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Abstract. Cω extended C# 1.x with a simple, declarative and powerful
model of concurrency - join patterns - applicable both to multithreaded
applications and to the orchestration of asynchronous, event-based dis-
tributed applications. With Generics available in C# 2.0, we can now
provide join patterns as a library rather than a language feature. The
Joins library extends its clients with an embedded, type-safe and mostly
declarative language for expressing synchronization patterns. The library
has some advantages over Cω: it is language neutral, supporting other
languages like Visual Basic; its join patterns are more dynamic, allowing
solutions difficult to express with Cω; its code is easy to modify, fostering
experimentation. Although presenting fewer optimization opportunities,
the implementation is efficient and its interface makes it trivial to trans-
late Cω programs to C#. We describe the interface and implementation
of Joins which (ab)uses almost every feature of Generics.

1 Introduction

Cω [1] promised C# 1.x users a more pleasant world of concurrent programming.
Cω presents a simple, declarative and powerful model of concurrency - join
patterns - applicable both to multithreaded applications and to the orchestration
of asynchronous, event-based distributed applications. Using Generics in C#

2.0 (and the .NET runtime in general), we can now provide join patterns as
a .NET library – called Joins – rather than a language extension. Encoding
language features in a library has some obvious drawbacks, restricting the scope
for both optimization and static checking – but it also has some advantages.
The Joins library is language neutral; it can be used by C# but also by Visual
Basic and other .NET languages. A library can be more dynamic: the Joins
library already supports solutions that are more difficult to express with the
declarative join patterns of Cω (Section 3.1). A library is easier to modify than
a compiler, promoting experimentation. The Joins implementation is reasonably
efficient and takes advantage of the same basic optimizations performed by the
Cω compiler. Its interface makes it particularly easy to translate Cω programs
to C#, but it can also be used to write concurrent code from scratch.

Section 2 presents join patterns as found in Cω. Section 3 introduces the
Joins library by example, showing how to re-express the Cω programs of Sec-
tion 2 as C# 2.0 code that references the library. Section 4 provides a concise, yet
precise, description of the Joins library as it appears to the user. Section 5 gives



an overview of the implementation which exercises most features of Generics.
Section 6 concludes, discussing related work. The Joins download and tutor-
ial [2] presents many more examples including encodings of active objects or
actors, bounded buffers, reader/writer locks, futures, dining philosophers, a lift
controller and simple, distributed applications using web services and Remoting.

2 Background: Cω’s concurrency constructs

Cω extends the C# 1.2 programming language with new asynchronous concur-
rency abstractions. The new constructs are a mild syntactic variant of those
previously described under the name ‘Polyphonic C#’ [3]. Similar extensions to
Java were independently proposed by von Itzstein and Kearney [4].

In Cω, methods can be defined as either synchronous or asynchronous. When
a synchronous method is called, the caller is blocked until the method returns,
as is normal in C#. However, when an asynchronous method is called, there is no
result and the caller proceeds immediately without being blocked. Thus from the
caller’s point of view, an asynchronous method is like a void one, but with the
useful extra guarantee of returning immediately. We often refer to asynchronous
methods as messages, as they are one-way communications.

By themselves, asynchronous method declarations are not particularly novel:
the innovation of Cω is the way method bodies are defined. In most languages,
including C#, methods in the signature of a class are in bijective correspon-
dence with the code of their implementations. In Cω, however, a body may be
associated with a set of synchronous and/or asynchronous methods, including
at most one synchronous method. Such definitions are called chords and a par-
ticular method may appear in the header of several chords. The body of a chord
can only execute once all the methods in its header have been called. Calling a
chorded method may thus enable zero, one or more chords:

– If no chord is enabled then the method invocation is queued up. If the method
is asynchronous, then this simply involves adding the arguments (the con-
tents of the message) to a queue. If the method is synchronous, then the
calling thread is blocked.

– If there is a single enabled chord, then the arguments of the calls involved
in the match are de-queued, and any blocked thread involved in the match
is awakened to run the chord’s body in that thread. The body of a chord
involving only asynchronous methods runs in a new thread.

– If several chords are enabled, an unspecified one is selected to run.
– If multiple calls to one method are queued up, which call will be de-queued

by a match is left unspecified.

Here is the simplest interesting example of a Cω class:

public class Buffer {

public async Put(string s);

public string Get() & Put(string s) { return s; }

}



This class contains two methods: a synchronous one, Get(), which takes no
arguments and returns a string, and an asynchronous one, Put(s), which takes a
string argument and (like all asynchronous methods) returns no result. The class
definition contains two things: a declaration (with no body) for the asynchronous
method, and a chord. The chord declares the synchronous method and defines
a body (the return statement) which can run when both the Get() and Put(s)
methods have been called.

Now assume that producer and consumer threads wish to communicate via an
instance b of the class Buffer. Producers make calls to b.Put(s), which, since
the method is asynchronous, never block. Consumers make calls to b.Get(),
which, since the method is synchronous, will block until or unless there is a
matching call to Put(s). Once b has received both a Put(s) and a Get(), the
body runs and the actual argument to Put(s) is returned as the result of the call
to Get(). Multiple calls to Get() may be pending before a Put(s) is received to
reawaken one of them, and multiple calls to Put(s) may be made before their
arguments are consumed by subsequent Get()s. Note that:

1. The body of the chord runs in the (reawakened) thread corresponding to the
matched call to Get(). Hence no new threads are spawned in this example.

2. The code which is generated by the class definition above is completely
thread safe. The compiler generates the necessary locking. Furthermore, the
locking is fine-grained and brief - chorded methods do not lock the whole
object and are not executed with “monitor semantics”.

3. The return value of a chord is returned to its synchronous method, of which
there can be at most one.

In general, the definition of a synchronous method in Cω consists of more
than one chord, each of which defines a body that can run when the method
has been called and a particular set of asynchronous messages are present. For
example, we could modify the example above to allow Get() to synchronize with
calls to either of two different Put1(s) and Put2(n) methods:

public class BufferTwo {

public async Put1(string s); public async Put2(int n);

public string Get() & Put1(string s) { return s;}

& Put2(int n) { return n;} // ie. n.ToString()

}

Now we have two asynchronous methods and a synchronous method which
can synchronize with either one, with a different body in each case.

A chord may involve more than one message; this synchronous chord waits
for messages on both Put1 and Put2:

public string Both() & Put1(string s) & Put2(int n) { return s + n;}

In Cω, a purely asynchronous chord is written as a class member, like this:

when Put1(string s) & Put2(int n) { Console.WriteLine(s + n);}



This chord spawns a new thread when messages arrive on Put1 and Put2.
The previous Buffer class is unbounded: any number of calls to Put(s) could

be queued up before matching a Get(). We now define a variant in which only
a single data value may be held in the buffer at any one time:

public class OnePlaceBuffer {

private async Empty();

private async Contains(string s);

public void Put(string s) & Empty() { Contains(s); }

public string Get() & Contains(string s) { Empty(); return s;}

public OnePlaceBuffer() { Empty(); }

}

The public interface of OnePlaceBuffer is similar to that of Buffer, but the
Put(s) method is now synchronous and will block if there is already an uncon-
sumed value in the buffer.

The implementation of OnePlaceBuffer makes use of two private asynchro-
nous messages: Empty() and Contains(s). These are used to carry the state of
the buffer and illustrate a very common programming pattern in Cω. The class
is best understood by reading its code declaratively:

– When a new buffer is created, it is initially Empty().
– If you call Put(s) on an Empty() buffer then it subsequently Contains(s)

and the call to Put(s) returns.
– If you call Get() on a buffer which Contains(s) then the buffer is subse-

quently Empty() and s is returned to the caller of Get().
– Implicitly, in all other cases, calls to Put(s) and Get() block.

The constructor establishes and the chords maintain the invariant that there is
always exactly one Empty() or Contains(s) message pending on the buffer. The
chords can easily be read as the specification of a finite state machine.

3 The Joins Library

In Cω, classes that declare (a)synchronous methods joined in chords implicitly
declare a set of communication channels. An asynchronous method has a backing
queue of pending method calls. A synchronous method has a backing queue of
waiting threads. The state of the queues is protected by a hidden lock. Invoking
an (a)synchronous method executes some specialized scheduling code that de-
cides, given the current queues and the declared chords, which, if any, chord gets
to fire, either on the current or any waiting thread. Thus each object (or, for
purely static methods, class) includes its own scheduling logic. Instead of relying
on a central scheduling thread, threads that invoke chorded methods each spend
a little time helping to schedule each other. To optimize the detection of enabled
chords, the implementation maintains some additional state: a bit vector rep-
resenting the set of non-empty queues. Pattern matching is compiled to subset
tests against this state, implemented using one bitmask operation per chord.



In the Joins library, the scheduling logic that would be compiled into the
corresponding Cω class receives a separate, first-class representation as an object
of the special Join class. The Join class provides a mostly declarative, type-safe
mechanism for defining thread-safe synchronous and asynchronous communi-
cation channels and patterns. Instead of (a)synchronous methods, as in Cω,
the communication channels are special delegate values (first-class methods)
obtained from a common Join object. Communication and/or synchronization
takes place by invoking these delegates, passing arguments and optionally wait-
ing for return values. The allowable communication patterns as well as their ef-
fects are defined using join patterns: bodies of code whose execution is guarded
by linear combinations of channels. The body, or continuation, of a join pattern
is provided by the user as a (typically anonymous) delegate that can manipulate
external resources protected by the Join object.

Using the Joins library, we can implement the Cω Buffer in C# as follows:

using Microsoft.Research.Joins;

public class Buffer {

// Declare the (a)synchronous channels

public readonly Asynchronous.Channel<string> Put;

public readonly Synchronous<string>.Channel Get;

public Buffer() {

// Create a Join object

Join join = Join.Create();

// Use it to initialize the channels

join.Initialize(out Put); join.Initialize(out Get);

// Finally, declare the patterns(s)

join.When(Get).And(Put).Do(delegate(string s) { return s;});

}}

The code declares a buffer class with two fields of special delegate types. The
Put field contains an asynchronous channel that, when invoked, returns void
(immediately) and takes one string argument. The Get field contains a syn-
chronous channel that, when invoked, returns a string but takes no argument.
Both fields are initially null. The constructor allocates a new Join object, join,
using the factory method Join.Create. The join object is a private scheduler
for the buffer. The constructor then calls Initialize on join, passing the lo-
cations of each of the channels: this assigns two new delegate values into the
fields, each obtained from and owned by join. Finally we declare the Cω chord
by constructing a pattern on the join object, passing the synchronous channel
Get to When and Anding it with the asynchronous channel Put. The pattern is
completed by invoking Do, passing the continuation for this pattern, expressed
here as an anonymous delegate. The continuation expects exactly one argument
(the argument to Put); the continuation’s return value is returned to the caller
of Get. Notice that the bodies of the continuation and Cω chord are identical.

If we ignore the boilerplate calls to Initialize then what remains retains
the declarative flavour of the original Cω code. Moreover, client code of the
Cω and C# buffers is syntactically identical. Given a buffer b, clients invoke



b.Put(s); to send a string s and b.Get() to receive one. Of course, these calls
are compiled slightly differently, just invoking a method in the Cω client, but
reading a field and then invoking its delegate value in the C# client.

A synchronous method with several chords translates to several patterns
constructed on the same initial channel. In general, calls to And may be iterated,
and a continuation may bind zero or more parameters and return zero or one
values, depending on the pattern. An asynchronous chord translates to a pattern
with an initial asynchronous channel whose continuation returns void.

Here is Cω’s OnePlaceBuffer, made generic in C# for good measure:

public class OnePlaceBuffer<S> {

private readonly Asynchronous.Channel Empty;

private readonly Asynchronous.Channel<S> Contains;

public readonly Synchronous.Channel<S> Put;

public readonly Synchronous<S>.Channel Get;

public OnePlaceBuffer() {

Join j = Join.Create();

j.Initialize(out Empty); j.Initialize(out Contains);

j.Initialize(out Put); j.Initialize(out Get);

j.When(Put).And(Empty).Do(delegate(S s) { Contains(s);});

j.When(Get).And(Contains).Do(delegate(S s) { Empty(); return s;});

Empty();

}}

Empty and Put introduce two more channel types. An Asynchronous.Channel
delegate takes zero arguments and returns void. As in Cω, nullary channels use
a more efficient counter instead of a queue of argument values to record pending
invocations. A Synchronous.Channel<S> delegate returns void and takes one
argument of type S. To protect the buffer’s invariant, we translate the private Cω
Empty and Contains messages to private fields, accessible from the continuations
but not externally. The constructor establishes the invariant by calling Empty(),
after initializing the channels and constructing the patterns.

3.1 Beyond Cω: Dynamic Joins

What if we need to declare, and synchronize, a dynamic set of channels? A Cω
class can only declare a static set of channels and chords so a dynamic set has to
be encoded by resorting to multiplexing. Although possible, this is inconvenient.
Inspired by a similar feature in the CCR [5], the Joins library lets you initialize,
and join arrays of asynchronous channels. Since the size of an array is determined
at runtime, this supports dynamic synchronization patterns.

For example, the JoinMany<R> class below declares and supports waiting on
n channels of type R, which is awkward to express in Cω. The class declares
an array, Responses, of response channels, each carrying a value of type R. An
object o = new JoinMany<R>(n) requires n + 1 channels: n asynchronous re-
sponse channels, o.Responses[i] (0 ≤ i < n), and one synchronous channel,
o.Wait. The constructor Creates a Join object supporting n + 1 channels; it



then Initializes the response channels field with an array of n distinct chan-
nels and declares a pattern that waits on all the channels in this array. The
continuation of the pattern receives all of the responses as a separate array (also
of size n) of correlated values of type R. The consumer calls o.Wait(), blocking
until/unless all responses have arrived; producer i just posts her response r on
o.Response(i)(r), asynchronously. Here, we have taken the precaution of hid-
ing the array in a private field to prevent external updates – we could avoid this
if C# supported immutable arrays or we bothered to roll our own.

public class JoinMany<R> {

private readonly Asynchronous.Channel<R>[] Responses;

public readonly Synchronous<R[]>.Channel Wait;

public Asynchronous.Channel<R> Response(int i) { return Responses[i]; }

public JoinMany(int n) {

Join j = Join.Create(n + 1);

j.Initialize(out Responses, n); j.Initialize(out Wait);

j.When(Wait).And(Responses).Do(delegate(R[] r) { return r; });

}}

4 Joins Library Reference

Users of Joins reference the assembly Microsoft.Research.Joins.dll and
import the namespace Microsoft.Research.Joins.

A new Join instance j is allocated by calling an overload of factory method
Join.Create([size]). The optional integer size bounds the number of channels
supported by j and defaults to 32; it also sets the constant property j.Size.

A Join object notionally owns a set of asynchronous and synchronous chan-
nels, each obtained by calling an overload of method Initialize, passing the
location of a channel or array of channels using an out argument:

j.Initialize(out channel); or j.Initialize(out channels, length);

The second form assigns to location channels an array of length distinct, asyn-
chronous channels. It is possible to initialize the same location twice.

Channels are instances of the following delegate types, summarized by a
simple grammar of type expressions:

(Asynchronous | Synchronous[〈R〉]).Channel[〈A〉]

The outer class of a channel, Asynchronous, Synchronous or Synchronous<R>,
should be read as a modifier that specifies its blocking behaviour and optional
return type R. Type A, if present, determines the channel’s optional argument
type. The six channel flavours support zero or one arguments of type A and zero
or one results of type R. Multiple arguments or results must be passed in tuples,
either using the provided generic Pair<A,B> struct or by other means.

Apart from its channels, a Join object notionally owns a set of join patterns.
A join pattern is constructed by invoking an overload of the instance method



When followed by zero or more invocations of instance method And (or AndPair),
followed by a final invocation of instance method Do. A constructed join pattern
typically takes the form:

j.When(a1).And(a2) · · · .And(an).Do(d);

Alternatively, using an anonymous delegate for d:

j.When(a1).And(a2) · · · .And(an).Do(delegate(P1 p1, . . . , Pm pm){. . .});

Argument a1 of When(a1) may be a synchronous or asynchronous channel or
an array of asynchronous channels. Each subsequent argument ai to And(ai) (for
i > 1) must be an asynchronous channel or an array of asynchronous channels;
it cannot be a synchronous channel. The argument d to Do(d) is a continuation
delegate that defines the body of the pattern. Although its precise type varies
with the pattern, the continuation always has a delegate type of the form:

delegate [void | R] Continuation(P1 p1, . . . , Pm pm);

The precise type of the continuation d, including its arity or number of ar-
guments m, is determined by the sequence of channels guarding it. If the first
argument a1 in the pattern is a synchronous channel with return type R, then
the continuation’s return type is R; otherwise the return type is void.

The continuation receives the arguments of the joined channel invocations
as delegate parameters P1 p1, . . . , Pm pm, for m ≤ n. The presence and types of
any additional parameters P1 p1, . . . , Pm pm varies according to the type of each
argument ai joined with invocation When(ai)/And(ai) (for 1 ≤ i ≤ n):

– If ai is of type Channel or Channel[], then When(ai)/And(ai) adds no para-
meter to delegate d.

– If ai is of type Channel<P> or Channel<P>[] then When(ai)/And(ai) adds
one parameter pj of type Pj = P or Pj = P [] (respectively) to delegate d.

Parameters are added to d from left to right, in increasing order of i. A
continuation can receive at most m ≤ max parameters (max = 8 in the cur-
rent implementation). If necessary, it is possible to join more than max generic
channels by calling method AndPair(ai) instead of And(ai). AndPair(ai) modi-
fies the last argument of the new continuation to be a pair consisting of the last
argument of the previous continuation and the new argument contributed by ai.

Readonly property j.Count is the current number of channels initialized
on j; it is bounded by j.Size. Any invocation of j.Initialize that would
cause j.Count to exceed j.Size throws JoinException. Join patterns must
be well-formed, both individually and collectively. Executing Do(d) to complete
a join pattern will throw JoinException if d is null, the pattern repeats an
asynchronous channel (i.e. is non-linear), an (a)synchronous channel is null or
foreign to this pattern’s Join instance, the join pattern is redundant, or the join
pattern is empty. A channel is foreign to a Join instance j if it was not allocated
by some call to j.Initialize. A pattern is redundant when the set of channels
joined by the pattern subsets or supersets the channels joined by another pattern
on this Join instance. A pattern is empty when its set of channels is empty.



5 Implementation

The implementation avoids using Reflection and only uses checked casts to ex-
tract the underlying queue from a channel when constructing a pattern. These
casts could have been avoided by defining the channel delegates to contain
queue fields (possible in bytecode, but not C#), or by representing channels
as classes. We preferred to retain the convenient delegate invocation syntax
for sending messages and to provide a pure C# implementation. To be use-
ful in practice, we provide 6 flavours of channel rather than two basic ones
(Asynchronous.Channel<A> and Synchronous<R>.Channel<A>) because pass-
ing or returning ML-like unit values is just unnatural in C# and VB. We favour
n-ary continuations, despite the (soft) limit on n, because uniform currying is
awkward in C# and unsupported in VB; similarly, without pattern matching,
using uniformly nested pairs to bind continuation arguments requires unwieldy
projections. Compare the first void-returning, 3-argument continuation with its
uglier, but more “uniform” alternatives:

1. delegate(int i,bool b,float f){ Console.Write("{0},{1},{2}",i,b,f);}

2. delegate(int i){return delegate(bool b){return delegate(float f){

Console.Write("{0},{1},{2}", i, b, f); return new Unit();};};}

3. delegate(Pair<Pair<int, bool>,float> p){

Console.Write("{0},{1},{2}", p.Fst.Fst, p.Fst.Snd, p.Snd); }

5.1 Join and Channel Object Representations

The Join class is abstract. Each Join object j has runtime type Join<IntSet>,
a specific instantiation of a private, overloaded generic class Join<S> that sub-
classes Join. IntSet is a struct type that implements a set of j.Size-bounded
integers as a packed sequence of bits. A Join<IntSet> object looks like this:

It contains the following fields:

Size: an immutable bound on the number of channels that may be owned.
Count: the mutable, current number of channels owned by the instance and the

ID of the next channel, incremented by calls to Initialize.
State: a mutable IntSet with a capacity of at least Size elements. State

encodes the current set of non-empty channels as a set of channel IDs. Since
IntSet is a struct, State is inlined in the object, not stored on the heap.

Actions: a mutable, IntSet-indexed list of pattern match actions: each action
either wakes up one thread waiting on a synchronous channel’s WaitQ or
spawns the continuation of an asynchronous pattern on a new thread.



The regular object lock on a Join instance protects both its own state and the
states of its channels. Actions is extended (under the Join’s lock) whenever a
legal pattern is completed by calling a Do method. Registering a pattern pre-
computes its IntSet for faster matching and early error detection.

Channels are delegates and thus contain a target object and a target method,
comparable to the environment and code pointer of a closure in functional lan-
guages. All channel target objects contain the following immutable fields.

Owner: a reference to the Join<IntSet> instance that initialized the channel.
ID: an identifier for the channel, unique for the channels of Owner.
SetID: a pre-computed IntSet corresponding to the singleton set {ID}.

A Synchronous<R> channel, for example, looks like this:

Its target object additionally contains these fields:

WaitQ: a notional queue of waiting threads, itself implemented using the implicit
waitset of a privately allocated lock as in [3]. The ThreadQ.WakeUp method
efficiently targets at most one waiting thread, avoiding Monitor.PulseAll().

Patterns: an IntSet-indexed list of all R-returning patterns containing ID.

When invoked, the channel’s target method acquires the Owner’s lock , scans
Patterns for matches with the Owner’s State and either:

If there is no matching pattern: enqueues its thread, updates State, re-
leases the Owner lock and blocks awaiting notification on the WaitQ lock.

If there is some matching pattern: dequeues the asynchronous channels in-
volved in the pattern, updating State, scans for any enabled actions1, re-
leases the Owner’s lock and returns the value of invoking the pattern’s con-
tinuation with the dequeued values in the current thread. Since the channel
and continuation both return a value of type R, this involves no casting.

When it wakes up, the waiting thread re-acquires the Owner’s lock, and re-
attempts to find a match amongst its patterns. If it fails, because some inter-
vening thread has consumed some channel values available when the thread was
awoken, the thread blocks, resuming its wait for a match.

The target object of a Asynchronous channel contains just one additional
field, a queue Q of pending calls, so a Channel[<A>] looks like this:

1 the additional scan is used to avoid deadlock – see [3] for a discussion.



The representation of Q depends on the channel’s arity. A Channel<A> contains
a proper FIF0 queue of type Queue<A>, implemented as a circular list of A-values
with constant time access to both ends of the queue. A nullary and thus data-less
Channel contains an optimized Queue struct, implemented in constant space by
just recording the current count of notional queue entries.

When invoked, the channel’s target method acquires its Owner’s lock and
enqueues its argument or bumps its counter; if Q was empty, it updates Owner’s
State and performs some action enabled by its new State (if any); finally, the
method releases its Owner’s lock and returns. Assuming no malicious third party
has grabbed the Owner’s lock, which is easily prevented by keeping all Join
objects private, executing the action and the channel invocation is guaranteed
to return since the lock is only held briefly by other channels.

5.2 Exploiting Generics

The Joins library makes extensive use of C# language features to present an
API that we hope is relatively simple to use: a user only has to know a handful of
identifiers and understand a simple grammar of channel types and join patterns.
We rely on overloading and type argument inference to implicitly resolve method
calls, that, were they explicit, would obscure the user’s intentions.

The various channel flavours of Section 3 are implemented as (generic) dele-
gate types, nested within (generic) static classes:

static class Asynchronous { delegate void Channel ();

delegate void Channel <A>(A a);}

static class Synchronous { delegate void Channel ();

delegate void Channel <A>(A a);}

static class Synchronous <R> { delegate R Channel ();

delegate R Channel <A>(A a);}

Using both nesting and generic arity to overload the Channel identifier makes
it easy for a user to independently change the blocking behaviour, argument and
return type a channel.

The Join class provides essentially three methods: Create, Initialize and
When and two integer properties Count and Size which are rarely needed:

abstract class Join {

static Join Create([int size]);

void Initialize[<A>](out Asynchronous.Channel[<A>] c);

void Initialize[<A>](out Synchronous.Channel[<A>] c);

void Initialize<R[, A]>(out Synchronous<R>.Channel[<A>] c);

void Initialize[<A>](out Asynchronous.Channel[<A>][] cs, int length);

JoinPattern.OpenPattern[<P>] When[<P>](Asynchronous.Channel[<P>] c);

JoinPattern.OpenPattern[<A>] When[<A>](Synchronous.Channel[<A>] c);

JoinPattern<R>.OpenPattern[<A>] When<R[,A]>(

Synchronous<R>.Channel[<A>] c);

JoinPattern.OpenPattern[<P[]>] When[<P>](

Asynchronous.Channel[<P>][] cs);

int Count { get; } int Size { get; }}



Create(int size) is a factory method that, internally, uses polymorphic
recursion to construct, at runtime, an IntSet struct with a capacity of size (or
more) elements. The library defines primitive 32- and 64-element sets, IntSet32
and IntSet64, represented as one field structs of unsigned integers or longs. Each
implements a simple interface IIntSet<S> providing imperative operations on
the integer set type S: i.e. IntSet32 implements IIntSet<IntSet32>, IntSet64
implements IIntSet<IntSet64>. A generic struct PairSet<S> with type para-
meter constraint where S:IIntSet<S> is used to construct a double-capacity set
from a smaller set representation. Notice that PairSet<S> uses a recursive type
constraint (a.k.a F-bounded polymorphism) to parameterize over a representa-
tion S supporting a set of operations on S. The concrete, generic class Join<S>
also declares this constraint on S so it can access set operations to manipulate its
otherwise parametric State field. In C#, calls to an interface method on a struct
actually pass the this pointer by reference, not value, and can therefore mutate
the original value. We exploit this feature, updating State fields in-place.

The Initialize method assigns the location of a channel or array of chan-
nels with a new (set of) channel(s) allocated and owned by this Join instance.
The method has eight overloads (summarized above), some generic, some not,
with one overload per channel flavour and two additional overloads for arrays
of asynchronous channels. We resort to an out parameter simply to simulate
overloading on return type, which is, unfortunately, illegal in C#. Although dis-
tasteful, overloading in this way means that boilerplate calls to Initialize(out
channel) do not have to be altered when changing the flavour of channel.

The When method begins the construction of a new join pattern and like
Initialize, has eight overloads, one per channel flavour and two more for arrays
of asynchronous channels. The return type of When is invariably some instance
of the class scheme:

JoinPattern[〈R〉].OpenPattern[〈A|A[]〉]

Here R is the optional return type of a synchronous pattern and A is the optional
argument type of the channel or channel array.

There are two flavours of JoinPattern. The non-generic JoinPattern class
contains nested OpenPattern classes whose continuations all return void. The
generic JoinPattern<R> family of classes contains nested OpenPattern classes
whose continuations all return R. More precisely, each JoinPattern family con-
tains max + 1 nested subclasses, OpenPattern〈P1, . . . , Pn〉 (0 ≤ n ≤ max ),
each overloaded on generic arity n:

abstract class JoinPattern[<R>] {

class OpenPattern: JoinPattern[<R>] { . . .}
class OpenPattern<P1>: JoinPattern[<R>] { . . .}
...

class OpenPattern<P1, . . ., Pmax>: JoinPattern[<R>] { . . .} }

In turn, each OpenPattern〈P1, . . . , Pn〉 class has the schematic form:



class OpenPattern<P1,. . .,Pn> : JoinPattern[<R>] {

delegate [void | R] Continuation(P1 p1,. . .,Pn pn);

void Do(Continuation continuation);

OpenPattern<P1,. . .,Pn> And(Asynchronous.Channel c);

OpenPattern<P1,. . .,Pn> And(Asynchronous.Channel[] cs);

OpenPattern<P1,. . .,Pn,Pn+1> And<Pn+1>(

Asynchronous.Channel<Pn+1> c); (n < max )
OpenPattern<P1,. . .,Pn,Pn+1[]> And<Pn+1>(

Asynchronous.Channel<Pn+1>[] cs); (n < max )
OpenPattern<P1,. . .,Pair<Pn, Pn+1>> AndPair<Pn+1>(

Asynchronous.Channel<Pn+1> c); (n > 0)
OpenPattern<P1,. . .,Pair<Pn,Pn+1[]>> AndPair<Pn+1>(

Asynchronous.Channel<Pn+1>[] cs); (n > 0)
}

Class OpenPattern〈P1, . . . , Pn〉 declares its own nested Continuation dele-
gate type taking invocation arguments p1, . . . , pn of types P1, . . . , Pn and return-
ing void or R, as appropriate. The And and AndPair methods with side condi-
tions on n are only included for satisfying n. The class declares up to four over-
loads of method And, two generic, two non-generic, one for each flavour of asyn-
chronous channel and one for each array thereof. A non-generic And method con-
structs a new open pattern of the same type (and thus expecting the same type of
Continuation) as this, that synchronizes with an additional (data-less) chan-
nel or set thereof. A generic And<Pn+1> method on OpenPattern〈P1, . . . , Pn〉
constructs a new successor pattern of type OpenPattern〈P1, . . . , Pn, P 〉, thus
binding one additional continuation type and argument. Type P is Pn+1 or
Pn+1[], if the argument is a single channel, c, or array of channels, cs. The
AndPair<Pn+1> methods use pairing to avoid introducing another continuation
argument: in particular, for n = max, calling AndPair is the only way to extend
the pattern to wait for additional data-carrying channels.

Every JoinPattern contains an instance of an internal class Pattern, which
represents a conjunction of atomic patterns (channels or channel arrays), as
a tree. Pattern’s GetIntSet method computes the summary IntSet used for
scheduling which is all the Join scheduler needs to know to select a pattern
for execution; it also does some error checking. Pattern has these subclasses
(omitting similar ones for synchronous channels and channel arrays):

abstract class Pattern { S GetIntSet<S>(...) where S: IIntSet<S>; }

abstract class Pattern<P> : Pattern { abstract P Get(); }

class Atom: Pattern<Unit> { Atom(Asynchronous.Channel c); ... }

class Atom<A>: Pattern<A> { Atom(Asynchronous.Channel<A> c); ... }

class And<Q,R>: Pattern<Pair<Q,R>>

{ And(Pattern<Q> fst, Pattern<R> snd); ... }

class And<Q>: Pattern<Q> { And(Pattern<Q> fst, Pattern<Unit> snd); ... }

Subclass Pattern<P> of Pattern hides an existential type P, the return type
of its abstract method P Get(). Method Get is used to dequeue all of a pat-
tern’s channels, returning a single, composite value of their queue heads. Get



is interesting because, due to base class specialization, its return type actually
varies with each concrete subclass: new Atom(c).Get() returns P=Unit (Unit
is an empty struct with one value); new Atom<A>(c).Get() returns P=A; new
And<Q,R>(fst,snd).Get() returns P=Pair<Q,R> (a struct with two fields) and
new And<Q>(fst,snd).Get() returns P=Q, absorbing the data-less Unit-pattern
snd. Technically, the hierarchy rooted at Pattern is a simple instance of a Gen-
eralized Algebraic Datatype (GADT) [6]. When a JoinPattern is selected for
execution, a virtual method Fire() or Spawn(), declared on JoinPattern, but
overridden in each OpenPattern〈P1, . . . , Pn〉 subclass, calls pattern.Get() on
a private field, pattern, of specialized type And〈Pair〈. . . Pair〈P1, . . .〉, . . .〉, Pn〉.
This yields a nested pair of n-components of the appropriate type to pass on,
component-wise, to its n-ary Continuation. This is quite elegant since no box-
ing, heap allocation or casting is required to implement the dequeuing and trans-
fer of multiple values. The And method of an OpenPattern extends its current
pattern by conjoining it with a new atomic pattern; AndPair extends its current
pattern - a conjunction - by conjoining its first component with the conjunction
of its second component and a new atomic pattern.

Calling When allocates a new OpenPattern with an atomic pattern field
and null continuation. The OpenPattern contains another field storing a call-
back to invoke with a JoinPattern when the OpenPattern is supplied with
a continuation. Calling And/AndPair returns a new OpenPattern with an ex-
tended pattern, same callback and null continuation. Calling Do creates a new
OpenPattern with the same pattern, null callback and non-null continuation
and passes it, as a JoinPattern, to the original callback. The callback finally
grabs the Join lock, calls GetIntSet and either detects an illegal pattern or
inserts an entry into the appropriate lists (Actions and perhaps Patterns).

6 Conclusion and Related Work

Compared with Joins, Cω offers more static checking, e.g. rejecting non-linear
patterns, and much better error messages. It also has more opportunities for
optimization: Cω could use static analysis to determine whether an asynchro-
nous continuation can safely be run in the enabling thread, rather than a new
one. Cω knows the methods and patterns belonging to a class and can thus
compile pattern matching as a cascading test of the state against pre-computed
bitmask constants, with the scheduling code shared between all instances of
the class; Joins must instead perform a linear search through a heap-allocated,
unshared list of patterns, (re-)constructed for each Join instance. Cω can also
inline all the continuations of a synchronous method into its compiled body, in-
stead of indirecting through delegates. On one micro-benchmark, pitting a Cω
OnePlaceBuffer against a Joins implementation, we found that allocating 1000
buffers in a tight loop is roughly 60x slower with Joins, due to the overhead of
reconstructing the patterns for each buffer; executing 1000 Put then Get calls in
the same thread is 2x slower, reflecting the cost of indirecting through a chan-
nel delegate and consulting the heap-allocated patterns; but the time needed



to run a producer and consumer thread exchanging 1000 messages is roughly
comparable, with any differences dominated by the cost of context switching.

The join calculus [7] provides the foundation for join patterns. JoCaml [8]
and Funnel [9] are functional languages supporting declarative join patterns.
The CCR [5] is an asynchronous concurrency library for C# that uses custom
scheduling rather than integrating with the host’s thread API as Joins does.
The CCR supports join patterns, but not synchronous ones; programs must
be written in an awkward continuation passing style, alleviated sometimes by
the use of C# iterators. Singh [10] builds an experimental combinator library
for joins patterns using software transactional memory in STM Haskell but the
implementation is more expository than practical due to performance issues.

Future avenues to explore include supporting Ada-style synchronous ren-
dezvous, allowing more than one synchronous channel to occur in a pattern.
Executing asynchronous patterns in a new thread is expensive and not always
required: if the continuation is non-blocking and guaranteed to return quickly, it
can be executed immediately in the thread that enabled the pattern. Adapting
Joins to support such user-controlled scheduling of asynchronous patterns is
straightforward and has other applications, for instance to queue continuations
in a thread pool or in the event loop of a GUI thread. A library makes such
experimentation much easier.
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