From Iterators to Computations and Beyond

Claudio V. Russo

Microsoft Research
crusso@microsoft.com

Abstract

Many applications today have to perform potentially long-
running operations, typically arising from network access,
calling a database or web service, or performing I/O opera-
tions in general. Whilst often peripheral to the main purpose
of the application, these operations can have a big impact on
the overall codebase. To stop these long-running operations
blocking the main calling thread, the current practice is to
use non-blocking, asynchronous operations instead. Asyn-
chronous operations are typically issued by passing call-
backs, which quickly leads to a mess of continuation passing
code. This not only inverts the control structure of the origi-
nal application, but also prevents the programmer from using
standard control-flow constructs. Whilst perhaps acceptable
to a functional programmer, this mode of programming is
especially debilitating for the imperative programmer, who
is accustomed to writing code using stateful loops, mutating
local variables and so on. All this state must be manually
saved, before initiating the asynchronous operation, then re-
stored upon resumption, in its callback.

In this paper we describe a simple yet expressive technique
for writing strongly typed, asynchronous code in a familiar
sequential style in C* and related languages. Our proposal
does not require either extensions to the language or to the
runtime, but builds on existing support for iterators.

1. Introduction

Dealing with long-running operations such as network ac-
cess, or calling a web service, is an everyday problem for de-
velopers. The issue is stopping such operations blocking the
calling thread, and the typical solution is to make these oper-
ations asynchronous. In other words, the operations should
complete in parallel from the main application thread and
thus finish asynchronously. Thus, when an application calls

[Copyright notice will appear here once ’preprint’ option is removed.]

Gavin Bierman

Microsoft Research
gmb®@microsoft.com

Tomas Petricek

Faculty of Mathematics and Physics
Charles University

tomas@tomasp.net

an asynchronous method, it can continue executing while the
asynchronous method performs its task.

In this paper we are concerned with the practicalities of
asynchronous programming in object-oriented languages
such as C? and Java. As we shall see, the situation is not
entirely satisfactory, with the required programming style
being awkward (the code has to be written in a continuation-
passing style), fragile (continuation-passing is difficult and
prone to error) and weak (many useful language constructs,
including loops, are not directly available). Our aim is to
show that asynchronous programming can be supported in
an entirely different way by building on the power of an
existing language feature: iterators.

Although our techniques are not specific to any particular
language, this paper is intentionally concrete, with many
code fragments to illustrate our techniques and several ex-
amples to show them in action." We fix on the C* program-
ming language [6], not least because C* provides quite rich
support for iterators. We give a brief introduction to C¥ iter-
ators in §2.1. However, we repeat that our techniques would
work for any language that supports iterators, e.g. Python.

Let us consider a simple motivating example, taken from [11].
Suppose we wish to download the first kilobyte of content
from some website:

var req = HttpWebRequest.Create(url);
var rsp = req.GetResponse();

var strm = rsp.GetResponseStream();
var read = strm.Read(buffer, 0, 1024);

The problem with this code is that the second and fourth
lines invoke methods that are potentially long running.
Whilst executing these operations the main executing thread
is blocked. Furthermore, if we wanted to scale this code and
download from hundreds of sites in parallel, for example,
we would be forced to create hundreds of threads which
introduces significant overheads and context switches.

The solution to hiding latency is to use asynchronous pro-
gramming. The .NET framework’s Asynchronous Program-
ming Model provides the so-called APM design pattern

VAll the code in this paper can be downloaded from
http://research.microsoft.com/users/crusso/comp/comp.zip.

2017/1/31

for asynchronous operations.” This design pattern is imple-
mented as two methods, named by convention BeginName
and EndName, that together form the asynchronous ver-
sion of the Name operation. After calling the BeginName
method, the application can continue executing on the call-
ing thread, whilst the asynchronous operation completes.
For every call to BeginName there should be a matching
call to EndName to get the results of the operation.

The .NET framework provides a number of useful asyn-
chronous operations adhering to the APM design pattern.
For example, our code from above can be rewritten as fol-
lows:

var req = HttpWebRequest.Create(url);
req.BeginGetResponse(al => {

var rsp = req.EndGetResponse();

var strm = rsp.GetResponseStream();

strm.BeginRead (buffer, 0, 1024, a2 => {

int read = strm.EndRead(a2);
//. ..

}, null);

}, null);

In this code fragment, we make use of C*’s lambda ex-
pressions: a => {...}, which is shorthand for an anony-
mous method expression delegate(T a){...}, where T
is the inferred type for the parameter a. We use lambda
expressions to register callbacks for the APM methods
BeginGetResponse and BeginRead. Further details of the
APM design pattern can be found in §2.3.

Whilst asynchronous, this explicit construction of the con-
tinuation (the nested callbacks) makes the code much less
readable than the familiar direct style of the synchronous
code. This resulting style is often known as “inversion of
control”, as the asynchronous method is called with the com-
putation that should be executed after the method has com-
pleted. Control has been inverted as it has been passed to the
asynchronous method. But there is a bigger problem: imag-
ine that we wished to download not just the first kilobyte
of content, but repeatedly read one kilobyte chunks until we
had fetched the whole page. The natural solution would be to
use a loop, but this is not available to us as we can not have
the loop spanning across nested callbacks. The only solution
at this point is to essentially code up some form of state ma-
chine, using shared state.

It is exactly this sort of low-level, state machine logic that we
should like to avoid. Our aim is to provide an asynchronous
programming style that is close to the natural, direct syn-
chronous style, where all the relevant state is preserved au-
tomatically across asynchronous method calls. Our inspira-

2 Actually, it provides two design patterns: the so-called TAsyncResult
pattern described here, and the event pattern. As the former is more power-
ful we shall not discuss the latter pattern.

tion comes from the asynchronous workflows that were in-
troduced in the F* functional programming language [24].

F? supports the notion of an async block. Inside the block,
the compiler automatically generates the continuation-passing
code for specially marked operations. Moreover, all the stan-
dard language constructs can be used inside the block, in-
cluding loops. For example, here is the F* asynchronous
workflow equivalent of the previous code (it simply down-
loads the entire contents of the webpage, printing its progress):

let downloadURL(url:string) = async{
let req = HttpWebRequest.Create(url)
let! rsp = req.AsyncGetResponse()
let strm = rsp.GetResponseStream()
let buffer = Array.zeroCreate(1024)
let state = ref 1
while !state > 0 do
let! read = strm.AsyncRead(buffer, O, 1024)
Console.WriteLine("loaded {0} bytes", read);
state := read

Notice that in this code where we previously used explicitly
the APM methods, in F! asynchronous workflows, we use
the 1et! keyword, which denotes the monadic value binding,
and calls to the F¥ primitive asynchronous actions (which
wrap the APM begin and end calls). For asynchronous work-
flows, the construct let! x = el means that expression el
is performed asynchronously and when it has completed the
result is bound to x. In the context of this paper, it is im-
portant to observe two things of the code fragment above:
(1) that the code is very similar to the familiar, direct, syn-
chronous code and does not have any explicit inversion of
control; and (2) that all the usual F* language constructs are
also available inside the async block including, for example,
the while loop.

The aim of this paper is to provide similar support for asyn-
chronous programming in C*. However, we’d like to offer
this support without a change to the language. In F? the
async block is actually just syntactic sugar, which is pre-
processed into calls to the underlying AsyncBuilder object.
Unfortunately, the resulting code relies heavily on the very
continuation-passing style that we are trying to avoid. In this
paper, we hope for the best of both worlds: no change to the
language and no continuation-passing code.

Our core idea is to build on the surprisingly rich expressive
power of C¥ iterators. We use these to define what we call
computations. Just as an iterator is a method that yields an
ordered sequence of values, a computation yields an ordered
sequence of instructions. It is simple to translate from ar-
bitrary method blocks to computations. However, computa-
tions can be co-operatively suspended and resumed at user-
specified yield points. Unlike ordinary iterators, but like F#’s
asynchronous workflows, these computations may be deeply
nested. Suspending and resuming a computation is a con-

2017/1/31

stant time operation, regardless of nesting depth. In addition,
a computation may start on one CLR thread and be resumed
on another. Although built from iterators, our computations
(like ordinary methods) may return at most one value. Im-
portantly, our computations are strongly typed. Exceptions
raised by computations are propagated in the usual way, and
with care can be handled appropriately.

This paper is organized as follows. We have attempted to
make this paper self-contained, and so in §2 we informally
discuss the particular features of C* and .NET framework
that are perhaps not so well-known. In §3 we give an infor-
mal introduction to computations. In §4 we show how an
example program can be rewritten using computations. In
85 we show how computations can be used to provide type-
safe, nested, asynchronous programming without inversion
of control in Cf. In §6 we give details of our actual imple-
mentation. We show in §7 how our technique is extensible,
showing how futures (§7.1) and reactive programming (§7.2)
can be coded up. A further benefit of our approach is that in-
structions can be given alternative interpretations. In §8 we
show how this can be used to give a debugging interpretation
whereby the CLR stack can be used to interpret a computa-
tion’s stack transitions. In §9 we consider the problem of
adapting our techniques to encode arbitrary monadic code.
We review related work and propose some future work in
§10, before concluding briefly in §11.

2. Background

In this section we give details of the specific C* and .NET
features that we use extensively in this paper, including C*
iterators and the APM design pattern. The expert reader can
safely skip this section.

2.1 C!iterators

An enumerator is an object that allows traversal over a col-
lection and is represented in the .NET framework by the
IEnumerator<T> interface. It has a Current property to ob-
tain the value of the current element, and a method MoveNext
to move on to the next element (which returns a boolean
value indicating whether the end of the collection has been
reached.

Typically collection classes implement the IEnumerable<T>
interface. An enumerator can then be obtained by calling
the GetEnumerator method on an IEnumerable object. (This
abstraction enables us to have multiple enumerators over the
same collection.) For example, if we have a collection names
of type IEnumerable<String> then we can print out all the
elements as follows:

IEnumerator<String> cursor = names.GetEnumerator();
while (cursor.MoveNext())
Console.WriteLine(cursor.Current)

This code pattern is very common, and C* provides the
convenient foreach statement to allow much of boilerplate
code to be hidden.

foreach (String n in names)
Console.WriteLine(n)

While consuming enumerators is quite straightforward,
the difficulty has traditionally been in implementing the
IEnumerator interface as it often requires complicated state-
machine machinery. Fortunately, C* 2.0 made it easier to
write methods that return enumerators, by allowing it to be
implemented using an iterator block. Such a method is re-
ferred to as an iterator.®> An iterator is a statement block
that yields an ordered sequence of values (all of the same
type). An iterator is distinguished from a normal statement
block by the presence of one or more yield statements. The
yield return statement produces the next value of the it-
eration, and the yield break statement indicates that the
iteration is complete. Iterators are not permitted to contain
general return statements. This leads to very compact code,
for example:

public static IEnumerator<string> Sons(){
yield return "Reuben";
yield return "Simeon";
yield return "Levi";
yield return "Judah";
/7. ..

Behind the scenes, the compiler converts iterators into enu-
merators, encapsulating the code in the iterator block as a
finite state machine tracking the state of local variables and
the position of the last yield return statement, and imple-
menting the enumerator interfaces. The iterator given above
can, for example, be consumed directly as a normal enumer-
ator; the following code prints the first two elements of the
iterator:

var sonsofJacob = Sons();

sonsof Jacob.MoveNext () ;
Console.WriteLine(sonsofJacob.Current) ;
sonsof Jacob.MoveNext () ;
Console.WriteLine(sonsofJacob.Current);

For the purposes of this paper, it is important to understand
the operational behaviour of the iterator. When we call the
method Sons (), none of the method body is executed. What
is returned is the compiler-generated IEnumerator<string>
object. Only when we invoke the MoveNext method on the
enumerator, will this start executing the iterator body. It
is executed until it reaches a yield return statement, at

3Unfortunately, a C! enumerator is often called an iterator in other lan-
guages, and a C! iterator is often called a generator. Clearly, such a conflict
is confusing, but we shall stick with the .NET terminology.

2017/1/31

which point computation of the iterator is suspended, and
the invocation of the MoveNext is completed. The value of the
yield return expression is then available as the value of the
Current property of the enumerator. Should the MoveNext
method be invoked again on the enumerator, computation
of the iterator is resumed from the statement following the
previous yield return statement. It is this co-operative,
coroutine-like behaviour between the iterator and the calls to
the enumerator that we will exploit extensively in this paper.

A more interesting example of an iterator is as follows.

public static IEnumerator<string> Numbers(){
int i = 0;
while (true)
yield return i++.ToString();

This iterator both maintains state (the value of the local
variable i), yields values from within a control structure and
could potentially be called infinitely often. However the lazy
behaviour of the generated enumerator object is evidenced
by the following code which prints the first four natural
numbers.

indicates that other parts of the class can be defined in the
namespace. All the parts must use the partial modifier and
must have the same accessibility. Partial classes allow sim-
ple separation of concerns of the source code, for example:

// File A
public partial class CoOrds {
private int x;
private int y;
}
// File B
public partial class CoOrds {
public void PrintCoOrds() {
Console.WriteLine("CoOrds: {0},{1}", x, y);
}

C* provides a general means to extend existing types and
constructed typed with additional methods. These additional
methods are known as extension methods, and are essentially
static methods that can be invoked using instance method
syntax. Extension methods are declared by specifying the
modifier this on the first parameter of the method. For
example, an extension method with the following signature:

var nats = Numbers();

for (int j = 1; j <= 4; j+H){
nats.MoveNext () ;
Console.WriteLine(nats.Current);

Note that yield returns may have enclosing finally clauses:

to ensure these get executed, even when an enumeration is
abandoned, users of the low-level TEnumerator methods are
also expected to call its (inherited) Dispose () method.

2.2 Other C! features

There are some lesser well-known C* features that we shall
make extensive use of in the rest of this paper that we
shall describe briefly here. First, C* supports nested classes:
classes defined inside another. A class N nested inside class
C is referred to outside the class definition as class C.N. A
nested class can refer to the static members of its enclosing
class, but not the instance members (unlike Java’s inner
classes). A nested class can also refer to any generic type
parameters of its containing class (but not vice-versa). For
example, the following is valid:

class Container<S> {
class Nested<T> {

S a;

T b;

C* allows a class definition to be split, possibly across over
two or more source files, by using a partial modifier. This

public static int WordCount (this String str){ ... }

If this method is in scope, then it can be invoked s . WordCount ()
where s is a string.

2.3 Details of the APM Pattern

As alluded to in §1, in the .NET framework, any synchronous
operation that supports an asynchronous calling convention
should adhere to the APM IAsyncResult design pattern.
According to the APM, given a synchronous operation, Op,
with method signature

U 0p(T1 t1,...,Tn tn)

its asynchronous variant is meant to provide two methods
with names BeginOp and EndOp and the following derived
signatures:

IAsyncResult BeginOp(T1 t1,...,Tn tn,
AsyncCallback callback,
object state);

U EndOp(IAsyncResult iar);

Note that the initial parameters to BeginOp, and the return
type of End0Op, coincide with Op’s original signature.

Here, TAsyncResult is an interface, and AsyncCallback is
a delegate type that takes an IAsyncResult argument and
returns void. Both types are defined in the .NET framework.
(We can ignore the state argument for our purposes.)

Operationally, the BeginOp(t1,...,t2,callback,state)
method is meant to return immediately after initiating the

2017/1/31

asynchronous operation, but without waiting for it to finish.
When supplied with a non-null callback, the callback will
be run, once the operation completes, on a thread from the
thread pool. To terminate the protocol, the callback is re-
quired to eventually execute EndOp on its actual argument,
and thus obtain the result (a value of type U or an exception)
of the operation, as well as disposing of any resources used
by the operation.

Note that the callback and state argument are optional, so

BeginOp also returns a handle (typically the same IAsyncResult

value that would have been supplied to the callback) on
which a thread may wait before eventually supplying it to
EndOp to complete the protocol. This waiting can be per-
formed in various ways, including polling and blocking on
an OS wait handle (see [17] for more details). Since we
would like to avoid blocking, yet be called on completion,
we will focus on the simple call-with-callback pattern.

As a minor aside, we should point out that the APM pattern
is only weakly typed (perhaps because it pre-dates .NET
Generics). Calling EndOp (iar) can fail with an InvalidCast
exception (e.g., when applied to the IAsyncResult of an
unrelated operation).

3. An informal introduction to computations

Our main contribution is to show how we can use the power
of iterators to define the notion of a computation, which is a
special instance of an iterator that yields instructions.

In this section we attempt to give an intuitive, informal in-
troduction to computations. To start, we first recall the use
of call stacks in the implementation of most programming
languages. A call stack is just a list a method frames. Each
frame records the state (i.e. the current program counter and
the values of any arguments and local variables) of some fi-
nite state machine (the actual code for the method). All but
the topmost frame denote suspended computations. Execu-
tion proceeds within the topmost frame until it encounters
one of several instructions that exit the frame and transi-
tion the stack: a return instruction, depositing a value and
popping the stack; a call instruction, growing the stack with
a new frame; an uncaught throw instruction, unwinding the
stack to propagate its exception; a blocking call, suspending
execution of the entire stack until some condition is enabled
by a concurrent thread. Thus we can think of execution of
the current frame as essentially the processing of a stream
of instructions that manipulate the entire call stack. A frame
is naturally typed by the type of value it returns to its caller.
In turn, instructions are naturally typed by the type of frame
that issues them and, when appropriate, by the return type of
the callee they invoke.

The essence of our notion of a computation is that one
can view a single method computing a value of type T,
as equivalently a stream of instructions of type I<T>, and
thus as a value of type IEnumerable<I<T>>. A particular

instance of a method, i.e. a frame, is just an enumerator of
type IEnumerator<I<T>>, obtained from the method value.
Finally, a stack of frames, corresponding to a snapshot of
program execution, is just a stack of instruction enumerators
of various types, each linked to its preceding frame by a call
instruction of the appropriate type.

What is the set of instructions? For starters (we will en-
counter more instructions later), a T-returning frame may ex-
ecute the following instructions:

Return(t) returns the value t of type T, popping the stack.

Call<U>(c) calls another U-returning computation c. Exe-
cuting this instruction suspends the current frame until
c is done, by installing a new frame for c on the stack.
The callee has type IEnumerable<I<U>> so its frame will
have type IEnumerator<I<U>>. Note that U is completely
independent of T: as with ordinary methods calls, the re-
turn type of a caller and its callee are unrelated. Thus
we support calling various types of callees from the same
computation.

TailCall(c) calls another T-returning computation c. Ex-
ecution of this instruction discards the current frame and
installs a frame for c. Since the new frame must return
to the caller of the current frame, ¢ must have the same
return type, and thus computation type, as its caller (i.e.
IEnumerable<I<T>>).

More precisely, these are families of instructions, indexed
by the return type T, and are thus represented by instances of
nested classes I<T>.Return, I<T>.Call<U>, I<T>.TailCall
—each concrete instruction class deriving from the abstract
class I<T>.

Since Cf yields are statements, and cannot return values, we
work around this restriction by communicating return values
through the instruction that was yielded. Thus an instruction
serves a second role—acting as a receptacle for its result—
typically a value but possibly an exception. The result is
accessed through that instruction’s Value property. Since
the type of the instruction issued is known to the enclosing
frame, the type of value returned by any instruction can both
vary at each call site yet remain strongly typed.*

How do we execute a computation? We first create a sin-
gleton stack with an instance of the computation (an enu-
merator) and an initial call instruction. Then we repeatedly
transition the stack one instruction at a time until it is empty.
The result of the computation can then be read off the initial
call instruction.

How do we transition the stack? We pull the next instruction
from the frame on top of the stack (as the frame is an
enumerator we simply used MoveNext and Current). If there

4 Qur instruction set is an instance of a Generalized Algebraic Datatype [8).
For example, the return type U of the Cal1<U> instruction (itself a subclass
of I<T>) is an existential type, hidden from the consumer of the instruction
stream, but known to the producer.

2017/1/31

is none, control has fallen off the end of the enumerator and
we pop the stack (returning a default value to the caller).
If pulling the instruction fails by throwing an exception, we
catch and store that exception in the call instruction waiting
on the stack, then pop the stack. If there is some instruction,
we transition the current stack according to that instruction
and return the resulting stack: this stack may be the same,
smaller or larger, depending on the instruction.

The instruction interpreter does not explicitly switch on the
tag of a finite set of instructions. Instead, each instruction
has a virtual method (declared in I<T> but overridden in the
instruction class) that determines its own effect on the stack.
The use of subclassing and virtual methods ensures that our
instruction set is extensible.

In order to faithfully propagate exceptions from callee to
caller, every call to a U-computation must be followed by an
immediate read of its Value property: this will either return
a proper value of type U, or re-throw any stored exception
(which can then be caught or propagated in the usual man-
ner). Thus every call site should adhere to an allocate-yield-
read protocol:

var i = new I<T>.Call<U>(comp(...));

// allocate a call
// yield it

// read a U or throw

yield return i;
var u = i.Value;

Failure to read a call’s Value property is not catastrophic but
any exception that was raised will be silently discarded.
4. A simple example: Fibonacci

It’s time for an example. Consider this (stylized) recursive
Fibonacci function:

static int fib(int k) {
if (k <= 1) return k;

else {
var n = fib(k - 1);
var m = fib(k - 2);
return n + m;

}

}

To express this as a computation, we rewrite £ib to return a
stream of int-instructions, preserving the general control-
flow but re-expressing each return and (recursive) call as
yielding an instruction.

// naive Fibonacci
static IEnumerable<I<int>> Fib(int k) {
if (k <= 1) yield return new I<int>.Return(k);
else {
var ni = new I<int>.Call<int>(Fib(k - 1));
yield return ni;
var n = ni.Value;

var mi = new I<int>.Call<int>(Fib(k - 2));
yield return mi;
var m = mi.Value;

yield return new I<int>.Return(n + m);
}
}

Although perhaps not pretty, this fragment contains no ex-
plicit continuation-passing code. Indeed, it’s clear that a
compiler or preprocessor could generate this code from the
original using a simple source-to-source translation. At this
point we can now see the main advantages of our approach.
Firstly, the bulk of the code remains as normal, just like the
code inside the async blocks in F¥. Only some of the opera-
tions, method returns and method calls, need to be rewritten
(much as with the use of let! in F* asynchronous work-
flows). Whilst this is a little tedious to perform by hand,
the resulting code is still more readable than continuation-
passing code.

Having transformed the program, we can now get an in-
stance of the computation (an enumerator) and define an in-
terpreter that “executes” the computation. In fact, we can ex-
ecute the computation synchronously, or asynchronously.’

public static class Computation {

// run the computation synchronously

// may block on thread migration

public static T Run<T>(this IEnumerable<I<T>> comp)

// runs the computation asynchronously
// returns a thunk to wait on.

public static Func<T> Spawn<T>(

this IEnumerable<I<T>> comp)

// APM interface (non-blocking)
public static IAsyncResult Begin<T>(
this IEnumerable<I<T>> comp,
AsyncCallback callback, object state)

public static T End<T>(IAsyncResult asyncResult)
X

Given a computation comp, the extension method comp . Run ()
allocates a singleton stack with an initial I<A>.Cal1<A>(comp)
instruction and an enumerator for comp, executes the stack
and returns the result of comp. For example:

// run Fib(1000) synchronously
var i = Fib(1000) .Run();

Extension method comp.Spawn() is similar but spawns the
computation on a worker thread. It immediately returns a
function that, when invoked, waits until the call has returned
with a result, blocking if necessary. For example:

5 The implementation of these methods is discussed in §6.2.

2017/1/31

// run Fib(1000) asynchronously

var future = Fib(1000) .Spawn();

// meanwhile, do some work

// finally, wait until/unless future is done.
int j = future(Q);

Finally, we illustrate the use of the APM method pair, first
using a non-blocking callback, and then using explicit syn-
chronization:

I<T>.APM<U>.Call(BeginOp,t1,...,tn,EndOp)

The helper takes matching BeginOp and EndOp methods,
bracketing the Op’s proper arguments and returns an instruc-
tion of type I<T>.

To perform the operation, the user just issues the instruction
using the same allocate-yield-read protocol used for the
I<T>.Call<U> instruction:

// spawned with a callback
Fib(10) .Begin(r2 =>

Console.WriteLine(1l * Computation.End<int>(r2)),

null);

// spawned without a callback

var rl = Fib(10) .Begin(null, null);

// meanwhile, do something

// later, synchronize

int k3 = Computation.End<int>(rl) + 0;

4.1 Tail Calls

Our naive implementation of the Fibonacci function will not
run out of CLR stack, but it may run out of heap and will
certainly put huge pressure on the garbage collector. A more
efficient implementation uses the TailCall(comp) instruc-
tion, allowing the implementation to run with constant stack
depth:

// tail-recursive Fibonacci
static IEnumerable<I<int>> TailFib(
int k, int prev, int curr) {

if (k == 1)
yield return new I<int>.Return(curr);
else

yield return new I<int>.TailCall(
TailFib(k - 1, curr, prev + curr));

}

Of course, since this is a self tail call we could just have
written a loop, but we also support tail calls to other compu-
tations.

S. Asynchronous programming

We are now in a position to use computations to deliver an
asynchronous programming style analogous to F#’s asyn-
chronous workflows. We now have a first-class representa-
tion of a suspended computation (i.e. a stack), and we can
use that representation to implement more advanced instruc-
tions that modify its execution. We introduce a family of in-
structions that lets us perform asynchronous method calls
using matching pairs of methods adhering to the APM de-
sign pattern (see §2.3).

Fortunately, the details of the APM can be hidden from the
programmer by providing a easy-to-use helper method:

var i = I<T>.APM<U>.Call(BeginOp,tl,...,tn,EndOp)
yield return ij;
var u = i.Value;

Under the hood, the instruction transitions the stack by first
initiating the asynchronous operation, using BeginOp with a
private callback. On completion, the callback resumes exe-
cution of the pending stack, on the thread pool. The inter-
pretation of the instruction itself is to just return the empty
stack (having saved the pending stack in the callback). On re-
sumption, reading the Value property of the instruction will
call EndOp on the IAsyncResult passed to the callback; thus
completing the APM protocol.

As a concrete example, let us return to the example from §1,
and define an I/O-bound computation, ReadToEnd(s), that
reads an entire stream, s, of characters in 1K chunks, using
non-blocking 1/0O:

// read a whole stream, asynchronously, in 1K chunks.

static IEnumerable<I<string>> ReadToEnd(Stream str)
{

var ms = new MemoryStream() ;

byte[] bf = new byte[1024];

int read = -1;

while (read != 0) {

var beginRead = I<string>.APM<int>.
Call(str.BeginRead,bf, 0, 1024, str.EndRead);

yield return beginRead;

read = beginRead.Value;

ms.Write(bf, 0, read);

}

ms.Seek(0, SeekOrigin.Begin);

var s = new StreamReader (ms).ReadToEnd();
yield return new I<string>.Return(s);

}

The code asynchronously calls s.BeginRead(. ..) in a loop,
preserving computational state across calls. Although we
could have achieved a similar effect using iterators that re-
turn higher-order values (as in the CCR [2]) the fact that we
can also nest computations is novel. It lets us suspend and
resume execution of outer computations without needing to
block or prematurely exit them.

2017/1/31

For example, the following method, DownloadPage (url),
downloads the contents of a URL using a nested call to the
previous computation, ReadToEnd (s):

// download a web page, asynchronously,
// then return the source.

static IEnumerable<I<string>> DownloadPage(String url){

var req = WebRequest.Create(url);

var getResponse = I<string>.APl<WebResponse>.

Call(req.BeginGetResponse, req.EndGetResponse);

yield return getResponse;
var resp = getResponse.Value;

var str = resp.GetResponseStream();

var readToEnd = new I<string>.
Call<string>(ReadToEnd(str));

yield return readToEnd;

var html = readToEnd.Value;

yield return new I<string>.Return(html);

}

The remainder of the call to DownloadPage (url) will resume
on some thread once the call to ReadToEnd (str) returns on
that thread.

Although its execution is eventually spread across several
callback threads, the code for DownloadPage and ReadToEnd
is written in a sequential style (preserving state across asyn-
chronous calls, including those deeper down the call-chain).

Notice that DownloadPage (url) also illustrates the ability to
call several callees with different, yet strongly-typed, return
types, in this case WebResponse and String.

The extensibility of the instruction set enables us to code
up other behaviours. In §7 we give two further examples:
futures and reactive programming.

6. Implementation

This section gives an overview of the implementation of
computations. The stress that our implementation is strongly-
typed, cast-free and does not rely on C*’s runtime type pass-
ing (except, perhaps, where used within the NET APM).

6.1 Stacks

Our representation of stacks uses just two concrete classes,
Id and Coms, for constructing initial and chained stacks,
respectively. However, we employ an interesting hierarchy
of abstract, generic superclasses, with the following API.

public abstract partial class Stack {
public abstract void Resume()
}

public abstract partial class Stack<A> : Stack {

public abstract Stack<A> Next();

public abstract partial class Cont<T> : Stack<A> {

public Cont<U> Push<U>(I<T>.Call<U> call)
public partial class Cons<U> : Cont<T> {

public Cont<U> Pop(T t);

public Cont<T> TailPush(IEnumerable<I<T>> comp)

}
}

public partial class Id : Cont<A> {
public Id(I<A>.Call<A> call)
public A Answer()

}

}

The type parameters are used to capture both statically in-
variant and dynamically changing aspects of stack typing
through respectively, invariant type parameters and hidden
existential types. The hierarchy allows us to keep one eye
fixed on the invariant answer type of a stack, while turning a
blind eye to changes in the local return type of its currently
topmost frame.

Our hierarchy partitions stacks into those with unknown an-
swer type (that can just be resumed for their side-effect) and
those with a known answer type A, that may yield some A-
typed answer (which is either an A-value or a raised excep-
tion). Generic stacks are further refined into continuations,
Cont<T>, with a topmost computation returning T for the
same answer type A. The Cons<U> class is used to compose
a T-computation with a some calling U-continuation to pro-
duce a T-continuation. The concrete Id continuation class is
used to construct a singleton stack with coinciding return and
answer type A.

From a functional perspective, viewed as term constructors
for their superclasses, their constructors are carefully ar-
ranged to have the following (functional) types:

Id: I<A>.Call<A> — Cont<A>
Cont<T>.Cons<U>:

(IEnumerator<I<T>> X I<U>.Call<T> X Cont<U>) — Cont<T>

These types encode the fact that an arbitrary Stack<A> is
constructed from a sequence of nested, independently typed
continuations with the same answer type, with each continu-
ation linked to its tail continuation by a bridging call instruc-
tion. Cons continuations are thus daisy-chained by matching
Call instructions until terminated by an identity continua-
tion, Id.

At the highest-level of abstraction, every stack is just a
heap-allocated value of abstract (non-generic) class Stack.
Every stack supports a Resume () method for continuing its
execution. Note that since a computation can migrate to
another thread, Resume () may return before the computation

2017/1/31

has produced a result, which we will signal by returning the
empty stack, represented by null.

Immediately below the arbitrary Stack class lies the generic
stack class, Stack<A>.

public abstract partial class Stack<A> : Stack {
public abstract Stack<A> Next();
public sealed override void Resume() {
var s = this;
while (s !'= null) s = s.Next();
}
}

This class provides a single virtual method, Next (), for
transitioning this stack to another of the same answer type,
A. The typing of Next() captures the fact that, although
the shape of the stack may change during execution, its
answer type does not. By construction, A will be the return
type of the innermost call instruction, i.e. the initial call.
The implementation of the abstract method Stack.Resume ()
transitions this stack, calling Next() in a loop until it is
empty.

Despite the fixed answer type, the immediate return types
of intermediate frames may vary. We cater for this variation
through an additional abstract subclass, Cont<T>, subclass-
ing Stack<A>. Every concrete stack belongs to some contin-
uation class, Cont<T>, working on a topmost T-computation
to produce an ultimate answer of type A.

public abstract partial class Stack<A> {

public abstract partial class Cont<T> : Stack<A> {

public Cont<U> Push<U>(I<T>.Call<U> call){

return new Cont<U>.Cons<T>(
call.comp.GetEnumerator(), call, this);

A T-continuation only has a method, Push<U> (comp), which
pushes a U-computation, comp onto this T-continuation, by
installing a new Enumerator as the stack’s frame. The result
is a composite U-continuation of the same answer type.

The actual implementations of the above abstract classes are
provided by two concrete classes, Cons<U> and Id:

public partial class Cons<U> : Cont<T> {
private readonly IEnumerator<I<T>> frame;
private readonly I<U>.Call<T> call;
private readonly Cont<U> tail;

internal Cons(IEnumerator<I<T>> frame,
I<U>.Call<T> instr,
Cont<U> tail) {

this.frame = frame;

this.call = instr;

this.tail = tail;
}
public Cont<U> Pop(T t) {

try {

frame.Dispose();

call.Value = t;

return tail;

}

catch (Exception e) {

call.Throw(e);

return tail;

};
}
public override Stack<A> Next() {

bool hasNext = false;

try { hasNext = frame.MoveNext(); }
catch (Exception e) {

call.Throw(e);

return tail;

}

if ('hasNext) {

call.Value = default(T);

return tail;

};

return (frame.Current == null) ? this

: frame.Current.Step<A, U>(this);
}
public Cont<T> TailPush(IEnumerable<I<T>> comp) {
// Beware! this discards pending finally clauses
// by not omitting frame.Discard()
return new Cons<U>(
comp.GetEnumerator(), call, tail);

}

A Cons<U> instance consists of (i) an active frame (an
enumerator of T-instructions), (ii) a I<U>.Call<T> instruc-
tion awaiting this frame’s result and (iii) the suspended U-
continuation to resume after this frame’s computation has
produced a result. By construction, both this and this.tail
must have the same answer type A, but may have different
return types T and U.

Method Pop(T t) is used to implement Return. It writes t
to the Value property of its waiting call instruction before
returning the pending continuation (the tail of the stack).
A minor subtlety is that we need to ensure any finally
clauses enclosing the yield return I<T>.Return(t); in-
struction are executed before returning; this is accomplished
by disposing the frame. Moreover, we need to communicate
any exception that may have been thrown by running those
finally clauses.

The Next () override method transitions the frame by one it-
eration. If MoveNext () raised an exception (thrown by this
iteration), we record the exception in the waiting call in-
struction and return the tail continuation. If there is no in-
struction (i.e. MoveNext () returned false) this means the

2017/1/31

frame has ended without issuing a return instruction. In Cont<A> : Stack<A>. This makes it possible to wait for the

this case, we just succeed with the default value and return Answer () to the computation by waiting for the first (and
the stack tail (this is a design choice, as we could fail in- last) call to Id.Next (), upon which the result of the embed-
stead). A null instruction simply returns the current stack. ded call instruction can be retrieved from its Value property.

Finally, we Step the stack according to the current instruc-

i Since execution of the stack may have migrated to another
tion, frame.Current.

thread, Next (), may well be called from a different thread

Method TailPush(comp) is used to implement tail calls. It than the one calling Answer (). For this reason, we protect
simply discards the current frame (and any pending finally the private state of the Id continuation with the condition
clauses!) and installs a new one obtained from its argument variable, state. The caller of Answer () will block until or
computation. Since TailPush must preserve the original call unless notified by some thread finishing in Next ().

instruction that the tail continuation will read from, it is clear

that TailPush, unlike Push, cannot change the current con- 6.2 Execution

tinuation type T. In principle, given the linearity constraints With our stack API in hand, we can now show how to
already imposed by our use of iterators, we could also reuse actually execute computations and give the implementation
the original Cons cell instead of discarding it and allocating of the Run and Spawn methods that were introduced in §4.

a new one. The fact that we ignore pending finally clauses
is unfortunate but not unreasonable. If computations were a
language feature, rather than a library, one would statically

The implementation of Computation.Run just allocates an
initial stack, resumes it and calls id.Answer ():

reject tail calls from within finally clauses anyway. © // run the computation synchronously
// may block on thread migration
public partial class Id : Cont<A> { public static T Run<T>(this IEnumerable<I<T>> comp)
private readonly I<A>.Call<A> call; {
public Id(I<A>.Call<h> call) { var call = new I<T>.Call<T>(comp);
this.call = call; var id = new Stack<T>.Cont<T>.Id(call);
+ var s = id.Push(call);

private enum State {

Pending, Continued, Consumed
}; }
private State state = State.Pending;
public override Stack<A> Next() {

lock (this) {

state = State.Continued;
Monitor.Pulse(this);
return null;

s.Resume () ;
return id.Answer(); // may block

Computation.Spawn just queues the same task to the ThreadPool
and returns a delayed call to id.Answer ():

// runs the computation asynchronously

b // returns a thunk to wait on.

¥ public static Func<T> Spawn<T>(

public A Answer() { this IEnumerable<I<T>> comp)

lock (this) { {
while (state == State.Pending) { var call = new I<T>.Call<T>(comp);
Monitor.Wait(this); var id = new Stack<T>.Cont<T>.Id(call);
¥ var s = id.Push(call);

switch (state) {
case State.Continued: {

ThreadPool.QueueUserWorkItem(_ => s.Resume());
return () => id.Answer(); // may block

state = State.Consumed; return call.Value; }
}
default: throw new InvalidOperationException();
} The APM methods, Computation.Begin and Computation.End,
} are not much more complex. Their implementation uses an
} off-the-shelf IAsyncResult implementation due to Richter
} [17]; we omit the details for lack of space.

. . . .) 6.3 Instructions
Note that, for the identity continuation, because of its par-

ticular base class Cont<A>, the return type of the call and All concrete instructions derive from an abstract instruction

answer type of the continuation coincide Id : Cont<A> and class, I<T>. The parameter T determines the type of the
value, t, returned by a I<T>.Return(t) instruction:

© Interestingly, attempting to Dispose the frame and propagate any ex-
ceptions forces one to weaken the return type of TailPush to the less public abstract partial class I<T> {
informative Stack<A> type. internal protected abstract Stack<A> Step<A, U>(

10 2017/1/31

Stack<A>.Cont<T>.Cons<U> stack);
}

The abstract Step(stack) method transitions a non-empty
stack Stack<A>.Cont<U>.Cons<T> that placed a call to a T-
computation (stack.call) from some continuation of type
Stack<A>.Cont<U> (i.e. stack.tail). Interpreting an in-
struction should be independent of, and thus parametric in,
both the answer type of the stack, A, and the return type of
the caller, U, and its continuation.

As a first approximation, we can think of I<T> as an alge-
braic datatype of instructions. Concrete instructions types
are subclasses of 1<T>. For convenience, these are declared
as nested classes within I<T>. Corresponding to the term
constructors of our algebraic datatype, we find the follow-
ing instruction subclasses.

6.3.1 Return

The instruction new I<T>.Return(value) steps a stack by
popping with the return value.

public partial class Return : I<T> {

private readonly T value;

public Return(T value) {
this.value = value;

}

internal protected override Stack<A> Step<A, U>(
Stack<A>.Cont<T>.Cons<U> stack) {
return stack.Pop(value);

}

}

6.3.2 Call

The instruction new I<T>.Call<U>(c) steps the current
stack by Pushing itself onto the stack.

The result of a call - a value of type U or an exception - is
stored in, and subsequently retrieved from, the instruction’s
Value property. To detect protocol violations, we add a state
variable to ensure that the Value is only accessed after it has
been written. The state variable tracks whether the call is still
Pending execution, has Succeeded (by assignment to Value
in Return.Step() or implicit Exit () in Cons<U>.Next (). or
has Failed with some exception exception set by Throw().
Unlike Id.Answer () (see above), the Value property requires
no synchronization.

public partial class Call<U> : I<T> {

internal readonly IEnumerable<I<U>> comp;

public Call(IEnumerable<I<U>> comp) {
this.comp = comp;

3

internal protected override Stack<A> Step<A, V>(
Stack<A>.Cont<T>.Cons<V> stack) {
return stack.Push(this);

}

private enum State {
Pending, Succeeded, Failed, Consumed
};
State state = State.Pending;
private Exception exception;
private U value = default(U);
public U Value {
get {
switch (state) {
case State.Succeeded: {
state = State.Consumed; return value;
}
case State.Failed: {
state = State.Consumed; throw exception;
}
default:
throw new System.InvalidOperationException();
}
}
internal set {
this.value = value;
state = State.Succeeded;
}
}
internal void Throw(Exception exception) {
this.exception = exception;
state = State.Failed;
}
}

6.3.3 Tail Call

TailCall’s step method trivially calls Cont<T>.TailPush on
the current stack and stored computation.

public partial class TailCall I<T> {

private readonly IEnumerable<I<T>> comp;

public TailCall(IEnumerable<I<T>> comp) {
this.comp = comp;

}

internal protected override Stack<A> Step<A, U>(
Stack<A>.Cont<T>.Cons<U> stack) {
return stack.TailPush(comp);

}

}

6.3.4 APM calls

We only show the generic implementation for a 1-argument
APM operation (for t1 of any type T1) (other arities follow
the same pattern):

public static partial class APM<U> {
public delegate U EndOp(IAsyncResult r);

public static Operation<T1> Call<T1>(
Operation<T1>.BeginOp beginOp, T1 t1,
EndOp endOp)

{ return new Operation<T1>(beginOp, t1, endOp); }

2017/1/31

public partial class Operation<T1> : I<T> {
public delegate IAsyncResult BeginOp(
T1 t1, AsyncCallback cb, Object state);

private readonly T1 t1;
private readonly BeginOp beginOp;
private readonly EndOp endOp;

private IAsyncResult r;
public U Value { get { return endOp(xr); } }

public Operation(BeginOp beginOp,T1 t1,
EndOp endOp) {
this.beginOp = beginOp;
this.tl = t1;
this.endOp = endOp;
}
internal protected override Stack<A> Step<A, V>(
Stack<A>.Cont<T>.Cons<V> stack) {
beginOp(t1,
r => { this.r = r; stack.Resume();},
null);
return null;
}
}
}

The End0p delegate, common to all operation classes, and the
nested BeginOp delegate, particular to this operation’s arity,
capture the static aspects of the .NET APM protocol.’

APM<U>.Call(b,t1,e) is just a helper method that allows us
to omit specifying the C* inferable type parameter, T1, to the
constructor of the instruction class proper, Operation<T1>.

Operation<T1>’s constructor saves its arguments in private
fields. Stepping the operation empties the stack but first
calls beginOp with the user’s argument and a manufactured
callback, initiating the APM protocol. The callback even-
tually writes its IAsyncResult argument to another private
field before resuming the saved stack. The operation’s Value
property applies End0Op to the IAsyncResult field, returning
a value of type U or throwing any exception stored in the
IAsyncResult, completing the APM protocol.

7. Extending the instruction set

A key feature of our technique is that it is extensible. The
instruction set is not fixed. We can add instructions simply by
declaring new subclasses of 1<T> (or indeed, deriving from
existing instruction types). This is in contrast to techniques
that extend the language; there every new extension requires
a change to the language. We described earlier in §5 how to
add instructions to access APM methods from computations

7We could also have used instantiations of general purpose function spaces
from the Framework, but these are more descriptive.

to get asynchronous programming. In this section we give
two other examples: supporting programming with futures,
and reactive programming.

7.1 Futures

Futures are an established concurrency abstraction used to
represent the eventual value of a concurrent computation.
First-class, generic futures (with explicit waiting) are simple
to code up.

Here’s the basic idea. Given a computation comp (that returns
a U value), the extension method comp.Future() creates a
future value. This immediately spawns a worker thread to
run comp in parallel and returns a value of type Future<U>.
When the current (or another) computation actually needs
to synchronize with the future, it yields an I<T>.Await<U>
instruction, obtained from the future itself by the method
future.Wait<T>(). The instruction logically waits (with-
out blocking) until or unless the computation is done. Fi-
nally, the result of the computation can be read off the
future’s Value property (but only after synchronizing via
Wait<T>()). Between spawning the computation, and ob-
taining its value, the main computation is, of course, free to
perform other tasks.

For example, with futures, we can write a method that down-
loads two pages in parallel, returning the pair of their results:

static IEnumerable<I<Pair<string, string>>>
DownloadTwoPages(String urll, String url2) {
var reql = WebRequest.Create(urll);

var req2 = WebRequest.Create(url2);

// spawn the second download as a parallel future
var future = DownloadPage(url2).Future();

// run the first download sequentially
var call = new I<Pair<string, string>>.
Call<string>(DownloadPage (urll));
yield return call;

var sl = call.Value;

// wait for the future
yield return future.Wait<Pair<string, string>>();
var s2 = future.Value;

yield return new I<Pair<string, string>>.
Return(new Pair<string, string>(sl, s2));

}

The code spawns a parallel download of the second web
page and continues with a sequential download of the first.
Both computations run asynchronously, without blocking.
The outer computation will eventually resume (after yielding
future.Wait) on either the last thread in DownloadPage (url1),
if it finished later, or the last thread in DownloadPage (url2),
if the future finished later, but it will not block.

2017/1/31

Our implementation uses the call to Future () to first allocate
the future object then immediately spawn the computation
using an APM call, passing a callback to signal the future
when done:

static class Futures {
public static Future<T> Future<T>(
this IEnumerable<I<T>> comp) {
var f = new Future<T>(Computation.End<T>);
comp.Begin(f.AsyncCallback, null);
return f;
}
}

The actual Future<U> class is defined as follows:

public class Future<U> {

public delegate U EndOp(IAsyncResult r);
private readonly EndOp endOp;

internal object _lock = new object();
internal IAsyncResult r;

internal Stack stack;

internal Future(EndOp endOp) { this.endOp = endOp; }

internal void AsyncCallback(IAsyncResult r) {
Stack stack;
lock (_lock) {
this.r = r;
stack = this.stack;
// pulse only needed for blocking Step()
Monitor.Pulse(_lock);
}
if (stack != null) stack.Resume();
}
public U Value { get { return endOp(r); }
}
public I<T>.Await<U> Wait<T>() {
return new I<T>.Await<U>(this);
}
}

The constructor stores an APM protocol’s end operation
(endOp) in the future, to be invoked from the getter of its
Value property. When the future’s computation has finished,
its own APM callback (Future<U>.AsyncCallback(x)) will
write its IAsyncResult argument to a private field of the
future, checking if there is a logically waiting stack and
resuming that stack if there is.

The Wait<T>() method returns the actual instruction with
which some T-computation can synchronize with this future.
Note that Wait<T>() should be generic since the future does
not, in general, know which computation will wait for it.

Finally, we come to the implementation of the new Await<U>
instruction:

public partial class Await<U> : I<T> {
private Future<U> future;
public Await(Future<U> future) {

this.future = future;

}

internal protected override Stack<A> Step<A,V>(
Stack<A>.Cont<T>.Cons<V> stack) {
lock (future._lock) {
if (future.r !'= null) return stack;
else { future.stack = stack; return null; }
};

}

}

When stepped, the Await<U> instruction forces the inter-
preter to logically wait for its future’s completion. The
Await<U>.Step(stack) method checks if its associated fu-
ture has already received an IAsyncResult. If not, it writes
the pending stack to the future’s stack field and returns the
empty stack to the driver, thus logically waiting without
blocking. If it does find a result, the future has completed, so
Step(stack) just returns the current stack to continue. The
future’s fields are protected by a briefly-held, private lock,
_lock, to avoid the obvious race. Its worth pointing out that
the future cannot know the answer type of its stack field,
which is why the field has the non-generic type Stack (c.f.
86.1), not stack<A>. Fortunately, it doesn’t matter, since all
the future has to do is call stack.Resume () to continue its
execution (and Resume does not depend on the answer type).

Basing our implementation of futures on the APM protocol
makes it easy to turn any APM operation into a future, using
simple wrapper methods. We omit the details.

7.2 Reactive programming

So far, our examples focused on asynchronous communi-
cation, but we can also use iterators for easy development
of rich user interface interactions. Our solution is based on
the AwaitEvent operation from F®’s libraries. We create an
instruction that waits until some specified event occurs and
then resumes the computation.

7.2.1 Waiting for events in F*

In F!, this feature is embedded into asynchronous work-
flows. We can, for example, write a recursive workflow that
counts the number of clicks on the window (adapted from
[12, Chapter 16]):

let rec loop count = async {
let! _ = Async.AwaitEvent 1bl.MouseDown
1bl.Text <- sprintf "Clicks: %d" count
return! loop (count + 1) }

Async.StartImmediate (loop 1)

The workflow is started on the main user interface thread
using the StartImmediate primitive on the last line. When it
reaches the AwaitEvent operation, it registers a callback with
the MouseDown event. The workflow is resumed exactly once
when the event occurs for the first time. It updates the dis-
played counter and recursively calls itself using return! and

2017/1/31

then starts waiting for the next occurrence of the event. Note
that the workflow always runs on the main user interface
thread, which guarantees that no occurrence of MouseDown
can be missed while processing the previous one.

7.2.2 Using AwaitEvent

We start with an example that uses AwaitEvent to create an
application for drawing rectangles. The application has two
states. In the Waiting state, it waits until the user presses a
button to start drawing. When that happens, it transitions to
the Drawing state when it continually updates the rectangle
and waits until the button is released. In the first state, we
use AwaitEvent to wait for MouseDownEvt, which is a .NET
event represented as a value:

IEnumerable<I<Unit>> Waiting() {
var meWait = I<Unit>.AwaitEvent (MouseDownEvt);
yield return meWait;
MouseEventArgs me = meWait.Value;
yield return new I<Unit>.TailCall(Drawing(me));
}

The computation waits for the first occurrence of the event
and then reads the Value property, which contains infor-
mation carried by the event. In this case, the information
contains coordinates of the cursor when the event occurred.
Next, we use the TailCall instruction to transition to the
Drawing state. We give it the value me, containing the origi-
nal cursor coordinates as an argument:

IEnumerable<I<Unit>> Drawing(MouseEventArgs src) {
var choice = MouseMoveEvt.0r (MouseUpEvt) ;
var evtWait = I<Unit>.AwaitEvent(choice);
yield return evtWait;
var evt = evtWait.Value;
if (evt.Tag == ChoiceTag.First) {
DrawRectangle(src, evt.First);
yield return new I<Unit>.TailCall(Drawing(src));
} else {
StoreRetangle(src, evt.Second);
yield return new I<Unit>.TailCall(Waiting());
}
}

The code waits either for MouseMoveEvt or for MouseUpEvt,
whichever occurs first. This is done using a simple 0r combi-
nator for events that, written functionally, has the following

type:
IEvent<A> — IEvent — IEvent<Choice<A, B>>

Once the AwaitEvent instruction produces a value, we test
which of the two events occurred. In the first case, we update
the displayed rectangle and continue in the Drawing state.
When the user finishes the drawing and releases the button,
we store the created rectangle and return back to the Waiting
state.

Note that the computation, as we wrote it, never stops.
It keeps waiting for the events during the entire appli-
cation life-time, but because it is implemented in a non-
blocking fashion, it doesn’t consume any resources. We start
the computation when initializing the user interface using
Waiting() .Spawn().

7.2.3 Implementing AwaitEvent

Now we consider implementing the AwaitEvent operation
by extending our instruction set:

public static AwaitEvt<U> AwaitEvent<U>(
IEvent<U> evt) {
return new AwaitEvt<U>(evt);
}
public partial class AwaitEvt<U> :
private readonly IEvent<U> evt;
private U value;
private bool HasCompleted = false;
public U Value {
get {
if (!HasCompleted)
throw new InvalidOperationException();
return value;
}
}
public AwaitEvt(IEvent<U> evt) {
this.evt = evt;
}
protected internal override Stack<A> Step<A, V>(
Stack<A>.Cont<T>.Cons<V> stack) {
IDisposable cleanup = null;
// subscribe for one event only
cleanup = evt.Subscribe(v => {
this.value = v;
this.HasCompleted = true;
cleanup.Dispose(); // unsubscribe
stack.Resume() ;
b;
return null;
}
}

I<T> {

Method AwaitEvt<U> is a simple helper that aids inference
of U. The interesting thing is the AwaitEvt instruction it
constructs. Its interpretation suspends the computation, but
uses the Subscribe method of the event to register a one-shot
event handler. The IDisposable token this returns is later
used to remove the subscription, once the event has fired,
and just before resuming the computation.

Note that we recursively reference the cleanup value from
its definition. but this is safe: the reference is only applied
after it has been properly set. 8

8In F¥, this can be done more elegantly using value recursion [23].

2017/1/31

8. Re-interpreting instructions for debugging

One drawback of micro-threading libraries that manage their
own stack (like ours) is that code written using them is hard
to debug: the continuation of a call is hidden in a data struc-
ture, not in the host’s native call stack. However, since our
computations are just returning interpreted streams of in-
structions, there is no reason to adopt the same interpreta-
tion in debug mode. Our implementation exploits this to pro-
vide debuggable alternatives to the execution methods of the
Computations class (Run / Spawn / Begin). The debug vari-
ants just use the C¥ stack to interpret a computation’s virtual
stack transitions, by calling different overloads of Resume
and Step.

Implementing this feature requires the addition of a second
abstract Step method on I<T>, providing that instruction’s
debug interpretation.

public abstract partial class I<T> {
internal protected abstract IEnumerator<I<T>>

Step<U>(IEnumerator<I<T>> frame,I<U>.Call<T> call);

}

The debug version of Resume and, for example, Run are
almost trivial:

namespace Debug {
public static partial class Computations {
internal static void Resume<T, U>(
IEnumerator<I<T>> frame, I<U>.Call<T> call) {
while (frame !'= null) {

try {

if (frame.MoveNext()) {

frame = (frame.Current == null) ?

frame
: frame.Current.Step(frame, call);

}

else {

call.Value = default(T);

return;

};
}

catch (Exception e) {
call.Throw(e);
return;
}
}
}
public static T Run<T>(this
IEnumerable<I<T>> comp) {
var call = new I<Unit>.Call<T>(comp);
Resume (comp.GetEnumerator(), call);
return call.Value;

}

// etc.
}

Now let us implement the instructions. The instruction
I<T>.Return.Step(frame, call) returns a null frame,
causing Resume to return:

public partial class Return : I<T> {
internal protected override IEnumerator<I<T>>
Step<U>(IEnumerator<I<KT>> frame,
I<U>.Call<T> call) {
frame.Dispose();
//run pending finally clauses
call.Value = value;
return null;
}
X

I<T>.Call<U> synchronously invokes Resume (defined be-
low) on the callee’s enumerator and this before returning
its input, frame, unchanged.

public partial class Call<U> : I<T> {

internal protected override IEnumerator<I<T>>
Step<V>(IEnumerator<I<T>> frame,

I<V>.Call<T> call) {
Debug.Computations.Resume (comp.GetEnumerator(),
this);

return frame;

}

}

In essence, all we are doing is interpreting Return using C*’s
return, and Call as a C! method call. We omit the details
for the remaining instructions, which are mostly straight-
forward. Note that APM operations are just invoked syn-
chronously, using the callback-free APM pattern.

9. From iterators to general monads

The ability to extend the set of instructions means that we
can construct computations that contain some non-standard
behaviour (such as asynchronous execution of an operation).
Another common way of representing such computations is
to use monads [25]. Petricek [11] has given an encoding of
monads using iterators in C!. The solution is, however, not
entirely type-safe. It is interesting to look at this problem
again using the techniques presented in this paper.

We consider an example based on the Maybe monad, which
represents computations that may fail, returning a special
value indicating the failure, or succeed producing some
value as the result. The following example [11] shows a
computation that calls a method TryReadInt (which may
fail) until the user enters a number larger than 10 and then
returns the entered number.

IEnumerator<IOption> TryReadLargeInt() {
var n = TryReadInt().Apply<int>().AsStep();
yield return n;

if (n.Value > 10) {

yield return OptionResult.Create(n.Value);

2017/1/31

} else {
var m = TryReadLargeInt().Apply<int>().AsStep();
yield return m;
yield return OptionResult.Create(m.Value);

}

}

When using monads, a computation is encoded using two
monadic operations called unit: T — M<T> and bind: M<T> —
(T — M<U>) — M<U> satisfying the usual monad laws. The
C* encoding above, creates a sequence of monad-specific
operations. The first two uses of yield return correspond
to the bind operation and the last one represents unit. Note
that the Apply<T> operation relies on a dynamic type cast,
because the return type of the encoded monadic operation
is simply IEnumerable<IOption>> and doesn’t contain the
type of the actual returned value.

9.1 Instructions for encoding monads

To implement monadic computations using our encoding,
we can provide two instructions that represent monadic bind
and unit and rewrite the previous example as follows:

static IEnumerable<OptionM.I<int>> TryReadLargeInt() {

var n = new OptionM.I<int>.Call<int>(TryReadInt());
yield return n;
var res = n.Value;
if (res > 10) {
yield return
new OptionM.I<int>.Return(OptionM.Unit(res));
}
else {
yield return
new OptionM.I<int>.TailCall(TryReadLargeInt());
}
}

This version is type-safe, because it returns a sequence of
int-returning instructions. Another benefit of our instruction-
based encoding is that we can still use other non-monadic in-
structions for manipulating the stack. In the example above,
we use TailCall in the false branch, instead of calling Bind,
directly followed by Return.

9.2 Supporting monads in the interpreter

To encode monadic computations as a sequence of instruc-
tions, we need a slightly different variant of the instruction
type and the interpreter. In our interpreter for computations,
a computation returns a value only after reducing the en-
tire stack of continuations. However, monadic computations
may be delayed and return a value early, before and indeed
without evaluating the entire continuation. This is simply be-
cause bind(e k) does not necessarily have to apply k to pro-
duce its value - it could just discard k or compose it with
something else.

For example an encoding of the Continuation monad would
immediately return a value of type (T — A) — A. The re-
sult represents a delayed thunk, which starts evaluating the
computation when we provide it with a continuation to call
when the computation completes. To support such monadic
computations we need to adjust our interpreter.

First, let’s assume we have some arbitrary monad Monad,
with computation type constructor M<T>, and with unspec-
ified operations Monad.Bind and Monad .Unit with the appro-
priate types:

// The computation type
public abstract class M<T> {}
// The Monad operations
public class Monad {
// the bind of the monad
public static
M<T> Bind<T, U>(M<U> r, Func<U, M<T>> f)
// the unit of the monad
public static M<T> Unit<T>(T t)
// etc.

Then our Stack<A> hierarchy and implementation can re-
main roughly similar to the earlier one (some details omit-
ted):

public abstract class Stack<A> {
public abstract M<A> Next();
public abstract class Cont<T> : Stack<A> {
public Cont<U> Push<U>(Monad.I<T>.Call<U> call) {
return new Cont<U>.Cons<T>(
call.comp.GetEnumerator(), call, this);

}
public class Cons<U> : Cont<T> {
public override M<A> Next() {
bool hasNext = false;
try { hasNext = frame.MoveNext(); }
catch (Exception e) {
call.Throw(e);
return tail.Next();
}
if ('hasNext) {
call.Value = default(T);
return tail.Next();

};

return (frame.Current == null) 7 this.Next()
: frame.Current.Step(this);

}

public M<A> Pop(T t) {

try {

frame.Dispose();
call.Value = t;
return tail.Next();
}

catch (Exception e) {
call.Throw(e);
return tail.Next();

};

2017/1/31

}
}
public class Id : Cont<A> {
public Id(Monad.I<T>.Call<A> call) {
public override M<A> Next() {
return Monad.Unit<A>(call.Value);
}
}
}
}

But with these notable differences:

® Stack<A>.Next () does not return an intermediate Stack<A>

but produces an answer of type M<A> (to accommodate

early returns). To do this, it must recurse in Cons<U>.Next ().

¢ On the final transition, Id.Next () applies Monad.Unit to
the value of its call, turning its continuation argument of
type A back into the monadic type, M<A>.

® Pop(T t) is a method that takes a T-value and returns the
value of tail.Next (), obtained by resuming the tail. This
means that Pop can be used as a function of type T —
M<A>. Indeed, it will get passed as the continuation of the
argument Monad.Bind in the interpretation of Return (see
below).

Of course, monadic instructions must now be allowed to
return values of type M<A>, not just Stack<A>, since we need
to accommodate early exit with a monadic value.

public abstract partial class I<T> {
public abstract M<A> Step<A, U>(
Stack<A>.Cont<T>.Cons<U> stack);

}

Return instructions - which are different from the monad’s
unit - take monadic arguments, which get interpreted by a
call to the monad’s bind with continuation stack.Pop (see
above). Note that Bind need not apply stack.Pop now nor,
indeed, ever.

public partial class Return : I<T> {
public M<T> v;
public Return(M<T> v) {
this.v = v;
}
public override M<A> Step<A, U>(
Stack<A>.Cont<T>.Cons<U> stack) {
return Monad.Bind<A, T>(v, t => stack.Pop(t));
}
}

Call instructions Push their argument (as before) then re-
cursively call Next () on the resulting stack. Note that the
Value of a call instruction, as read by its continuation, is not
monadic, but just U.

public partial class Call<U> : I<T> {

public IEnumerable<I<U>> comp;
public U Value { //... }
public Call(IEnumerable<I<U>> c) {
this.comp = c;
}
public override M<A> Step<A, V>(
Stack<A>.Cont<T>.Cons<V> stack) {
return stack.Push(this) .Next();
}
public void Throw(Exception exception) { ... }

}

Any monad-specific operations, for example, the update be-
haviour of the state monad, or the throw of the exception
monad (which we haven’t shown) are then easily added as
additional instructions producing monadic values, either di-
rectly, or derived from the current stack by calling Next ().

Of course, we can only use this encoding for a monad whose
bind operation invokes its continuation at most once. Exam-
ples of such monads abound: the maybe monad, the state
monad, and the exception monad to name but a few. Unfor-
tunately, monads that fail this criterion are the full contin-
uation monad and the list monad (since bind maps its con-
tinuation over the list). We have successfully implemented
the resumption monad this way, but the resumption must be
used linearly or not at all.

Since our monadic computations need to be interpreted re-
cursively, the encoding of monads using iterators, unlike our
earlier encoding of vanilla computations, suffers from Chs
lack of support for tail-calls. Petricek [11] suggested intro-
ducing a trampoline [4] to avoid this problem, but this re-
mains future work.

10. Related and future work

There is a vast body of related work. As far as we are aware,
iterators first appeared in CLU [9], but they have subse-
quently appeared in many languages, including Java, Python
and Ruby. Interestingly, there is less formal work on itera-
tors than might be expected; an exception is an operational
semantics of a variant of iterators in Cw [1].

It is well known that recursive enumerations of C* iter-
ators may have quadratic running time. Jacobs et al. [7]
demonstrate how to compile nested C* enumerators more
efficiently, with constant time yield and suspend, by using
a generalized implementation scheme for IEnumerator<T>.
Their technique essentially extends the current compilation
to finite-state machines to push-down automata that maintain
an auxilliary stack of nested enumerators. Their implemen-
tation even spots and supports tail recursion. However, in the
setting of nested iterators, the authors can rely on the type of
element yielded by a nested iterator to be the same as that
of the enclosing iterator. For nested computations, we must,
instead, allow the instruction type, and thus element type,

2017/1/31

to vary. Our computations support an extensible instruction
set, while Jacobs et al. need just four constant instructions,
returned by a mediating MoveNext () method, to control the
enumerator stack.

Our typed encoding of stacks is closely related to Pitts’ typ-
ing of frame stacks in his treatment of operational semantics
[13], an idea that goes back to Wright and Felleisen’s [26]
work on evaluation contexts and Felleisen and Friedman’s
work on control operators and abstract machines [3]. Typed
frame stacks are also a prominent feature of the Harper-
Stone redefinition of Standard ML [5].

Microsoft’s Concurrency Coordination Runtime (CCR) pro-
vided the original inspiration for this work. The CCR [2, 16]
is a concurrency library for C# based on asynchronous mes-
sage passing. CCR processes are lightweight tasks written
in continuation-passing style. However, the pain of writing
CPS code in C* is alleviated by the use of C* iterators return-
ing CCR synchronization primitives to suspend and resume
processes at explicit synchronization steps. Since all com-
munication is asynchronous, CCR tasks written as enumer-
ables never return, and thus, unlike our instruction streams,
need not be indexed by their return type.

F#’s [24, Chapter 9] computation expressions are inspired
by Haskell’s monadic syntax and facilitate writing struc-
tured computations as higher-order values. The syntax is ex-
panded before type checking, (much like C*’s LINQ syntax)
allowing different interpretations of, for instance bind, for
sequencing subcomputations, and unit for embedding val-
ues as trivial computations, to be employed. In particular, as
we have seen, F*’s asynchronous workflows provide a par-
ticular computation type for APM-computations. However,
other computation expressions can be treated differently. For
example, the compilation of F* sequence expressions corre-
sponds to C*’s more limited iterators, and are compiled to
finite state-machines, presumably because these are more ef-
ficient than the nested first-class functions emitted for com-
putation expressions.

Richter’s AsyncEnumerator library for C* [18-21] uses C*
iterators to alleviate programming against the .NET APM
[17]. Richter’s iterators invariably yield integers counting
the number of APM operations issued since the last suspen-
sion, and requiring completion before the next resumption.
Upon resuming, the user can pop the required results from a
result-stack tied to the enumerator. This additional flexibil-
ity in the API allows the user to begin several APM calls in
parallel yet wait for all or just a subset to complete. The only
way for us to do this is to extend the instruction set. How-
ever, the protocol required to use the framework is also more
involved and error prone than ours, requiring an additional
AsyncEnumerator<T> argument to each iterator (to both ac-
cess its queue of IAsyncResults (from nested APM calls)
and to return the value of the outer iterator itself.

For example, here is how one might write the Fib example:

static IEnumerator<Int32>
Fib(AsyncEnumerator<long> ak, long k) {
if (k<= 1) {
ak.Result = k;
}
else {
var an = new AsyncEnumerator<long>();
an.BeginExecute(Fib(an, k - 1), ak.End());
yield return 1;
var n = an.EndExecute(ak.DequeueAsyncResult());

var am = new AsyncEnumerator<long>();
am.BeginExecute(Fib(am, k - 2), ak.End());
yield return 1;
var m = am.EndExecute(ak.DequeueAsyncResult());
ak.Result = m + n;

X

}

There are several avenues for further work. We should like
to formalize our approach, which would enable us to com-
pare our techniques more clearly with more formal work on
abstract machines. Such a formal model might help us in
quantifying which monads our approach of §9 can handle.
(We conjecture that we can handle only affine monads.)

We hope to explore how well our micro-threading technique
integrates with other synchronization libraries. We have al-
ready linked to a .NET implementation of Reppy’s parallel
CML event combinators [14, 15] (through a non-blocking
API), but not, as of yet, to the Joins library [22].

We are exploring generalizing C*’s iterators to allow some of
our encoding to be more succinct and avoid passing values
through the heap (although this generalization is interesting
in its own right!). Another interesting direction would be to
consider the work of Liu et al. on interruptible iterators [10].

Finally, we’d like to consider other language implications of
our work. One simple improvement would be some syntac-
tic sugar that would eliminate some of the boilerplate associ-
ated with our techniques. It would also be interesting to see
if there was some pattern-based translation scheme for code
that would target iterators, much in the style of F#’s compu-
tation expressions.

11. Conclusions

In this paper we have demonstrated how iterators can be used
as the basis of a translation of standard sequential code into
computations. The benefit of this is that computations can be
co-operatively suspended and resumed at yield points. We
can define various interpreters for computations, including
asynchronous interpreters, and we can define special instruc-
tions to, for example, call APM-compliant asynchronous
methods. This allows asynchronous programming that is
strongly typed, free of continuation-passing code and can

2017/1/31

be deeply nested. The effect is similar to F? asynchronous
workflows, but we do not require any language extensions.
We hope that our work gives further evidence of the rich ex-
pressive power of iterators.

References

[1] G. Bierman, E. Meijer, and W. Schulte. The essence of data
access in Cw. In Proceedings of ECOOP, 2005.

[2] G. Chrysanthakopoulos and S. Singh. An asynchronous mes-
saging library for C*. In Proceedings of SCOOL, 2005.

[3] M. Felleisen and D. Friedman. Control operators, the SECD-
machine and the A-calculus. Technical Report 197, Computer
Science Department, Indiana University, 1986.

[4] S. Ganz, D. Friedman, and M. Wand. Trampolined style. In
Proceedings of ICFP, 1999.

[5] R. Harper and C. Stone. An Interpretation of Standard ML in
Type Theory. Technical Report CMU-CS-97-147, School of
Computer Science, Carnegie Mellon University, 1997.

[6] A. Hejlsberg, M. Torgersen, S. Wiltamuth, and P. Golde. The
C* Programming Language. Addison-Wesley, third edition,
2009.

[7] B. Jacobs, E. Meijer, F. Piessens, and W. Schulte. Iterators
revisited: Proof rules and implementation. In Proceedings of
FTjFP, 2005.

[8] A. Kennedy and C. Russo. Generalized algebraic data types
and object-oriented programming. In Proceedings of OOP-
SLA, 2005.

[9] B. Liskov. A history of CLU. In Proceedings of HOPL, 1993.

[10] J. Liu, A. Kimball, and A. Myers. Interruptible iterators. In
Proceedings of POPL, 2006.

[11] T. Petricek. Encoding monadic computations in C* using
iterators. In Proceedings of ITAT, 2009.

[12] T. Petricek and J. Skeet. Real-World Functional Program-
ming. Manning, 2009.

[13] A. M. Pitts. Operational semantics and program equivalence.
In Applied Semantics, pages 378—412. Springer-Verlag, 2002.

[14] J. Reppy. Concurrent Programming in ML. Cambridge Uni-
versity Press, 1999.

[15] J. Reppy, C. Russo, and Y. Xiao. Parallel concurrent ML. In
Proceedings of ICFP, 2009.

[16] J. Richter. Concurrent affairs: Concurrency and coordination
runtime. MSDN Magazine, September 2006.

[17] J. Richter. Concurrent affairs: Implementing the CLR asyn-
chronous programming model. MSDN Magazine, March
2007.

[18] J. Richter. Concurrent affairs: Simplified APM with C*,
MSDN Magazine, November 2007.

[19] J. Richter. Concurrent affairs: Simplified APM with the Asyn-
cEnumerator. MSDN Magazine, June 2008.

[20] J. Richter. Concurrent affairs: More AsyncEnumerator fea-
tures. MSDN Magazine, August 2008.

[21] J. Richter. Power Threading Library. Wintellect, 2009. URL
http://www.wintellect.com/PowerThreading.aspx.

[22] C. V. Russo. The Joins concurrency library. In Proceedings of
PADL, 2007.

[23] D. Syme. Initializing mutually referential abstract objects:
The value recursion challenge. In Proceedings of ML Work-
shop, 2005.

[24] D. Syme, A. Granicz, and A. Cisternio. Expert F*. Apress,
2007.

[25] P. Wadler. Monads for functional programming. In Ad-

vanced Functional Programming, pages 24-52. Springer-
Verlag, 1995.

[26] A. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 115:38-94, Nov.
1994.

2017/1/31

