
cannot depend on β).

Unlike other proposals, none of our rules have infinitary premises
stipulating principal types for subterms. Indeed, if we ignore the
rules for explicitly introducing and eliminating universal and ex-
istential polymorphism, the typing relation is identical to the ML
typing relation, though types are richer. Let �� be the ML typing
relation, consisting only of rules VAR, ABS, APP, and LET in Fig-
ure 2, and where types are allowed to be quantifier-free only. Then
it is an easy observation that:
Lemma 3.1. If Γ �� e : τ then Γ � e : τ .

One may wonder about the converse – is every program typeable
with the above rules (potentially using impredicative instantiation),
typeable in ML (perhaps with a different type)? We claim the
answer is yes, but the proof is more involved and left to future work.

3.2 The need for partial type annotations

The schematic variables supported by our annotations are not re-
quired to prove type soundness or the correctness of type inference.

However, the simpler system with closed type annotations (setting
α ≡ ε throughout) is less expressive than System F. For instance,
it is not possible to define the classic encodings of existential
types using universal types. In particular, the standard encoding of
existential introduction uses an inner type application to eliminate
a universal type that mentions a type parameter of an outer type
abstraction. Without explicit type binding, we cannot reference this
parameter explicitly and in the absence of schematic variables, we
cannot reference it implicitly either.

As a concrete example, consider the encoding of the System F term
pack(int, 1) as ∃β.β,

Λγ.λf :∀β.β → γ.f [int]1

of encoded existential type ∀γ.(∀β.β → γ) → γ. Notice that the
declared type of f - the client of the existential - mentions γ. In the
QML translation, we have to specify the universal type of f at its
elimination. Although it cannot refer to the intended γ (since it is
not in scope), it can refer to it implicitly via a schematic variable α.

{ ∀γ.(∀β.β → γ) → γ} λf .(f {α ∀β.β → α}) 1

Without the schematic variable, we would not be able to encode the
original System F term.

Note that a different approach to partial type annotations would be
to treat free variables as “rigid”, and bind them in terms as well.
This approach is taken in Standard ML and the Glasgow Haskell

Compiler. Although feasible, it would complicate our reduction se-
mantics and the subject reduction proof (for example, GHC does
not have a direct reduction semantics, but rather a semantics-via-
elaboration to Church-style System F; SML(14) erases type anno-
tations before untyped evaluation).

Fortunately, QML’s approach to partial type annotations is not new
and has been proposed and adopted several times (4; 10; 21).

3.3 Robustness
Because all introductions and eliminations of polymorphism are
explicit, QML enjoys robustness of typeability under various pro-
gram transformations. First, η-expansions preserve typing:
Lemma 3.2. If Γ � e : τ1 → τ2 then Γ � λx .e x : τ1 → τ2.

Second, typing is preserved under applications of polymorphic
combinators.
Lemma 3.3. If Γ � e1 e2 : µ then also Γ � app e1 e2 : µ and
Γ � revapp e2 e1 : µ.

Both properties are straightforward checks using the typing rules.
Of course, there is a catch: there are fewer System F applications
that may be typed without an annotation on the argument at the first
place. For instance:

run : Π(α)((∀γ.γ→ α)→ α)
e : Π(γ)(γ → int)

let test0 = run e;; % rejected
let test1 = run ({∀γ.γ→ α} e);; % ok

Finally, typeability is preserved under β-reductions (Section 3.4),
and let-expansions as a consequence of the existence of principal
schemes (Section 5).

3.4 Reduction semantics
We give a small-step operational semantics as a reduction relation
on closed terms (Figure 3). Values are either λ-abstractions, which
suspend reduction, or quantifier introductions, which do not:

Values v , w ::= λx.e | {α ∀α.τ} v | {α ∃α.τ} v

This choice ensures compatibility with type-erasure semantics, but
is not essential. Since we choose to reduce under quantifier intro-
ductions, the body of a polymorphic or existential value must also
be a value.

The reduction rules for applications and let are standard.

Contextual rules R-ALLI and R-SOMEI reduce the body of poly-
morphic or existential values, preserving the outer type annotation.
Rule R-ALLE-β, where a polymorphic value is eliminated, just ex-
poses the underlying value. Unlike the corresponding β reduction
rule of System F, this rule does not substitute for α - there is no
need, since α is only bound in τ , not v .

Contextual rule R-SOMEE reduces the existential term unless it
is already a value. Rule R-SOMEE-β, where an existential value
is eliminated, just substitutes the underlying value for x in the
suspended continuation e . Unlike the corresponding β reduction
rule of System F, this rule does not substitute for α – again, α is
only bound in τ , not e .

Since we reduce under quantifier introductions and the β-rules for
quantifiers never relate the annotation on the value with that of the
elimination construct, it is easy to see that QML enjoys an obvious
type erasure semantics.

The actual type soundness result is a consequence of the following
standard lemmas. The proofs are easy and omitted (but see the Coq
formalization for details).

e −→ e ′
R-APP-L

e u −→ e ′ u

e −→ e ′
R-APP-R

v e −→ v e ′
R-APP-β

(λx.e)v −→ [x �→ v]e

u −→ u ′

R-LET
let x = u in e −→ let x = u ′

in e

R-LET-β
let x = v in e −→ [x �→ v]e

e −→ e ′
R-ALLI

{α ∀α.τ} e −→ {α ∀α.τ} e ′
e −→ e ′

R-ALLE
e {α ∀β.τ} −→ e ′ {α ∀β.τ}

R-ALLE-β
({α ∀α.τ} v) {β ∀β.µ} −→ v

e −→ e ′
R-SOMEI

{α ∃α.τ} e −→ {α ∃α.τ} e ′
u −→ u ′

R-SOMEE
open {α ∃β.τ} x = u in e −→ open {α ∃β.τ} x = u ′

in e

R-SOMEE-β
open {α ∃α.τ} x = ({β ∃β.µ} v) in e −→ [x �→ v]e

Figure 3: Reduction relation e −→ u .

Lemma 3.4 ((Parallel) Type Substitution). If Γ1, Γ2 � e : τ and
α#ftv(Γ1) then Γ1, [α �→ µ]Γ2 � [α �→ µ]e : [α �→ µ]τ .

Notice that, because we allow type annotations with free variables
(in addition to schematic ones), our substitution lemma needs to
substitute in the term as well as the type. Consider for example
a term of the form {α ∀β.τ} e . There may be free variables in
∀β.τ other than α. If we were to require that α is all the free
variables in ∀β.τ , then we would not have to substitute inside the
term. Allowing free variables does no harm – but is not essential.
Lemma 3.5 (Weakening). If Γ1, Γ2 � e : τ implies Γ1, Γ, Γ2 �
e : τ (provided Γ1, Γ, Γ2 is a well-formed context).

To state a generalization and a term substitution property, we define
the auxiliary scheme typing judgement, below.
Definition 3.1 (Scheme Typing). For scheme ς ≡ Π(α)(τ), define
the relation Γ � e : ς , read e has scheme ς in Γ, if, and only if,
forall µ, Γ � e : [α �→ µ]τ .
Definition 3.2 (Generalization). Γ � e : τ and α#ftv(Γ) implies
Γ � e : Π(α)(τ).
Lemma 3.6 (Term Substitution). If Γ1, (x : ς), Γ2 � e : τ and
Γ1 � u : ς then Γ1, Γ2 � [x �→ u]e : τ .

Finally, type safety is given via progress and preservation.
Lemma 3.7 (Preservation). If Γ � e : τ then e −→ e ′ implies
Γ � e ′ : τ .
Lemma 3.8 (Progress). If � e : τ then, for some value v , e = v
or for some term e ′, e −→ e ′.

3.5 Expressiveness
We can substantiate our claim that QML is as expressive as System
F by giving a type-preserving translation from Church-style System
F typing derivations to QML terms. Figure 4 gives the standard
System F typing relation, augmented with our translation to output
a translated QML term. The translation erases type declarations
from System F typed λ-abstractions, type arguments from type
applications, and type witnesses from pack expressions. At the
same time, it uses the conclusion of the System F typing rules
to produce the required type annotations in the translated term.
Notice the implicit closing over the free variables of the quantified
System F types using the abbreviations {∀α.τ} which stands for
{ftv(∀α.τ) ∀α.τ}, and similarly for existential types – see the
abbreviation forms in Figure 1. Since Λ- and unpack-bound type
variables can never be explicitly bound in the translated term, our
translation must, instead, close over any free variables occurring in
the quantified types. One can now prove (in Coq):

Contexts
A ::= ε | A, (x :τ)

Translation of contexts
ε◦ = ε

(A, (x : τ))◦ = A◦, (x : Π(ε)(τ))

A, (x :τ) � M : µ� e
TR-ABS

A � λx : τ.M : τ → µ� λx.e

(x :τ) ∈ A
TR-VAR

A � x : τ � x

A � M1 : τ → µ� e1

A � M2 : τ � e2 TR-APP
A � M1 M2 : µ� e1 e2

A � M : τ � e1 α#ftv(A)
TR-TABS

A � Λα.M : ∀α.τ � { ∀α.τ} e

A � M : ∀α.τ � e
TR-TAPP

A � M [µ] : [α �→ µ]τ � e { ∀α.τ}
A � M : [α �→ µ]τ � e

TR-PACK
A � pack(µ,M) as ∃α.τ : ∃α.τ � { ∃α.τ} e

A � M : ∃α.τ � e α#ftv(A, µ)
A, (x :τ) � N : µ� u TR-OPEN

A � open (α, x) = M in N : µ
� open { ∃α.τ} x = e in u

Figure 4: A type-preserving translation, A � M : τ � e , from
System F to QML.

Theorem 3.9 (Translation preserves types). If A � M : τ � e
then A◦ � e : τ , where A◦ is the trivial embedding of System F
contexts in QML contexts.

As an aside, observe that the translated QML term may have more
types than the original System F term because of the dropping
of annotations on λ-abstractions. However, QML programs en-
joy principal type schemes (see Proposition 5.2) and hence the
principal scheme of the translated term will be more general
than its source System F type. For example, the System F term
λx :(∀α.α).x of ground type (∀α.α) → (∀α.α) translates to QML

% nested introductions
let polyapp = {∀α.∀β.(α→ β)→ α→ β}

{∀β.(α→ β)→ α→ β}
app;;

let abstype = {∀α.∃β.(α→ β) ×(β→ α)}
{∃β.(α→ β) ×(β→ α)}

(id,id);;
let module = {∀α.∃β.∀γ.(α→ β) ×((α→ γ)→ β→ γ)}

{∃β.∀γ.(α→ β) ×((α→ γ)→ β→ γ)}
{∀γ.(α→ β) ×((α→ γ)→ β→ γ)}

(id, app);;
% nested eliminations
(polyapp {∀α.∀β.(α→ β)→ α→ β})

{∀β.(α→ β)→ α→ β}
;;
let x = abstype {∀α.∃β.(α→ β) ×(β→ α)} in
open {∃β.(α→ β) ×(β→ α)} x = x in
(snd x) (fst x 1);;

let x = module {∀α.∃β.∀γ.(α→ β)×(α→ γ)→ β→ γ} in
open {∃β.∀γ.(α→ β) ×(α→ γ)→ β→ γ} x = x in
let x = x {∀γ.(α→ β) ×(α→ γ)→ β→ γ} in
(snd x) (fun a → (a,a)) (fst x 1);;

Figure 5: Longhand nested quantifier introduction and elimination.

Prefixed Types
π ::= (τ) empty prefix

| ∀απ universal prefix
| ∃απ existential prefix

Derived Terms
e, u ::= . . .

| {α π} e π-introduction
| open {α π} x = u in e scoped π-elimination
| e {α π} open π-elimination

Figure 6: Syntactic sugar.

term λx .x with more general scheme Π(β)(β → β), which sub-
sumes its source typing.

More clever translations, that exploit the implicit polymorphism
available in the target language, are possible but we have not in-
vestigated any; nor have we attempted to prove that our translation
preserves reduction behaviour, but this should be easy provided the
System F reduction relation also reduces under Λ and pack.

4. Derived Forms
An obvious critique of QML is that manipulating several quantifiers
at once is tedious and error prone as it requires the provision of
several closely related type annotations.

Consider, for example, the following types with nested quantifiers,

∀α.∀β.(α→ β)→ α→ β
∀α.∃β.(α→ β)×(β→ α)
∀α.∃β.∀γ.(α→ β)×((α→ γ)→ β→ γ)

corresponding to the type of a first-class polymorphic version of
app; a polymorphic abstract datatype with a pair of injection and
projection functions; and a polymorphic module declaring an ab-
stract type with a pair of an injection function and generic fold oper-
ation - a module for one element containers, if you like. Introducing

Translation of prefixed types
[[(τ)]] = τ
[[∀απ]] = ∀α.[[π]]
[[∃απ]] = ∃α.[[π]]

Expansion of prefix introduction
[[{α (τ)} e]] = e
[[{α ∀βπ} e]] = {α ∀β.[[π]]} [[{αβ π} e]]
[[{α ∃βπ} e]] = {α ∃β.[[π]]} [[{αβ π} e]]

Expansion of scoped prefix elimination
[[open {α (τ)} x = u in e]] = (λx.e) u
[[open {α ∀βπ} x = u in e]] =

[[open {αβ π} x = u {α ∀β.[[π]]} in e]]
[[open {α ∃βπ} x = u in e]] =

open {α ∃β.[[π]]} x = u in [[open {αβ π} x = x in e]]

Expansion of open prefix elimination
[[e {α π}]] = [[open {α π} x = e in x]]

Figure 7: Expansion of syntactic sugar.

Γ � e : τ
INTRO-BASE

Γ �i e : (τ)

Γ �i e : π α#ftv(Γ, e)
INTRO-ALL

Γ �i e : ∀απ

Γ �i e : [α �→ µ]π
INTRO-SOME

Γ �i e : ∃απ

Figure 8: Prefix introduction Γ �i e : π.

Γ, (x :µ) � e : τ
ELIM-BASE

Γ ; x :(µ) �e e : τ

Γ ; x :[α �→ µ]π �e e : τ
ELIM-ALL

Γ ; x :∀απ �e e : τ

Γ ; x :π �e e : τ α#ftv(Γ, τ, e)
ELIM-SOME

Γ ; x :∃απ �e e : τ

Figure 9: Prefix elimination Γ ; x :π �e e : τ .

and eliminating values of these types, as in Figure 5, is extremely
tedious, since we have to individually manipulate each quantifier.
The mixed quantifier eliminations of abstype and module are par-
ticularly appalling since we have to alternate between standalone ∀-
elimination and scoped ∃-elimination, for which we have allowed
ourselves the luxury of using let.

Our first reaction was to move to a richer system with mixed
prefix quantifiers in types and big bang constructs to introduce and
eliminate a mixed prefix of quantifiers all at once. We eventually
discarded this idea, for reasons we discuss in Section 7.1.

Instead of extending the language with mixed prefix quantified
types we can obtain the same convenience, without the drawbacks,

by adding some syntactic sugar for dealing with nested quantifiers
– our implementation expands this sugar during the parsing phase.
Writing open { ∀α.τ} x = e in u ≡ (λx .u)(e { ∀α.τ}) as sym-
metric shorthand for scoped ∀ elimination, reveals more structure:

open {∀α.∃β.(α→ β)×(β→ α)} x = abstype
in open {∃β.(α→ β)×(β→ α)} x = x

in (snd x) (fst x 1);;

open {∀α.∃β.∀γ.(α→ β)×(α→ γ)→ β→ γ} x = module
in open {∃β.∀γ.(α→ β)×(α→ γ)→ β→ γ} x = x

in open {∀γ.(α→ β)×(α→ γ)→ β→ γ} x = x
in (snd x) (fun a→ (a,a)) (fst x 1);;

Each elimination strips a quantifier from x but leaves the remainder
of the annotation unchanged. The same observation can be made
for nested introductions (c.f. Figure 5).
Figure 6 defines the syntactic sugar. We first introduce a new syn-
tactic category of prefixed types, ranged over by π. A prefixed type
π is just a sequence of universal or existential quantifications end-
ing in a type (τ) (quantified variables bind to the right in π). Terms
are extended with generalized π-introduction and π-elimination
constructs, by replacing the unary quantifiers of the base syntax
with πs. The π-introduction, {α π} e , is used to introduce both
universal types and existential types, inferring witness for those ex-
istential types along the way. The scoped π-elimination construct,
open {α π} x = u in e , is used to both instantiate universal types
and open existential types in the scope of a continuation e . An im-
plementation can, of course, remove the unary primitives from the
concrete (but not abstract) syntax.
Figure 7 defines the expansion of our sugar by induction on π.
[[π]] translates a prefixed type into an ordinary type with nested
quantifiers. [[{α π} e]] expands a prefix introduction into nested,
unary quantifier introductions. The [[open {α π} x = u in e]] ex-
pansion is more interesting. For an empty prefix, we just apply a
λ-abstraction of the body e to u . For an existential prefix, we sim-
ply inductively unfurl the open. For a universal prefix, we unfurl
the open with a modified binding that first eliminates the universal
in the expansion of the body. Note that each expansion strips the
outermost quantified variable and adds it as a schematic variable of
the inductive expansion.
The expansion [[e {α π}]] of open π-elimination - the prefix gen-
eralization of e {α ∀β.τ} - is trivially defined in terms of scoped
π-elimination with an identity continuation. Note that this form will
fail to type check if π contains a proper3 existential quantifier since
the hypothetical type will escape in the type of x . However, the
syntax remains useful shorthand for eliminating several universal
quantifiers in one go.
Now, the code in Figure 10 is much more concise (c.f. Figure 5).
Fortunately, once defined, the programmer can forget about the
underlying translation. Using the straightforward, and pleasingly
symmetric, prefix introduction and elimination judgements defined
in Figures 8 and 9, we can derive the following generalized intro-
duction and elimination rules:
Lemma 4.1 (Derived typing rules).

Γ �i e : [α �→ µ]π
QUANTI

Γ � [[{α π} e]] : [[[α �→ µ]π]]

Γ � u : [[[α �→ τ]π]] Γ ; x :[α �→ τ]π �e e : µ
QUANTE

Γ � [[open {α π} x = u in e]] : µ

3 by proper, we mean a quantified variable with at least one occurrence.

% prefix introductions
let polyapp = {∀α∀β ((α→ β)→ α→ β)} app;;

let abstype = {∀α∃β ((α→ β) ×(β→ α))} (id,id);;

let module = {∀α∃β∀γ ((α→ β) ×((α→ γ)→ β→ γ))}
(id,app);;

% prefix eliminations
polyapp {∀α∀β ((α→ β)→ α→ β)};;

open {∀α∃β ((α→ β) ×(β→ α))} x = abstype
in (snd x) (fst x 1);;

open {∀α∃β∀γ ((α→ β) ×(α→ γ)→ β→ γ)} x = module
in (snd x) (fun a → (a,a)) (fst x 1);;

Figure 10: Shorthand prefix introduction and elimination.

Expansion of polymorphic, scoped prefix elimination
[[open {α (τ)} x = u in e]] = let x = u in e
[[open {α ∀βπ} x = u in e]] =

[[open {αβ π} x = u {α ∀β.[[π]]} in e]]
[[open {α ∃βπ} x = u in e]] =

open {α ∃β.[[π]]} x = u in [[open {αβ π} x = x in e]]

α#ftv(Γ), β Γ, (x : Π(α)(µ)) � e : τ
POLY-ELIM-BASE

Γ ; x :(µ) �β
e e : τ

Γ ; x :[α �→ µ]π �β
e e : τ

POLY-ELIM-ALL
Γ ; x :∀απ �β

e e : τ

(Γ, : [[π]]) ; x :π �β
e e : τ α# ftv(Γ, τ, e)

POLY-ELIM-SOME
Γ ; x :∃απ �β

e e : τ

Figure 11: Polymorphic prefix elimination Γ ; x :π �β
e e : τ .

So far so good, but there is a subtle difference between the code in
Figures 5 and 10. With our current definition, open {α π} x =
u in e , introduces x in e under a λ-abstraction, which precludes
polymorphic uses of x even when π is just a sequence of universal
quantifiers. This is unfortunate. For example, it means that

λid .open { ∀α(α → α)} f = id in (f 1, f true) (1)

will fail to type check - since it tries to use f polymorphically -
even though this very similar term is type correct:

λid .let f = id { ∀α(α → α)} in (f 1, f true) (2)

The fix, of course, is to use a different expansion that ends in a
let. The net effect of this alternative translation, captured by the
highlighted changes in Figure 11, is that the innermost universal
quantifiers of a prefix will be eliminated in the definition of that
let, and thus become generalized in a type scheme for x . Any
universal quantifiers bound to the left of an existential in π will
enter the context (through the existential open) and thus receive
a fixed instantiation and not be generalized, as required for type
soundness. Now, our previously untypeable term in (1) just expands
to the typeable term in (2).

For this variant of open, we can derive the following rule (though
we have not yet done so with Coq):

Γ � u : [[[α �→ τ]π]] Γ ; x :[α �→ τ]π �ftv(u)
e e : µ

POLY-QUANTE
Γ � [[open {α π} x = u in e]] : µ

This rule relies on a modified prefix elimination judgement also dis-
played in Figure 11. Its rules differ from the simpler ones in Figure
9 by introducing let-polymorphism before checking the continu-
ation e , and by throwing any eliminated existential type into the
context (for a fresh variable) before descending into the prefix.
The latter step tracks the effect of unary open in the expansion and
correctly prevents subsequent generalization over any free variables
appearing within the current translation of π, including the existen-
tial variable α (if it occurs in π), but excluding variables appearing
within future, inner instantiations. Finally, the variables β (index-
ing �β) are used to prevent accidental generalization over any free
type variables in the let-bound term u; they could be removed by
insisting on closed type annotations.

Returning to our example, let us consider a more refined client of
module that uses the fold operation polymorphically:

% longhand, inner let x generalizes over γ.
let x = module {∀α.∃β.∀γ.(α→ β) ×(α→ γ)→ β→ γ}
in open {∃β.∀γ.(α→ β) ×(α→ γ)→ β→ γ} x = x in

let x = x {∀γ.(α→ β) ×(α→ γ)→ β→ γ} in
let p = (snd x) (fun a → (a , a)) (fst x 1) in

% x used with γ= int ×int
let i = (snd x) (fun a → a + a) (fst x 1) in

% x used with γ= int
(p,i);;

% polymorphic prefix elimination works just as well
open {∀α∃β∀γ ((α→ β) ×(α→ γ)→ β→ γ)} x = module
in let p = (snd x) (fun a → (a , a)) (fst x 1) in

let i = (snd x) (fun a → a + a) (fst x 1) in
(p,i);;

Now the lower shorthand will typecheck just like upper longhand
(using Figure 11’s definitions).

4.1 Type Constraints
Sometimes, it is handy to have type constraints in the language.
OCaml style type constraints are easily captured by introducing and
eliminating a vacuous quantifier:

[[e:α(τ)]] = ({α ∀β.τ} e) {α ∀β.τ} (3)

where β#α, ftv(τ) is some fresh variable, together with abbrevi-
ated notation e:τ ≡ e:ftv(τ)(τ) .

We conjecture, but have not formally shown the following, invert-
ible, derived rule.

Γ � e : [α �→ µ]τ
CONSTRAINT

Γ � [[e:α(τ)]] : τ [α �→ µ]

Indeed, with this sugar in hand, it makes sense to refine the transla-
tion (and derived rules) in Figure 7 so that:

[[{α (τ)} e]] = [[e:α(τ)]]

[[open {α (τ)} x = u in e]] = (λx.e) [[u:α(τ)]]

or, respectively, in Figure 11:

[[open {α (τ)} x = u in e]] = let x = [[u:α(τ)]] in e

This would ensure that empty prefixes still impose a proper con-
straint rather than having no effect.

type sig (α,ρ,β) =
((α → ρ) ×% init a
(ρ → int → α) ×% sub r i
(ρ → int → α→ ρ) ×% update r i a
((α → β→ β) → β→ ρ→ β) % fold f b r

);;
let base = {∃ρ∀β (sig(α,ρ,β))}

((fun a → a), % init
(fun r → fun i → r), % sub
(fun r → fun i → fun a → a), % update
(fun f → fun b → fun r → f r b) % fold
);;

let step = fun x: ∃ρ∀β(sig(α,ρ,β)) →
let (xinit,xsub,xupdate,xfold) = x in
let init = fun a → ((xinit a), (xinit a)) in
let sub = fun r → fun i →
if (i mod 2) = 0
then (xsub (fst r) (i / 2))
else (xsub (snd r) (i / 2)) in

let update = fun r → fun i → fun a →
if (i mod 2) = 0
then ((xupdate (fst r) (i /2) a),(snd r))
else ((fst r),(xupdate (snd r) (i / 2) a)) in

let fold = fun f → fun b → fun r →
xfold f (xfold f b (fst r)) (snd r)

in {∃ρ∀β (sig(α,ρ,β))} (init,sub,update,fold);;

let rec mkMonoArray n =
if(n=0) then base else step(mkMonoArray(n - 1));;

let mkPolyArray = fun n →
{∀α(∃ρ.∀β.sig(α,ρ,β))} (mkMonoArray n);;

Figure 12: Inductively defined, fixed-sized functional arrays.

4.2 Function Argument Type Annotations
Programmers often document their function arguments with types.
We can add support for this, but also go further and exploit the
annotation to allow implicit elimination of prefixed types:

[[λx : α π.e]] = λx .open {α π} x = x in e

with abbreviated notation λx : π.e ≡ λx : ftv(π) π.e .

Now, for example, the programmer can write:

λid :∀α(α → α).(id 1, id true)

and use the parameter id polymorphically, saving on the insertion
of let as in example (2) above.

4.3 Example: Dynamic, Fixed-size Functional Arrays
Figure 4.3 contains a larger example of programming in QML, us-
ing some of our derived forms. It is adapted from an example of
programming with first-class modules in an extension of Standard
ML (22). With impredicative existentials, it is possible to make the
witness of an abstract type depend on the result of some computa-
tion. A simple example of such a type is the type of fixed-size ar-
rays of size n , where n is a value that is computed at runtime. For
simplicity, we implement functional arrays of size 2n , for arbitrary
n ≥ 0. An array module will have type ∀α.∃ρ.∀β.sig(α,ρ,β),
for any array element type α, some array type ρ, and all types β,
where β is the parameter of a generic fold operation. By construc-
tion, ρ will represent arrays containing 2n entries of type α for
some n . The (ordinary) type abbreviation sig(α,ρ,β) specifies a
tuple of array operations (we could also have used a record). The

first component, function init a, returns an array that has its en-
tries initialised to the value of a. The second component, function
sub a i, returns the value of the i mod 2n -th entry of the array
a. The third component, function update r i a, returns an array
that is equivalent to the array r, except for the i mod 2n -th entry
that is updated with the value of a. The fourth component, function
fold f b r, folds the function f:α→ β→ β over each element
in the array r, accumulating intermediate results in the β argument.
Note that β is quantified to the right of ρ so we will be able to use a
particular array type’s fold operation polymorphically. To omit ar-
ray bound checks, we interpret each index i modulo 2n . The value
base implements arrays of size 20 = 1. An array is represented
by its sole entry with trivial init, sub, update and fold func-
tions. The function step x maps a value, x, implementing arrays
of size 2n , for some abstract type ρ, to a tuple implementing arrays
of size 2n+1. It represents an array of size 2n+1 as a product of ρ
arrays. Entries with even (odd) indices are stored in the first (sec-
ond) component of the pair. The function init e returns a pair
of arrays of size 2n . The functions sub r i and update r i a
use the parity of i to determine which sub-array to subscript or
update. The function mkMonoArray n uses recursion on n to con-
struct an existential value implementing arrays of size 2n , keeping
the element type fixed at α. Notice that the witness of ρ returned
by mkPolyArray n is a balanced, nested product of depth n: the
shape of this type really does depend on the runtime value of n.

5. Type inference
The correctness of type inference relies on two important lemmas.
For soundness, it is necessary that the typing relation is preserved
under type substitution (Lemma 3.4). For completeness, it is impor-
tant that typing is preserved when more general schemes are used
in the context. To capture this, we introduce the scheme instance
relation Π(α1)(τ1) 	 Π(α2)(τ2) iff for all β#ftv(Π(α1)(τ1)) it
is the case that there exist µ so that [α1 �→ µ]τ1 = [α2 �→ β]τ2.
We generalize this notation to contexts: Γ1 	 Γ2 iff, dom(Γ1) =
dom(Γ2) and for all (x :ς2) ∈ Γ2 it is the case that (x :ς1) ∈ Γ1

and ς1 	 ς2. Now we can state the strengthening property:
Lemma 5.1 (Strengthening). If Γ2 � e : τ and Γ1 	 Γ2 then
Γ1 � e : τ .

The actual implementation of type inference relies on unification
of terms with quantifiers, and is a folklore subcase of (first-order)
mixed-prefix unification (13), itself a decidable case of unification
with most general unifiers. There exist several reference implemen-
tations of similar algorithms (17; 4).

Showing completeness of type inference and principal type schemes
is routine using completeness of the unification algorithm and Lem-
mas 3.4,5.1.
Proposition 5.2 (Principal schemes). If Γ � e : τ then there exists
a µ such that Γ � e : µ and for every τ ′, α, such that Γ � e : τ ′

and α#ftv(Γ, e), it is the case that Π(β)(µ) 	 Π(α)(τ ′) where
β = ftv(µ) − ftv(Γ, e).

A consequence of the existence of principal schemes is the let-
expansion property.
Proposition 5.3. If Γ � [x �→ u]e : τ and Γ � u : µ then
Γ � let x = u in e : τ .

6. Scaling up
We sketch here the addition of several features found in modern
functional programming languages.

6.1 References
Most variants of ML include imperative features such as polymor-
phic references and arrays. Adding these to QML requires the usual

care to avoid unsoundness. The standard trick is to adopt the value
restriction. The idea is modify rule LET to only do scheme general-
isation for definitions that are values. But this would be too restric-
tive for QML, rejecting, for example:

λid .let f = id { ∀α(α → α)} in (f 1, f true) (4)

However, the aim of the value restriction is to avoid unsound gen-
eralisation of definitions that expand or may expand the store (such
as ref allocations and function applications). Values do not expand
the store but there is a larger class of expressions that are nonex-
pansive too (14). Since our QML semantics is call-by-value and re-
duces under introductions, the body of a nonexpansive introduction
must also be nonexpansive; eliminating a universal quantifier from
a nonexpansive expression does not trigger further computation
and is obviously nonexpansive; eliminating an existential quanti-
fier from a nonexpansive expression is nonexpansive provided the
continuation of the open is. Finally, though not usually included, if
both the definition and continuation of a let are nonexpansive, so
is the entire let.

This leads us to the following characterisation of nonexpansive
terms, range over by n , as subsets of full terms:

Nonexpansive Terms
n ::= x | λx.e | let x = n1 in n2

| {α ∀β.τ} n ∀-introduction
| n {α ∀β.τ} ∀-elimination
| {α ∃β.τ} n ∃-introduction
| open {α ∃β.τ} x = n1 in n2 ∃-elimination

Including nonexpansive let expressions allows us to show:
Proposition 6.1 (Nonexpansive derived forms). If expressions e
and u are non expansive then so are the translations of derived
forms {α π} e , open {α π} x = u in e , and e {α π}.

However, even with this more liberal definition, we lose some poly-
morphism. For example, in pure QML, the church encodings of in-
ductive datatypes will admit let-polymorphic encodings of their
values. But since these values are represented as (expansive) appli-
cations, in impure QML, these value will never be polymorphic.

6.2 Data constructors and pattern matching

Adding ordinary algebraic datatypes to QML is straightforward.
However, our π-elimination construct is reminiscent of nested pat-
tern matching and it would be nice to find a clean integration of
pattern matching with quantifier elimination, perhaps by extending
the elegant presentation of Krishnaswami (8).

To avoid inferring types with quantifiers, Rémy (20), Jones (6) and
Odersky and Läufer (12; 15) instead tie quantifier introduction and
elimination to the introduction and elimination of named types.
This includes introducing and eliminating polymorphism for the
arguments of data constructors: if a data constructor expects a
polymorphic argument, the quantifier of the argument is introduced
implicitly. When pattern matching, a variable that is bound to a
polymorphic type can freely be instantiated in the scope of the
pattern (at two or more types in (12; 15)).

By comparison, the naı̈ve extension of QML with ordinary datatypes
would support impredicative constructors but still require separate
steps to (i) introduce quantifiers for a polymorphic constructor ar-
gument, and (ii) apply the constructor. Symmetrically – in the case
of elimination – a pattern match on the constructor would typically
continue with an inner elimination of its argument’s quantifiers.

As a convenience, we might like to introduce some more syntactic
sugar to enhance QML datatype declarations. The idea is to define
each data constructor with a prefixed type that, unlike an ordinary

constructor definition, declares automatic introduction and elimi-
nation forms for that constructor’s argument (a separate, back-door
mechanism could suppress auto introductions and eliminations).
For example, consider a datatype declaration of the form:

type α t = C of π (where ftv(πi) ⊆ α)

Each term constructor Ci is declared with the closed scheme:

ςi = Π(α)([[πi]] → α t)

But, guided by its declared prefix, every constructor application
Ci e is syntactically desugared as:

[[Ci e]] = Ci ({α πi} e) (5)

and each case on an expression of type α t is expanded as follows:

[[case e of C x → e]] =

case e of C x → open {α π} x = x in e

Thus we recover the convenience of (12; 20; 6; 15) yet keep con-
structors first-class (since they receive ordinary types or schemes).

7. Discussion
We now discuss interesting points in the design space surrounding
the explicit introduction and elimination of polymorphism.

7.1 Mixed Prefix Quantified Types
Our first response to the syntactic horrors of Figure 5 was to move
to a more general system with intrinsic, mixed-prefix, quantified
types (τ ::= . . . | π) and big bang constructs to introduce and
eliminate a mixed prefix all at once, very similar to our derived
rules in Lemma 4.1. Unfortunately, the problem with treating mixed
prefix types atomically is that it becomes impossible to write η-
expansions of some types.
Consider this System F term that does an η-expansion on a nested
type with mixed quantifiers.

F_eta: (∀α.∃β.α → β) → (∀α.∃β.α → β)
F_eta = λp: ∀α.∃β.α → β.

Λα. open (β,x) = p [α] in
pack (β,x) as ∃β.α→ β.

F_eta has to Λ-abstract α before open-ing p [α] and introduc-
ing the existential, so the elimination of p’s quantifiers happens be-
tween the introduction of the result quantifiers.
We can write this in QML without any difficulty.

let eta = fun p →
{∀α (∃β.α → β)} open {∀α∃β.(α→ β)} x = p in

{∃β.α → β} x ;;

However, if π-types are proper atomic types, there would be no way
to separate the introduction of each quantifier. In such a system,
our best attempts at writing F_eta always wound up splitting
the atomic mixed prefix quantifier (∀α∃β.(α→ β)) into nested,
single quantifiers, ∀α.(∃β.(α→ β)), which is close to, but not
exactly, what we wanted.

% illegal, fails to type check as required
let eta_illegal = fun p →

open {∀α∃β.α→ β} x = p in
{∀α∃β.α→ β} x

% type checks, but with wrong type
let eta_wrong = fun p →

{∀α (∃β. α→ β)} open {∀α∃β.α→ β} x = p in
x {∃β.α→ β}

% returns ∀α.(∃β.α → β) not ∀α∃β.α → β, as reqd.

QML, like System F, lets us manipulate quantifiers individually
when necessary. However, modifying the big bang rules to support
this, although possible, also has an effect on the reduction seman-
tics, which now has to be extended to allow partial reduction of
mixed prefixed values in an ad hoc manner.

7.2 System F-style introductions and eliminations
An alternative point arises from the following question: if all intro-
ductions and eliminations of polymorphism are explicit, why not
use the syntax of System F itself? This variation may be appealing
for dependently typed languages like Coq (2), where programmers
are already used to explicitly-typed programming.

For instance, instead of the introduction form {α ∀β.τ} e one
could imagine a form Λβ.e where β is now bound in e . Similarly,
instead of the elimination form e {α ∀β.τ} one could imagine
the System F form e [µ]. Note that we assume ML-style implicit
polymorphism remains available in this alternative.

However, things are not that simple. The first observation is that
these forms of annotations are not enough – we would also have
to annotate some λ-bound arguments. For example, the QML pro-
gram:

let foo f = (f {∀α.α → α}) 3

would have to be written:

let foo (f : ∀α.α → α) = f [int] 3

Hence, in cases like this one, the variant would actually require
more annotations. When the function parameter is specialized sev-
eral times, then the QML function exploiting the derived form for
annotated function parameters (Section 4.2), which can be implic-
itly eliminated at several instantiations, is clearly more concise.

Second, we would still have to provide some support for type
applications where the applied type is only partially known. Given:

let foo x (y : ∀α.α → α) = y [?] x;;

it is not clear what the [?] type instantiation should be and hence
our system would have to support both rigid and flexible type
variables in type applications.

Third, using type abstraction (Λα.e) to introduce polymorphism
is not that straightforward, because the presence of untyped term
abstractions means the type of the body of a type abstraction is, in
general, not known. Consider the term

let foo = Λα. fun x (y : α) → x

it is not clear what the intended type of foo is : should it be
Π(β)(∀α.β → α → β) or ∀α.α → α → α? Worryingly, if we
choose the first scheme (which looks like it might be more general)
the program test foo would fail to type check – where test has
type (∀α.α → α → α) → int . On the other hand, if choose
the more appropriate second type, other programs, that would have
passed with the first choice, now fail to type check. Unfortunately,
there is no type scheme for foo that subsumes both these choices.

7.3 Merging the quantifiers
One of the key points in our approach has been the distinction
between explicitly and implicitly introduced quantifiers. It is this
structural distinction that enables complete and decidable type in-
ference with a simple specification, based on unification of types
with quantifiers.

By contrast, one may wonder what goes wrong if we attempt to
merge the two forms of quantifiers, and only have schemes of the
form Π(α)(τ). Consider the program:

head : Π(α)(α list → α)
ids : (Π(α)(α → α)) list
choose : Π(α)(α → α→ α)

let foo1 = cons (head ids) ids;;
let foo2 = head ids 3;;
let foo3 = choose (head ids);;

In the application head ids at the definition of foo, should we
be instantiating the quantified variable of Π(α)(α → α) or not?
Presumably not, but in the second case we should instantiate it to
int. In the third case it is not even clear – in fact foo3 does not
have a principal System F type.

Since it is now not clear whether we should instantiate expressions
with polymorphic types, one can force “structural” unification only
by ad hoc conditions in the typing rules. For example, Leijen’s
HMF (10) will always attempt to instantiate (e.g. foo3 is typeable
in HMF, with an ML type) unless there is some other argument (e.g.
the second ids in foo1) that forces a polymorphic type.

Another possibility would be to always be explicit about general-
ization (and also generalize implicitly at let-nodes), but allow im-
plicit instantiations only for variables that are either let-bound or
λ-bound with polymorphic types. Hence, we would have explicit
instantiations for all or at least some non variable expressions – in
the latter case, to discover which ones the programmer would have
to laboriously follow the typing rules. For example, an explicit in-
stantiation of the expression (head ids) would be necessary in or-
der to type foo2 above. Finally, if the rules were to differentiate the
treatment of instantiation for variables and some other expressions,
it would be harder to give a reduction semantics. E.g. if we had

(fun (x : Π(α)(α → α)) → x 3) (head ids)

and we did not instantiate head ids by default, after one reduction
step the program would be untypeable! In QML we have:

head : Π(α)(α list → α)
ids : (∀α.α → α) list
choose : Π(α)(α → α→ α)

let foo1 = cons (head ids) ids;;
let foo2 = ((head ids) {∀α.α→ α}) 3;;
% foo3 gets type (∀α.α→ α) → (∀α.α→ α)
let foo3 = choose (head ids);;
% foo4 gets type Π(α)((α → α) → (α → α))
let foo4 = choose ((head ids) {∀α.α→ α});;

In particular, in foo2 and foo4 we explicitly eliminate the poly-
morphic type of head ids, whereas in foo1 and foo3 no instanti-
ation of head ids takes place.

We believe that the distinction between System F (explicit) poly-
morphism and ML (implicit) polymorphism is significantly cleaner
than a set of restrictions on the typing rules.

8. Related work
Related research has explored several directions.

8.1 Explicit vs implicit polymorphism
The idea of aiding inference by distinguishing between explic-
itly introduceable / eliminable quantifiers and ML let-introduced
quantifiers originates in the work of O’Toole and Gifford in the FX
programming language (16). In that work, implicit and explicit in-
stantiations are with quantifier-free types and unification is only be-
tween quantifier-free types. Function arguments must be quantifier-
free, unless an explicit type annotation is provided.

Garrigue and Rémy (4) go further: in their system, as in ours,
polymorphism is introduced explicitly. However, the elimination
of explicit quantifiers is done by a construct that does not specify
the type to be eliminated (improving on the idea of fully explicit
eliminations). For completeness, the eliminated type must still be
“known” at the point of elimination. To ensure this, the type system
tracks the types of expressions (using labelled types and label
polymorphism) to determine whether their polymorphism has been
explicitly introduced somewhere in the program. The advantage is
more compact type annotations but types now involve labels and
label polymorphism.
Garrigue and Rémy also propose a label-free system of explicit type
instantiations as an inferior variant of their semi-explicit elimina-
tion system ((4), Section 3.5). In that system, explicit elimination
of polymorphism is done by providing the type of the expression to
be eliminated, like in our proposal. They discard this idea for two
reasons: (i) it is more verbose than semi-explicit eliminations and
(ii) even let-bound quantifiers have to be explicitly eliminated.
The reason for (ii) is that their proposal does not distinguish be-
tween let-introduced quantifiers and explicitly introduced quanti-
fiers. In our system, however, let-bindings and explicit introduc-
tions result in different forms of quantifiers. Like ML, QML’s let-
introduced polymorphism is instantiated implicitly. We hence clas-
sify our proposal in the design space between the original Garrigue-
Rémy proposal and their fully explicit variant.
Jones (6) describes an approach where universal and existential
polymorphism is “boxed” under data constructors. For each re-
quired polymorphic type, the programmer declares a datatype
whose term constructor accepts a quantified type. Introduction of a
named quantified type is achieved by constructor application, and
elimination by pattern matching on that constructor; conveniently,
neither requires a type annotation beyond the shared datatype dec-
laration. Constructors can introduce/eliminate several universal fol-
lowed by several existential quantifiers, much as our derived prefix
elimination forms do, but without arbitrary quantifier alternation,
and without the final, implicit generalization step taken by our de-
rived elimination construct. Note that such constructors are not
first-class as they have types that contain quantifiers. Jones’ con-
structors introduce and eliminate all quantifiers at once and thus,
we believe, evince the same lack of eta-expansion functions for cer-
tain datatypes that encode mixed-prefix quantified types (such as
∀α∃β.(α→ β)), which we observed in Section 7.1. In Jones’ set-
ting, this hinders the definition of natural isomorphisms between
some structurally equivalent, yet distinct datatypes, obstructing
separate development without some prior agreement on datatype
definitions. For example, when distinct datatypes t1 and t2 encode
the same mixed-prefix type ∀α∃β.(α→ β) there is, we believe,
still no coercion function from t1 to t2 in Jones’ system.

8.2 Implicit generalizations and instantiations, following the
typing rules

Odersky and Läufer (15) take a different path: if all instantiations
are with quantifier-free types, the shape of types can guide the type
checker with respect to the placement of generalizations and instan-
tiations. In their system, implicit instantiation is with quantifier-
free types, and implicit generalization takes place also for argu-
ments in applications, where the function type requires the argu-
ment to be polymorphic. There exist several variations on the same
theme (18; 21), with some of them exploiting the “flow” of poly-
morphic information in the program. The Boxy Types proposal (23)
is a somewhat awkward attempt to lift the quantifier-free instantia-
tion restriction that is also based on the shape of types to determine
implicit instantiations and generalizations – in the presence of poly-
morphic instantiations, however, the type system specification of
Boxy Types is rather complicated.

The HMF system of Leijen (10) is along the same lines. All poly-
morphic expressions are implicitly instantiated, even with polymor-
phic types in a carefully crafted specification that uses (i) side-
conditions on expressions receiving most general types, (ii) weights
on types to ensure that a function is never instantiated with a poly-
morphic type unless one of its arguments requires that, and (iii) ap-
plications of functions to multiple arguments. For convenience, on
top of this specification, HMF introduces (iv) “rigid” type anno-
tations for explicit introductions of polymorphism, and employs
heuristics that eliminate the need for many type annotations. Our
proposal has a relatively small number of features, namely distin-
guishing two forms of quantifiers and multiple-quantifier elimina-
tions (which is actually just syntactic sugar), but may sometimes
require more annotations. Additionally, HMF’s algorithmic imple-
mentation is quite intuitive (as is ours), but the fact that HMF does
not require two distinct universal quantifiers (as we do) may be
simpler for programmers.

The examples of Section 2 superset the examples in the HMF paper,
except for test0 below:

% rejected
let test0 = app poly (fun x → x);;

In HMF, test0 would be accepted. In our system test0 is rejected
and requires an explicit type introduction around (fun x → x).
Such implicit introductions of polymorphism, are, we believe, the
most common situations where HMF would not require an annota-
tion, but our proposal would. Perhaps QML could be improved by
propagating expected polymorphism.

8.3 Implicit generalizations and instantiations
The MLF (9) language of Le Botlan and Rémy and variants
(FPH (24), HML (11)) attempt to infer all instantiations and gen-
eralizations provided that polymorphic function arguments be an-
notated (FPH and HML) or that polymorphic function arguments
that are used at two different types are annotated (MLF). Hence,
they require very few type annotations. We see three potential
reasons why a more explicit approach could be more practical:
First, there is a merit of having explicit generalization points from
a programming perspective as this may achieve better control of
effects (for instance, when type lambdas are treated as unevalu-
ated thunks). Second, with the exception of the box-free variant of
FPH, these type systems are more sophisticated, involving bounded
polymorphism. Third, all these systems are implemented using the
non-trivial MLF unification algorithm. From the second author’s
experience with integrating MLF-style unification in GHC (which
also includes several other features) we consider this task to be not
entirely straightforward.

9. Future work
In future work, we would like to extend our Coq formalization to
ML with references and pattern matching, and to formally prove the
correctness of type inference, instead of deferring to the literature.
This will provide a useful stress-test for Coq’s metatheory libraries
and the techniques we have been using.

Another interesting research direction is to extend the idea of dis-
tinguishing between implicit type schemes and explicitly quanti-
fied types to higher-order polymorphism, in the style of Fω . Fω

challenges the completeness and decidability of type inference by
giving rise to higher-order unification constraints (19).

Acknowledgements Thanks to the ML’09 anonymous reviewers
for their valuable suggestions on related work, Philip Wadler for
reminding us of O’Toole and Gifford’s work (16), and Simon Pey-
ton Jones for helpful feedback.

References
[1] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich.

Engineering formal metatheory. In POPL’08, pages 3–15, ACM,
2008.

[2] The Coq proof assistant. http://coq.inria.fr.

[3] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In POPL’82, pages 207–12, ACM, 1982.

[4] J. Garrigue and D. Rémy. Semi-explicit first-class polymorphism for
ML. Journal of Information and Computation, 155:134–169, 1999.

[5] J. R. Hindley. The principal type-scheme of an object in combinatory
logic. (146):29–60, 1969.

[6] M. P. Jones. First-class polymorphism with type inference. In
POPL’97, pages 483–496, ACM, 1997.

[7] A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in
the rank-2 fragment of the second-order lambda calculus. In ACM
Symposium on Lisp and Functional Programming, pages 196–207.
ACM, Orlando, Florida, June 1994.

[8] N. R. Krishnaswami. Focusing on pattern matching. In POPL ’09,
pages 366–378, ACM, 2009.

[9] D. Le Botlan and D. Rémy. MLF: raising ML to the power of System
F. In ICFP’03, pages 27–38, ACM, 2003.

[10] D. Leijen. HMF: simple type inference for first-class polymorphism.
In ICFP’08. ACM, 2008.

[11] D. Leijen. Flexible types: robust type inference for first-class poly-
morphism. In POPL ’09, pages 66–77, ACM, 2009.

[12] K. Läufer and M. Odersky. Polymorphic type inference and abstract
data types. ACM Transactions on Programming Languages and Sys-
tems, 16(5):1411–1430, 1994.

[13] D. Miller. Unification under a mixed prefix. J. Symb. Comput.,
14(4):321–358, 1992.

[14] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[15] M. Odersky and K. Läufer. Putting type annotations to work. In
POPL’96, pages 54–67, ACM, 1996.

[16] J. O’Toole and D. Gifford. Type reconstruction with first-class poly-
morphic values. In PLDI’89, pages 207–217, 1989. Published as SIG-
PLAN Notices, volume 27, number 7.

[17] L. Paulson. ML for the working programmer. Cambridge University
Press, 1991.

[18] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical
type inference for arbitrary-rank types. J. Funct. Program., 17(1):1–
82, 2007.

[19] F. Pfenning. Partial polymorphic type inference and higher-order
unification. In LFP ’88, pages 153–163, ACM, 1988.

[20] D. Rémy. Programming objects with ML-ART: An extension to ML
with abstract and record types. In M. Hagiya and J. C. Mitchell,
editors, International Symposium on Theoretical Aspects of Computer
Software, number 789 in LNCS, pages 321–346, Springer, 1994.

[21] D. Rémy. Simple, partial type inference for System F, based on type
containment. In ICFP’05, pages 130–143, ACM, 2005.

[22] C. V. Russo. First-class Structures for Standard ML. Nordic Journal
Of Computing, 7:348–374, January 2000.

[23] D. Vytiniotis, S. Weirich, and S. Peyton Jones. Boxy types: Inference
for higher-rank types and impredicativity. In ICFP’06, ACM, 2006.

[24] D. Vytiniotis, S. Weirich, and S. Peyton Jones. FPH: first-class poly-
morphism for Haskell. In ICFP’08, ACM, 2008.

[25] J. B. Wells. Typability and type checking in system F are equivalent
and undecidable. Ann. Pure Appl. Logic, 98:111–156, 1999.

http://coq.inria.fr

	Introduction
	Programming with explicit quantifiers
	Existential types

	The language
	Typing
	The need for partial type annotations
	Robustness
	Reduction semantics
	Expressiveness

	Derived Forms
	Type Constraints
	Function Argument Type Annotations
	Example: Dynamic, Fixed-size Functional Arrays

	Type inference
	Scaling up
	References
	Data constructors and pattern matching

	Discussion
	Mixed Prefix Quantified Types
	System F-style introductions and eliminations
	Merging the quantifiers

	Related work
	Explicit vs implicit polymorphism
	Implicit generalizations and instantiations, following the typing rules
	Implicit generalizations and instantiations

	Future work

