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ABSTRACT
Standard ML is a statically typed programming language
that is suited for the construction of both small and large
programs. “Programming in the small” is captured by Stan-
dard ML’s Core language. “Programming in the large”
is captured by Standard ML’s Modules language that pro-
vides constructs for organising related Core language defini-
tions into self-contained modules with descriptive interfaces.
While the Core is used to express details of algorithms and
data structures, Modules is used to express the overall archi-
tecture of a software system. In Standard ML, modular pro-
grams must have a strictly hierarchical structure: the depen-
dency between modules can never be cyclic. In particular,
definitions of mutually recursive Core types and values, that
arise frequently in practice, can never span module bound-
aries. This limitation compromises modular programming,
forcing the programmer to merge conceptually (i.e. archi-
tecturally) distinct modules. We propose a practical and
simple extension of the Modules language that caters for
cyclic dependencies between both types and terms defined
in separate modules. Our design leverages existing features
of the language, supports separate compilation of mutually
recursive modules and is easy to implement.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Modules,packages
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1. INTRODUCTION
Standard ML [12] (henceforth SML) is a high-level pro-

gramming language that is suited for the construction of
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both small and large programs. SML’s general-purpose Core
language supports “programming in the small” with a rich
range of types and computational constructs that includes
mutually recursive datatypes and functions, control con-
structs, exceptions and references.
SML’s special-purpose Modules language supports “pro-

gramming in the large”. Constructed on top of the Core,
the Modules language allows sequential definitions of identi-
fiers denoting Core language types and terms to be packaged
together into possibly nested structures, whose components
are accessed by the dot notation. Structures are transpar-
ent : by default, the realisation (i.e. implementation) of a
type component within a structure is evident outside the
structure. Signatures are used to specify the types of struc-
tures, by specifying their individual components. A type
component may be specified opaquely, permitting a variety
of realisations, or transparently, by equating it with a partic-
ular Core type ([10] uses the terminology abstract and man-
ifest instead; we follow [8]). A structure matches a signa-
ture if it provides an implementation for all of the specified
components, and, thanks to the subtyping relation called
enrichment, possibly more. A signature may be used to
opaquely constrain a matching structure. This existentially
quantifies over the actual realisation of type components
that have opaque specifications in the signature, effectively
hiding their implementation. A functor definition defines a
polymorphic function mapping structures to structures. A
functor may be applied to any structure that realises a sub-
type of the formal argument’s type, resulting in a concrete
implementation of the functor body.
Despite the flexibility of the Modules type system, it does

suffer from an awkward limitation. Unlike the definitions
of the Core language, module bindings must have a strictly
hierarchical structure: the dependency between modules can
never be cyclic. In particular, although definable within the
confines of a single module, definitions of mutually recursive
types and values can never span module boundaries. While
this does not affect the expressiveness of the Core language,
the restriction does compromise modular programming. The
programmer is typically left with two choices. She can either
merge conceptually distinct modules into a single module,
just to satisfy the type checker. Or she can resort to tricky
encodings in the Core language to break the cycles between
modules. The first approach obscures the architecture of the
program; the second obscures its implementation. Neither
solution is satisfactory.
In this article, we relax the hierarchical structure of Mod-

ules, allowing structures to be recursive. Our extension sup-
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ports mutual recursion at the level of Core datatypes and
(independently) values. Although different in detail, our
proposal may be seen as adapting Crary, Harper and Puri’s
theoretical analysis of module recursion to Standard ML [2].
Our main contribution is to provide a practical type system
for recursive modules in Standard ML that avoids some of
the typing challenges of the formalism in [2], and exploits
Standard ML’s subtyping on modules to provide slightly
more expressive and convenient constructs. Our extension
preserves the existing features of Standard ML.
For presentation purposes, we formulate our extension,

not for Standard ML, but for a representative toy language
called Mini-SML. The static semantics of Mini-SML is based
directly on that of Standard ML. Mini-SML includes the es-
sential features of Standard ML Modules but, for brevity,
only has a simple Core language of explicitly typed, mono-
morphic functions and non-parametric type and datatype
definitions. [14] treats a more realistic Standard ML-like
Core with implicitly typed, polymorphic functions and pa-
rameterised type definitions. Our proposal has been adapted
to full Standard ML and is available in Moscow ML [17].
Section 2 introduces the syntax of Mini-SML. Sections 3

gives a motivating example to illustrate the limitations of
acyclic Modules. Section 4 reviews the static semantics of
Mini-SML. Section 5 defines our extension to recursive mod-
ules and its static and dynamic semantics. Section 6 recasts
the first example so that its mutually dependent components
may be separately compiled. Section 7 presents a real-world
example that uses recursive modules to implement an ad-
vanced data structure. Section 8 assesses our contribution.

2. THE SYNTAX OF MINI-SML
Figure 1 defines the abstract syntax of Mini-SML. A type

path tp is a projection t or sp.t of a (Core) type component
from the context or a structure path. A core type u may be
used to define a type identifier or to specify the type of a
Core value. These are just the types of a simple functional
language, extended with type paths. A signature body B is a
sequential specification of a structure’s components. A type
component may be specified transparently, by equating it
with a type, or opaquely, permitting a variety of realisations
(ie. implementations). The implementation of a transpar-
ent component is fixed (up to the realisation of any opaque
types that it mentions). An opaque datatype specification
describes an arbitrary (recursive) datatype with finite set of
constructors K. Each constructor c ∈ K is specified to take
nc (≥ 0) arguments of type uc,0 · · · uc,nc−1; nc is the con-
structor’s arity. In short, a datatype is a recursive, named
sum of anonymous, possibly empty products The specifi-
cation may be realised by any datatype with compatible
constructors. Transparent datatype replication specifies a
datatype that is equivalent to, and thus compatible with,
the type tp (which must itself be bound to a datatype).
Transparent types and datatype replication may be used to
express type sharing constraints in the usual way. Value and
structure components are specified by their type and signa-
ture. The specifications in a body are dependent in that
subsequent specifications may refer to previous ones. A sig-
nature expression S encapsulates a body, or is a reference
to a bound signature identifier. Informally, a structure en-
riches (has a subtype of) a completely transparent signature
(ie. one containing no opaque type or datatype specifica-
tions) if it provides an implementation for all of its specified

components, and possibly more. A structure matches a sig-
nature containing opaque type or datatype specifications if
it enriches a complete realisation of that signature.
Core expressions e describe a simple functional language

extended with the projection of a value identifier from a
structure path. Constructor applications and case expres-
sions are tagged with the name of the datatype (tp) that
they introduce or eliminate. A constructor application takes
the values of its n arguments and builds a tuple tagged with
the constructor c, introducing a value of type tp. The typ-
ing rules ensure that the constructor is fully applied. A case
expression evaluates e to a constructed value of type tp and
chooses a continuation based on the tag of this value. K is a
finite set of constructors used to index the set of alternative
continuations. Each alternative binds nc constructor argu-
ments xc,0 · · · xc,nc−1 in the continuation body ec (typing
will ensure that nc is the arity of c in the datatype). A case
expression need not be exhaustive, in which case evaluation
aborts by raising the built-in exception match.
A structure path sp is a reference to a bound structure

identifier, or the projection of one of its substructures. A
structure body b is a dependent sequence of definitions: sub-
sequent definitions may refer to previous ones. A type def-
inition abbreviates a type. A datatype definition is like a
datatype specification but generates a new (and thus dis-
tinct) type with the corresponding set of constructors. As
in signatures, datatype replication declares a datatype that
is equivalent to, and thus compatible with, the datatype tp.
Datatype replication is used to copy a datatype into an-
other scope whilst preserving compatibility with that type.
Value, recursive function and structure definitions bind term
identifiers to the values of expressions. A functor definition
introduces a named function on structures: X is the func-
tor’s formal argument, S specifies the argument’s type, and s
is the functor’s body that may refer to X. The functor may
be applied to any argument that matches S. A signature
definition abbreviates a signature. A structure expression s
evaluates to a structure. It may be a path or an encapsulated
structure body, whose type, value and structure definitions
become the components of the structure. The application of
a functor evaluates its body against the value of the actual
argument. A transparent constraint (s : S) restricts the
visibility of the structure’s components to those specified in
the signature, which the structure must match, and reveals
the actual realisations of all type components in the sig-
nature (even those with opaque specifications). An opaque
constraint (s :> S) is similar, but hides the actual realisation
of type components with opaque specifications, introducing
new abstract types.

3. MOTIVATING EXAMPLE
We can illustrate the limitations of the acyclic Modules

language of Mini-SML (and Standard ML) by attempting
to implement mutually recursive functions over mutually re-
cursive datatypes. For more good examples, see [2].
Suppose we wish to define evaluation functions for two

mutually recursive types of natural number and boolean ex-
pressions. Natural expressions include a conditional expres-
sion, If, that tests a boolean condition; boolean expressions
include a predicate, Null, on naturals. For each sort of ex-
pression, the evaluation function eval reduces an expression
to normal form.
Figure 2 is what we would like to write in Mini-SML, but

51



Meta-variables t ∈ TypId, c ∈ ConId, x, f ∈ ValId, X ∈ StrId, F ∈ FunId and T ∈ SigId range over disjoint sets of type,
constructor, value, structure, functor and signature identifiers.
The meta-variable K ranges over finite sets of constructor identifiers.
The meta-notation

∏
c∈K pc and

∏
i<n pi ranges over finite sequences of phrases p, indexed by constructor c or natural i.

Type Paths and Core Types

tp ::= t | sp.t type identifier, type projection

u ::= tp | u→ u′ type path, function type

Signature Bodies

B ::= type t = u;B transparent type specification
| type t; B opaque type specification
| datatype t = (

∏
c∈K c of

∏
i<nc

uc,i) ; B opaque datatype specification
| datatype t = datatype tp ; B transparent datatype replication
| val x : u; B value specification
| structure X : S;B structure specification
| εB empty body

Signature Expressions

S ::= sig B end | T encapsulated body, signature identifier

Core Expressions

e ::= x value identifier
| λx : u.e function
| e e′ application
| sp.x value projection
| c (

∏
i<n ei) : tp constructor application

| case e : tp of
∏

c∈K c
∏

i<nc
xc,i ⇒ ec constructor elimination

Structure Paths

sp ::= X | sp.X structure identifier, structure projection

Structure Bodies

b ::= type t = u; b type definition
| datatype t = (

∏
c∈K c of

∏
i<nc

uc,i) ; b datatype definition
| datatype t = datatype tp ; b datatype replication
| val x = e; b value definition
| fun f(x : u) : u′ = e; b recursive function definition
| structure X = s;b structure definition
| functor F (X : S) = s; b functor definition
| signature T = S; b signature definition
| εb empty body

Structure Expressions

s ::= sp structure path
| struct b end structure body
| F(s) functor application
| s : S transparent constraint
| s :> S opaque constraint

(Mini-SML supports local functor and signature definitions so that structure bodies can play the role of Standard ML’s separate
top-level syntax. In SML, constructors can have a most one argument, with multiple arguments encoded as tuples — in Mini-
SML, we support multiple arguments simply to avoid introducing separate syntax and rules for tuples. In SML, constructors
are referenced by (long) value identifiers, with the constructor status (and associated datatype) recorded in the type of the
identifier. To avoid formalizing this machinery, we simply treat constructors as uninterpreted tags, relying on explicit type
annotations at constructor applications and case expressions to indicate membership of a particular datatype. Since we are
only interested in cross-module recursion, datatype and function declarations are singly-recursive; support for mutual recursion
is a by-product of our extension.)

Figure 1: Syntax of Mini-SML
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structure Nat = struct

datatype t = Zero | Succ of t

| If of Bool.t
1
* t * t

fun eval(n:t):t = case n : t of

Zero => n

| Succ m => Succ(eval m):t

| If b t e => case Bool.eval
2
b: Bool.t

3
of

True => eval t

| False => eval e

end

structure Bool = struct

datatype t = True | False | Null of Nat.t

fun eval(b:t):t = case b : t of

True => b

| False => b

| Null n => case Nat.eval n : Nat.t of

Zero => True:t

| Succ m => False:t

end

Figure 2: mutually recursive structures

cannot. The code is rejected because of the three forward
references to Bool (shown boxed) in the definition of Nat.
Permuting the structure definitions does not help.
In Standard ML, the easiest way to define Bool and Nat

is to use two global, simultaneous definitions (joined with
and) of the datatypes and functions:

datatype tNat = ... | If of tBool * tNat * tNat

and tBool = ... | Null of tNat

fun evalNat(n:tNat):tNat = ... evalBool ...

and evalBool(n:tBool):tBool = ... evalNat ...

structure Nat = struct datatype t = datatype tNat

val eval = evalNat

end

structure Bool = struct datatype t = datatype tBool

val eval = evalBool

end

In larger examples, this solution is unsatisfactory. It re-
quires the programmer to mangle the names of the types and
functions and define them in a scope that encompasses both
modules, obscuring the program’s architecture. The solu-
tion also impedes separate compilation, since most compilers
do not allow simultaneous definitions to be split across com-
pilation units. Another solution is to give a forward declara-
tion, ForwardNat, whose individual components are param-
eterised by their forward references to Bool. Bool can then
be defined in terms of ForwardNat. We subsequently define
Nat so that its components are the fixed-points of apply-
ing ForwardNat’s components to the appropriate members
of Bool. This solution is tedious, error-prone and inefficient,
since the only way to represent Bool.t in ForwardNat.eval

is as an abstract type, not a datatype.
It is instructive to analyse the forward references in Figure

2. The type reference Bool.t
1
merely refers to a type

defined in Bool — the fact that Bool.t is a datatype with
a set of constructors is irrelevant since we are neither trying
to eliminate or introduce a value of the type. The term

reference Bool.eval
2
refers to a value defined in Bool: the

only information we need to typecheck this reference is its

type. Finally, the type reference Bool.t
3
again refers to a

type defined in Bool, but, unlike the first reference, the fact
that Bool.t is actually a datatype is crucial in this context,
since we are eliminating a value of the datatype and need
to know its constructors and their types. If Bool.t was
an ordinary type abbreviation or an abstract type, the case
expression would fail to typecheck.
Suppose we now try to typecheck these forward references

by throwing in some forward declarations. The first ref-
erence typechecks if we make a forward declaration that
Bool.t is a type; the second typechecks if we make a forward
declaration that Bool.eval has type Bool.t -> Bool.t; the
third (and its enclosing case statement) typechecks if we
make a forward declaration that Bool.t is the datatype
datatype t = True | False | Null of Nat.t.
Inspired by the similar constructs in [2], we propose to

extend the Modules language with two new constructs for
expressing such forward declarations. The first construct is
a new signature expression, rec(X:S1)S2, called a recursive
signature (similar to the recursively dependent signatures of
[2]). It constructs a signature from the body signature S2,
under the forward declaration of a structure X matching
the signature S1. Recursive signatures are useful for spec-
ifying mutually recursive types that span module bound-
aries within the signature.1 Formally, we will require that
the forward signature is enriched by (ie. a supertype of) the
body, under some contractive (ie. non-circular) realisation
of the type components in the forward specification. The
realisation identifies datatypes in the body with any of their
forward declarations as opaque types; it ties the recursive
knot. The contractiveness condition forces each recursive
type to be mediated by a datatype, which is consistent with
ordinary SML. Allowing for enrichment lets us get away with
only giving forward specifications for those components that
are actually required in the body.

signature EVAL =

rec(X: sig structure Bool: sig type t end end)

sig structure Nat: sig

datatype t = Zero | Succ of t

| If of X.Bool.t * t * t

end

structure Bool: sig

datatype t = True | False | Null of Nat.t

val eval: t -> t

end

end;

Figure 3: type recursion using a recursive signature

With a recursive signature, we can specify the mutually
recursive datatypes declared in Bool and Nat (Figure 3).
Notice that we only need a forward declaration of X.Bool.t,
since the signature of Bool can make an ordinary (backward)
reference to Nat. The specification of Bool.eval in the body,
although superfluous here, will be used below.
The second construct, rec(X:S)s, is a new structure ex-

pression, called a recursive structure, that lets us construct

1The term recursive signature is perhaps a misnomer, since
the forward declaration declares a structure, not a signature,
and allows us to take the a fixed-point of the datatypes
specified in the body, not a fixed-point of the body itself.
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structure Eval = rec(X:EVAL)

struct structure Nat = struct

datatype t = datatype X.Nat.t

fun eval(n:t):t = case n : t of

Zero => n

| Succ m => Succ(eval m):t

| If b t e =>

case X.Bool.eval b : X.Bool.t of

True => eval t

| False => eval e

end

structure Bool = struct

datatype t = datatype X.Bool.t

fun eval(b:t):t = case b : t of

True => b

| False => b

| Null n => case Nat.eval n : Nat.t of

Zero => True:t

| Succ m => False:t

end

end

Figure 4: term recursion using a recursive structure

a cyclic value for s, given a forward declaration of this value
as the structure X, and a partial specification of its type S.
Recursive structures are used to define mutually recursive
values whose definitions span module boundaries within s.
Formally, we will require that the forward declaration of a
recursive structure is enriched by the body. Allowing for
enrichment lets us get away with only giving forward dec-
larations for those components that are actually required
in the body. Opaque datatypes and types in the forward
declaration must be implemented in the body by datatype
replication or an equivalent type abbreviation (respectively),
and simply introduce new abstract types.
Now we can define the structures Bool and Nat as sub-

structures of the recursive structure bound to Eval in Figure
3. The recursive structure is typechecked under the assump-
tion that its body enriches the forward declaration of X (ie.
that it matches the signature EVAL). The datatypes declared
in EVAL are implemented by replicating them in the body.
Since the function X.Bool.eval is declared in EVAL and the
type X.Bool.t is declared as an appropriate datatype in
EVAL, the boolean case expression in Nat.eval typechecks.
Notice that the forward declaration only declares a subset
of the body’s components: we omitted Nat.eval, since no
forward reference to it is required. Eval.Nat.eval will still
be accessible, since the type of the body, not the forward
declaration, determines the type of a recursive structure.
Operationally, a recursive structure is evaluated by eval-

uating its body under the initial assumption that X is un-
defined. If evaluation of the body attempts to evaluate X,
execution aborts by raising the (new) exception ⊥ (an al-
ternative design is to enter a loop). If not, and evaluation
of the body produces a value, we update the binding of X
with this value and return the value as the value of the en-
tire expression. This is similar to the treatment of recursive
thunks in lazy languages, except that we evaluate recursion
eagerly, to ensure that the order of any side-effects is de-
terministic. In our example, Eval is well-defined, since all
(dynamic) references to X are delayed under abstractions.

Kinds, Type Variables, Variable Sets and Types

κ ∈ Kind ::= ∗ ranging over types
| ◦ ranging over datatypes

ακ ∈ Varκ def
= {ακ, βκ, . . .} kinded type variables

α ∈ Var
def
= Var∗ ∪ Var◦ type variables

P ,Q ∈ VarSet
def
= Fin(Var ) type variable sets

u ∈ Type ::= α type variable
| u → u ′ function space

Realisations

ϕ ∈ Real
def
= Var∗ fin→ Type ∪Var◦ fin→ Var◦

Constructor Environments and Type Structures

K ∈ ConEnv
def
= ConId

fin→ ⋃
n≥0 Type

n

Φ ∈ TyStr ::= u | (α◦,K)
Structures, Signatures, and Existential Structures

S ∈ Str
def
=




St ∪
Sx ∪
SX

∣∣∣∣∣∣∣
St ∈ TypId fin→ TyStr ,

Sx ∈ ValId fin→ Type,

SX ∈ StrId fin→ Str




L ∈ Sig ::= ΛP .S
X ∈ ExStr ::= ∃P .S

Functors and Contexts

F ∈ Fun ::= ∀P .S → X

C ∈ Context
def
=




Ct ∪
CT ∪
Cx ∪
CX ∪
CF

∣∣∣∣∣∣∣∣∣∣∣∣

Ct ∈ TypId fin→ TyStr ,

CT ∈ SigId fin→ Sig ,

Cx ∈ ValId fin→ Type,

CX ∈ StrId fin→ Str ,

CF ∈ FunId fin→ Fun




Figure 5: semantic objects of Mini-SML

4. STATIC SEMANTICS OF MINI-SML
Before we can propose our extension, we need to review

the static semantics, or typing judgements, of Mini-SML.
Following [12], our static semantics distinguishes syntac-
tic types of the language from their semantic counterparts,
called semantic objects. The semantic objects, defined in
Figure 5, play the role of types in the semantics. We let O
range over all semantic objects.

Notation 1. For sets A and B, Fin(A) denotes the set of

finite subsets of A, and A
fin→ B denotes the set of finite

maps from A to B. Let f and g be finite maps. D(f)
denotes the domain of definition of f . The finite map f + g

has domain D(f) ∪ D(g) and values (f + g)(a)
def
= if a ∈

D(g) then g(a) else f(a). Finally, if p ≡ ∏
i<n gi is an n-

tuple of finite maps we let f ⊕ p be the finite map defined

inductively as follows: (f ⊕ p)
def
= f if n = 0 and (f ⊕ p)

def
=

(f ⊕ ∏
i<m gi) + gm if n = m+ 1.

Type variables α ∈ Var are just kinded variables rang-
ing over semantic types. Ordinary variables of kind ∗ range
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over arbitrary semantic types, but variables of kind ◦ are
restricted to range only over other (datatype) variables. Se-
mantic types u ∈ Type are the semantic counterparts of syn-
tactic Core types, and are used to record the denotations of
type identifiers and the types of value identifiers. The sym-
bols Λ, ∃ and ∀ bind finite sets, P , of type variables.
A realisation ϕ ∈ Real maps type variables to semantic

types and datatype variables to datatype variables. It de-
fines a substitution on type variables (and a renaming on
datatype variables) in the usual way. The operation of ap-
plying a realisation ϕ to an object O is written ϕ (O). Re-
alisations of datatype variables are restricted to renamings
to ensure that the set of type structures (below) is closed
under realisation.
Type structures Φ ∈ TyStr record the denotations of type

components, and may either be a simple type u, arising from
an ordinary type specification or definition, or a pair (α◦,K)
of a datatype variable and its constructor environment, aris-
ing from a datatype specification or definition. K ∈ ConEnv
is a finite map from constructors to tuples of argument types.
Semantic structures S ∈ Str are used as the types of

structure identifiers and paths. A semantic structure maps
type components to the type structures they denote, and
value and structure components to the types they inhabit.

For clarity, we define the extension functions t � Φ,S def
=

{t �→ Φ} + S, x : u,S def
= {x �→ u} + S, and X : S,S ′ def

=
{X �→ S}+ S ′, and let εS denote the empty structure ∅.
A semantic signature ΛP .S is a parameterised type: it

describes the family of structures ϕ (S), for ϕ a realisation of
the parameters in P . Λ-bound type variables are introduced
by datatype specifications and opaque specifications.
The existential structure ∃P .S, on the other hand, is a

quantified type: variables in P are existentially quantified
in S and thus abstract. Existential structures describe the
types of structure bodies and expression. Existentially quan-
tified type variables are explicitly introduced by datatype
definitions and opaque constraints s :> S, and implicitly
eliminated at various points in the static semantics.
A semantic functor ∀P .S → X describes the type of a

functor identifier: the universally quantified variables in P
are bound simultaneously in the functor’s domain, S, and its
range, X . These variables capture the type components of
the domain on which the functor behaves polymorphically;
their possible occurrence in the range caters for the propa-
gation of type identities from the functor’s actual argument:
functors are polymorphic functions on structures. The range
X is the type of the functor body, that may introduce new
(existential) types.
A context C maps type and signature identifiers to the

type structures and signatures they denote, and maps value,
structure and functor identifiers to the types they inhabit.

For clarity, we define the extension functions C, t �Φ
def
= C+

{t �→ Φ}, C,T �L def
= C + {T �→ L}, C, x : u

def
= C + {x �→ u},

C,X : S def
= C + {X �→ S}, and C,F : F def

= C + {F �→ F}.
We let V(O) denote the set of type variables occurring

free in O, where the notions of free and bound variable are
defined as usual. We also identify semantic objects that are
equivalent up to α-conversion of bound type variables.
The operation of applying a realisation to a type (sub-

stitution) is extended to all semantic objects in the usual,
capture-avoiding way.

Definition 1. Enrichment Relation

• Given two type structures Φ and Φ′, Φ enriches Φ′,
written Φ � Φ′, if and only if

1. Φ = Φ′; or

2. Φ ≡ (α◦,K) and Φ′ ≡ α◦.

• Given two structures S and S ′, S enriches S ′, written
S � S ′, if and only if D(S) ⊇ D(S ′) and

1. for all t ∈ D(S ′), S(t) � S ′(t); and

2. for all x ∈ D(S ′), S(x) = S ′(x); and

3. for all X ∈ D(S ′), S(X) � S ′(X).

Enrichment is a pre-order that defines a subtyping relation
on semantic structures (S � S ′ means S is a subtype of S ′).
The relation allows entire components to be forgotten in the
supertype, but also allows a datatype to be equated with an
ordinary type component, by hiding its constructors.

Definition 2. Functor Instantiation
A semantic functor ∀P .S → X instantiates to a functor
instance S ′ → X ′, written ∀P .S → X > S ′ → X ′, if and
only if ϕ (S) = S ′ and ϕ (X ) = X ′, for some realisation ϕ
with D(ϕ) = P .

Definition 3. Signature Matching

A semantic structure S ′ matches a signature ΛP .S if and
only if S ′ � ϕ (S) for some realisation ϕ with D(ϕ) = P .

The static semantics of Mini-SML is defined by the judge-
ments in Figures 6 and 7. Denotation judgements (C �
p � O) relate type phrases to their denotations; classifi-
cation judgements (C � p : O) relate term phrases to their
semantic types. We deviate from the presentation in the
Definition [12] by classifying structure expressions and bod-
ies using existentially quantified semantic structures. The
Definition classifies structure expressions using bare seman-
tic structures, but, to capture generativity of type defini-
tions, uses a state from which to generate new type variables
. We prefer our presentation because it is stateless and thus
more declarative ([6] uses a similar presentation). The pro-
cedural and declarative formalisations of the semantics are
explained in detail, and proved equivalent, in [14, 15]. We
only explain the additional rules concerning datatypes here.
Note that a constructor application or case expression is

well-formed only if the explicit type path tp denotes a type
structure with a constructor environment, ie. a datatype.
(datatype t = (

∏
c∈K c of

∏
i<nc

uc,i) ; p): A datatype
declaration, where p is a signature or structure body, is
checked by building a constructor environment K from its
constructor declarations, under the forward binding that
t denotes a new (ordinary) type α◦. The side condition
α◦  ∈ V(C) ensures that α◦ is not confused with any existing
type in the context. The datatype t is added to the con-
text with its constructor environment before classifying the
remaining declarations in the body. A binding of the type
structure for t is added to the resulting structure S. The
side condition on P prevents the capture of any free type
variables in this type structure, by any of the parameters
or existential types in P . In a signature, α◦ is a new type
parameter; in a structure, it is a new existential type.
(datatype t = datatype tp ; p) Datatype replication

merely rebinds the existing type structure of the type tp to
t, so that tp and t denote the same datatype in the body p.
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C � tp � Φ

t ∈ D(C)
C � t � C(t)

C � sp : S t ∈ D(S)
C � sp.t � S(t)

C � u � u

C � tp � u

C � tp � u

C � tp � (α◦,K)
C � tp � α◦

C � u � u C � u′ � u ′

C � u→ u′ � u → u ′

C � B � L

C � u � u C, t � u � B � ΛP .S
t  ∈ D(S) P ∩ V(u) = ∅

C � (type t = u;B) � ΛP .(t � u,S)
α∗  ∈ V(C) C, t � α∗ � B � ΛP .S t  ∈ D(S) α∗  ∈ P

C � (type t; B) � Λ{α∗} ∪ P .(t � α∗,S)
α◦  ∈ V(C)
∀c ∈ K. ∀i < nc. C, t � α◦ � uc,i � uc,i

K ≡ {c �→ ∏
i<nc

uc,i | c ∈ K}
C, t � (α◦,K) � B � ΛP .S
P ∩ ({α◦} ∪ V(K)) = ∅
t  ∈ D(S)

C � (datatype t = (
∏

c∈K c of
∏

i<nc
uc,i) ; B)

� Λ{α◦} ∪ P .(t � (α◦,K),S)
C � tp � (α◦,K) C, t � (α◦,K) � B � ΛP .S
P ∩ ({α◦} ∪ V(K)) = ∅ t  ∈ D(S)

C � (datatype t = datatype tp ; B)
� ΛP .(t � (α◦,K),S)

C � u � u C, x : u � B � ΛP .S
x  ∈ D(S) P ∩ V(u) = ∅
C � (val x : u; B) � ΛP .(x : u,S)

C � S � ΛP .S P ∩ V(C) = ∅
C,X : S � B � ΛQ .S ′

X  ∈ D(S ′) Q ∩ (P ∪ V(S)) = ∅
C � (structure X : S;B) � ΛP ∪Q .(X : S,S ′)

C � εB � Λ∅.εS

C � S � L C � B � ΛP .S
C � sig B end � ΛP .S

T ∈ D(C)
C � T � C(T)

C � e : u x ∈ D(C)
C � x : C(x)

C � u � u C, x : u � e : u ′

C � λx : u.e : u → u ′
C � e : u ′ → u C � e′ : u ′

C � e e′ : u
C � tp � (α◦,K) c ∈ D(K)
K(c) = Πi<nui ∀i < n.C � ei : ui

C � (c (∏i<n ei) : tp) : α
◦

C � e : α◦ C � tp � (α◦,K)
∀c ∈ K. c ∈ D(K) ∧ K(c) = Πi<ncuc,i ∧

C ⊕Πi<nc{xc,i �→ uc,i} � ec : u ′

C � (case e : tp of ∏
c∈K c

∏
i<nc

xc,i ⇒ ec) : u
′

C � sp : S x ∈ D(S)
C � sp.x : S(x)

Figure 6: Denotation and Core classification judge-
ments

C � sp : S
X ∈ D(C)

C � X : C(X)
C � sp : S X ∈ D(S)

C � sp.X : S(X)

C � s : X
C � sp : S

C � sp : ∃∅.S
C � b : ∃P .S

C � struct b end : ∃P .S
C � s : ∃P .S P ∩ V(C(F)) = ∅
C(F) > S ′ → ∃Q .S ′′ S � S ′ Q ∩ P = ∅

C � F(s) : ∃P ∪Q .S ′′

C � s : ∃P .S C � S � ΛQ .S ′

P ∩ V(ΛQ .S ′) = ∅ S � ϕ (S ′) D(ϕ) = Q

C � (s : S) : ∃P .ϕ (S ′)

C � s : ∃P .S C � S � ΛQ .S ′

P ∩ V(ΛQ .S ′) = ∅ S � ϕ (S ′) D(ϕ) = Q

C � (s :> S) : ∃Q .S ′

C � b : X

C � u � u C, t � u � b : ∃P .S P ∩ V(u) = ∅
C � (type t = u; b) : ∃P .(t � u,S)

α◦  ∈ V(C)
∀c ∈ K. ∀i < nc. C, t � α◦ � uc,i � uc,i

K ≡ {c �→ ∏
i<nc

uc,i | c ∈ K}
C, t � (α◦,K) � b : ∃P .S
P ∩ ({α◦} ∪ V(K)) = ∅

C � (datatype t = (
∏

c∈K c of
∏

i<nc
uc,i) ; b)

: ∃{α◦} ∪ P .(t � (α◦,K),S)
C � tp � (α◦,K) C, t � (α◦,K) � b : ∃P .S
P ∩ ({α◦} ∪ V(K)) = ∅
C � (datatype t = datatype tp ; b)

: ∃P .(t � (α◦,K),S)
C � e : u C, x : u � b : ∃P .S P ∩ V(u) = ∅

C � (val x = e; b) : ∃P .(x : u,S)
C � u � u C � u′ � u ′

C, f : u → u ′, x : u � e : u ′

C, f : u → u ′ � b : ∃P .S P ∩ V(u → u ′) = ∅
C � (fun f(x : u) : u′ = e; b) : ∃P .(f : u → u ′,S)

C � s : ∃P .S P ∩ V(C) = ∅
C,X : S � b : ∃Q .S ′ Q ∩ (P ∪ V(S)) = ∅

C � (structure X = s;b) : ∃P ∪Q .(X : S,S ′)

C � S � ΛP .S P ∩ V(C) = ∅
C,X : S � s : X C,F : ∀P .S → X � b : ∃Q .S

C � (functor F (X : S) = s; b) : ∃Q .S

C � S � L C,T � L � b : ∃P .S
C � (signature T = S; b) : ∃P .S C � εb : ∃∅.εS
Figure 7: Modules classification judgements
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5. THE EXTENSION
Formally, our extension requires two new syntactic con-

structs, both additions to the Modules language:

S ::= . . . | rec(X:S)S′ recursive signature

s ::= . . . | rec(X:S)s recursive structure

Two new rules extend the Modules judgements C � S � L
and C � s : X (the semantic objects are unchanged):

C � S � ΛP .S P ∩ V(C) = ∅
C,X : S � S′ � ΛQ .S ′ Q ∩ (P ∪ V(S)) = ∅
ϕ (S ′) � ϕ (S) D(ϕ) = P P ∩ ⋃

α∈P V(ϕ (α)) = ∅
C � (rec(X:S)S′) � ΛQ .ϕ (S ′)

(1)
Rule 1 relates a recursive signature expression to its de-

notation, a semantic signature. The parameters P of the se-
mantic signature ΛP .S stem from opaque type and datatype
specifications in the forward declaration’s syntactic signa-
ture S. The denotation of the signature body, S′, is deter-
mined in the current context, extended with the assumption
that X has type S. The side-condition P ∩ V(C) = ∅ pre-
vents the capture of free variables in C by the bound vari-
ables in P and ensures that these variables are treated as
parameters for the classification of S′. The forward param-
eters P , which may occur in S and thus in ΛQ .S ′, must
be realised in a way that ensures the body enriches the for-
ward specification. The realisation ϕ identifies type vari-
ables stemming from opaque and datatype specifications in
the forward signature with types specified in the body. Note
that the variables in P may occur in S ′, so we apply the re-
alisation to both structures when checking enrichment; the
simultaneous realisation ties the recursive knot. The first
side condition on the domain of ϕ ensures that all forward
specifications are realised. The second side condition on the
range of ϕ ensures that the realisation is not circular, hence
contractive and unique. The parameters Q of the body de-
termine the parameters of the entire signature ΛQ .ϕ (S ′).

C � S � ΛP .S P ∩ V(C) = ∅
C,X : S � s : ∃Q .S ′

Q ∩ (P ∪ V(S)) = ∅ S ′ � S
C � (rec(X:S)s) : ∃P ∪Q .S ′ (2)

Rule 2 relates a recursive structure expression to its type.
If the forward declaration’s signature S denotes ΛP .S, the
body s of the structure expression is classified in the ex-
tended context C,X : S. The side-condition P ∩ V(C) = ∅
prevents the capture of free variables in C by the bound
variables in P and ensures that these variables from the
forward declaration are treated as new types for the clas-
sification of s. During this classification, the constructors
of any datatypes and the types of any values specified in S
are known. Since S is intended as a forward declaration of
the types and values in s, the rule requires that the type
of s, ∃Q .S ′, enriches the forward declaration. In particular,
this checks that any forward declared values that might be
referenced in s are actually defined with the correct type in
s (when the value of s is defined). Note that s may itself
declare some new types Q . Before checking that the type
of the body enriches the forward declaration, we eliminate
the existential quantification over Q , ensuring that these

hypothetical types cannot capture any types in the forward
declaration. The new types returned by the phrase are the
union of the new types in the forward declaration and the
new types of the body.
Although not fully illustrated by our examples, Rule 1

allows a mixture of opaque and transparent type specifica-
tions in both the forward declaration and the body. Opaque
type components in the forward declaration must be speci-
fied in the body as either a non-circular transparent type, an
(inherently non-circular) opaque type, or a potentially cir-
cular datatype; transparent type components must simply
be implemented by equivalent types in the body (modulo
realisation by ϕ). (The side condition on the range of ϕ
rules out the declaration of equi-recursive types - we only
support recursion through named, iso-recursive types. At
higher kinds (type constructors), this restriction appears to
avoid the typing difficulties associated with equi-recursive
types, whose equivalence at higher kinds is not known to be
decidable [2].) Unlike Rule 1, Rule 2 merely requires that the
type of the body enriches the forward declaration, without
allowing the further realisation of any opaque types in the
forward signature. Omitting the realisation step is a design
decision but is motivated by the principle that type equiv-
alences valid outside the body should also be valid inside
it: in particular, a forward reference to a type component
should be compatible with a backward reference to its cor-
responding declaration in the body.
Given a semantic signature ΛP .S, and a semantic struc-

ture S ′, the algorithm for matching the structure against
the signature is a straightforward adaptation of the folk-
lore two-pass algorithm (a simpler, one-pass variant, suitable
in the absence of recursive types, is described and proved
correct in [14]). The first-pass of the algorithm is used to
construct a candidate realisation ϕ of the variables in P .
The algorithm traverses the structure of S keeping S ′ fixed.
Each type variable α in P (and only those in P) is realised
incrementally (by the corresponding type component in S ′),
as we encounter its first occurrence in a type structure of
the form α or (α,K) in S (corresponding to the opaque or
datatype specification that introduced α). The incremental
realisation is applied to the current realisation of S before
resuming the traversal. After the construction of ϕ, the folk-
lore algorithm conducts a second traversal of ϕ (S), to check
that the original S ′ enriches ϕ (S). Our algorithm, however,
must also be able to check the enrichment condition in Rule
1, namely ϕ (S ′) � ϕ (S) for some ϕ with D(ϕ)=P where
ϕ is not circular (P ∩ ⋃

α∈P V(ϕ (α)) = ∅). Observe that
enrichment must hold under a simultaneous realisation of
not only S, but also S ′, which is different from the ordi-
nary signature matching problem where S ′ is assumed not
to mention any of the variables in P . Our solution is to
use a modified signature matching algorithm, that, during
the first traversal of S, performs an occur check at each re-
alisation step, preventing variables in P from appearing in
the range of ϕ. In addition, before resuming the traversal,
the incremental realisation is applied not only to the cur-
rent realisation of S, but also of S ′. The second pass of
the algorithm simply checks that ϕ (S ′) � ϕ (S). Note that
the algorithm is very similar to unification. The algorithm
and its correctness proof will appear in a future technical
report. It easily scales to cope with Standard ML’s type
constructors (parameterised types).
We can present the dynamic semantics of recursive struc-
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tures as a simple extension of a sketched call-by-value se-
mantics for Mini-SML. The Mini-SML semantics is intended
to model the semantics of Standard ML. Our presentation
follows the style of the Definition [12]. The dynamic objects
used during evaluation consist of:

• a set of exceptions ex ∈ Exn (distinct from values) that
includes the existing exceptionmatch raised by the at-
tempted evaluation of a missing case alternative, and
a new exception ⊥, raised by a premature reference to
an undefined recursive structure identifier.

• a set of core values v ∈ CorVal that includes recursive
function closures and applications of n-ary construc-
tors to values (whose form we shall leave unspecified).

• a set of structure values, mapping value and structure
identifiers to values:

V ∈ StrVal def
=

{
Vx ∪
VX

∣∣∣∣∣ Vx ∈ ValId fin→ CorVal

VX ∈ StrId fin→ StrVal

}

• a set of core results r ∈ CorRes ::= v | ex to cap-
ture the values returned or exceptions raised by Core
evaluation.

• a set of structure results R ∈ StrRes ::= V | ex
to capture the values returned or exceptions raised by
Module evaluation.

• a set of functor closures <X, E , s> ∈ FunVal.
• a infinite set of heap locations l ∈ Loc, distinct from
StrVal.

• a set of finite heaps mapping locations to structure
values or the distinguished undefined element ⊥:

H ∈ Heap def
= Loc

fin→ StrVal ∪ {⊥}

• a set of environments E ∈ Env mapping value iden-
tifiers to core values, structure identifiers to structure
values or locations and functor identifiers to closures:

E ∈ Env def
=




Ex ∪
EX ∪
EF

∣∣∣∣∣∣∣
Ex ∈ ValId fin→ CorVal

EX ∈ StrId fin→ StrVal ∪ Loc
EF ∈ FunId fin→ FunVal




The dynamic semantics is defined by environment based
evaluation judgements (Figure 8). Each judgement form re-
lates an environment, initial heap and expression to a pair,
consisting of a result (a value or an exception) and a possi-
bly updated heap. The omitted judgements E ,H � e ↓ r,H′

E ,H � b ↓ R,H′ for Core expressions and structure bodies
are a straightforward adaptation of the existing Standard
ML rules, modified to propagate a heap in the same way
that Standard ML’s evaluation rules already propagate a
store (in an implementation, the store can simply be re-used
for the heap). Recursive structure expressions are evaluated
by choosing a new location in the heap, initialized to ⊥. If
evaluation of the recursive structure’s body yields a value,
we update the heap and return that value (Rule (6)). If it
yields an exception, perhaps because of a premature eval-
uation of X, we simply propagate the exception (Rule(7)).
Although we have omitted many of the rules, as in Standard
ML, structure declarations and functor applications always

E ,H � sp ↓ R,H′
X ∈ D(E) E(X) = V

E ,H � X ↓ V,H (1)

X ∈ D(E) E(X) = l l ∈ D(H) H(l) = V
E ,H � X ↓ V,H (2)

X ∈ D(E) E(X) = l l ∈ D(H) H(l) = ⊥
E ,H � X ↓ ⊥,H (3)

E ,H � sp ↓ V′,H′ X ∈ D(V′) V′(X) = V

E ,H � sp.X ↓ V,H′ (4)

E ,H � sp ↓ ex,H′

E ,H � sp.X ↓ ex,H′ (5)

E ,H � s ↓ R,H′ ...

(E ,X = l), (H, l = ⊥) � s ↓ V,H′ l  ∈ D(H)
E ,H � rec(X:S)s ↓ V, (H′, l = V)

(6)

(E ,X = l), (H, l = ⊥ � s ↓ ex,H′) l  ∈ D(H)
E ,H � rec(X:S)s ↓ ex,H′ (7)

F ∈ D(E) E(F) = <X, E , s′>
E ,H � s ↓ V,H′ (E ,X = V),H′ � s′ ↓ R,H′′

E ,H � F(s) ↓ R,H′′ (8)

F ∈ D(E) E(F) = <X, E , s′> E ,H � s ↓ ex,H′

E ,H � F(s) ↓ ex,H′ (9)

Figure 8: evaluation judgements

bind structure identifiers to values, not locations. Evaluat-
ing a structure identifier that refers to a functor argument or
structure declaration returns the value bound to that iden-
tifier in the environment (Rule (1)). If the identifier refers
to a recursively bound identifier, which is necessarily bound
to a location, we dereference that location in the heap, and
return the stored value (Rule (2)), or raise the exception ⊥ if
the location contains ⊥ (Rule (3)). Evaluating a projection
either projects a value from the path’s value, or propagates
an exception (Rules (5) and (6)). In an implementation,
we can distinguish references to recursive and non-recursive
bindings statically, so there is no need for a run-time test
to distinguish applications of Rules (2) or (3) from Rule
(1). This is important because it ensures that the compi-
lation of references to non-recursive bindings, that occur in
ordinary Standard ML programs, is not penalised by our
extension. Since we evaluate the bodies of recursive struc-
tures eagerly, and only once, the execution order of their
side-effects (if any) is completely deterministic: this means
that it is straightforward to extend Mini-SML with the im-
pure features of ordinary SML (references, exceptions and
I/O) that rely on a fixed evaluation order. Note that functor
application remains call-by-value (Rules (8) and (9)).
Although we do not attempt it here, we should be able

to prove type soundness for (an instrumented version of)
this semantics using the technique of Tofte [18] and its re-
finement by Elsman [6]. The main technical challenge in
proving the type soundness result has less to do with the
presence of the heap, which is similar to ML’s store and
should succumb to known proof techniques. The difficulty
lies with ML’s treatment of datatypes as named recursive
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types. Although type generativity ensures that each new
datatype is assigned a unique type variable, a priori, there
is nothing in the static semantics that prevents an existing
datatype variable from being associated with more than one
constructor environment in the context, making it impos-
sible to deduce the structure of a constructed value from
its type. Type soundness can still be proved modulo an in-
terpretation of datatype variables as recursive types that is
consistent with each type structure in the context (cf. [6]).
The proof will appear in a future technical report.

6. SEPARATE COMPILATION
It is a simple exercise to show that the definition of the

recursive signature and structure in Figures 3 and 4 type-
check. Although the definition of Eval contains two mutu-
ally recursive structures, it is not clear that we have gained
very much. We have obtained the desired modular struc-
ture, but the substructures are still defined simultaneously,
and, in their present form, cannot be typechecked or com-
piled in isolation. Support for separate compilation is one
of the main motivations for introducing a module system.
If the cost of programming with recursive modules is that
their substructures must be defined in a single compilation
unit, then, aside from better control of the namespace, we
have not progressed much beyond the original restriction
that confines recursive definitions to a single module.

(* unit EVAL.sig *)

signature EVAL =

rec(X: sig structure Nat: sig type t end

structure Bool: sig type t end

end)

sig structure Nat: sig

datatype t = Zero | Succ of t

| If of X.Bool.t * t * t

val eval: t -> t

end

structure Bool: sig

datatype t = True | False | Null of X.Nat.t

val eval: t -> t

end

end;

(* unit NatFun.sml *)

functor NatFun(X:EVAL) = struct

datatype t = datatype X.Nat.t

fun eval(n:t):t = case n : t of

Zero => n | Succ m => Succ(eval m):t

| If b t e => case X.Bool.eval b : X.Bool.t of

True => eval t

| False => eval e

end;

(* unit BoolFun.sml *)

functor BoolFun(X:EVAL) = struct

datatype t = datatype X.Bool.t

fun eval(b:t):t = case b : t of

True => b | False => b

| Null n => case X.Nat.eval n : X.Nat.t of

Zero => True:t

| Succ m => False:t

end

Figure 9: separately compiled functors

Ideally, we would like to separately compile the defini-
tions of Bool and Nat as functors, each parameterised by
the implementation of the other (Figure 9), and then take
their fixed point in a separate compilation unit. The func-
tors BoolFun and NatFun are completely independent and
can be compiled separately (the common signature EVAL is
a convenient abbreviation only, and could be in-lined, and
indeed made smaller, at each occurrence).
The difficulty arises when we try to take the naive fixed

point of the two functor applications:

structure Eval = rec(X:EVAL) struct

structure Nat = NatFun(X)

structure Bool = BoolFun(X)

end

This definition of Eval typechecks, but raises ⊥, since the
body of Eval attempts to evaluate its forward declaration
before converging to a value (functor application is strict).

structure Eval = rec(X:EVAL) struct

structure EtaX = struct (*an eta-expansion of X*)

structure Nat = struct

datatype t = datatype X.Nat.t

val eval = λn:t. X.Nat.eval n

end

structure Bool = struct

datatype t = datatype X.Bool.t

val eval = λb:t. X.Bool.eval b

end

end

structure Nat = NatFun(EtaX)

structure Bool = BoolFun(EtaX)

end

Figure 10: using eta-expansion to reach a fixed-point

Fortunately, we can still obtain the correct fixed point if
we apply the functors to an eta-expansion of the forward
declaration (Figure 10). While awkward, and slightly less
efficient than a direct definition (Figure 4), this solution
applies whenever the forward declared values have function
types. Note that our primary goal was to support cross-
module recursive functions, which satisfy this criterion.
Another alternative, that lets us get away with the naive

definition and avoid eta-expansion, would be to change our
dynamic semantics and bind all structure identifiers to lo-
cations into the heap; this modification has the effect of
penalising all structure projections, not just those from re-
cursively bound structures, and reduces the performance of
ordinary Standard ML programs.

7. ADVANCED EXAMPLE
Aside from modular programming, recursive modules also

have applications in the implementation of advanced algo-
rithms and data structures. Chris Okasaki’s excellent book
[13] gives a pseudo code implementation of “bootstrapped
heaps” that requires recursive structures. Figure 11 con-
tains a simplified version of his construction. The example
compiles in Moscow ML but relies on some features not for-
malised in Mini-SML (pattern matching and higher-order,
applicative functors [11, 14, 16]). The Bootstrap functor
takes an arbitrary primitive heap functor, F, and an ordered
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signature ORD = sig type t val leq:t*t->bool end

signature HEAP = sig

structure Elem: ORD

type heap

val empty: heap

val insert: Elem.t * heap ->heap

val merge: heap * heap -> heap

val findMin: heap -> Elem.t option

end

functor Bootstrap(F:functor O:ORD ->

HEAP where type Elem.t = O.t)

(O:ORD): HEAP = struct

signature BOOT= rec(X:sig structure Elem:ORD end)

sig structure Heap: sig

type heap = App.heap where App = F(X.Elem)

end

structure Elem: sig

datatype t = E | H of O.t * Heap.heap

val leq : t * t -> bool

end

end

structure Boot = rec(X:BOOT) struct

structure Elem = struct

datatype t = datatype X.Elem.t

fun leq (H (x, _), H (y, _))= O.leq (x, y)

end

structure Heap = F(Elem)

end

structure Elem = O

datatype heap = datatype Boot.Elem.t

val empty = E

fun merge(E, h) = h | merge(h, E) = h

| merge(h1 as H(x,p1), h2 as H(y,p2)) =

if O.leq(x,y) then H(x,Boot.Heap.insert(h2,p1))

else H(y,Boot.Heap.insert(h1, p2))

fun insert(x,h) = merge (H(x,Boot.Heap.empty),h)

fun findMin E = NONE | findMin (H(x,_)) = SOME x

end

Figure 11: Okasaki’s “bootstrapped” heaps

type, O, and returns an improved implementation of heaps
over O. The datatype Boot.Elem.t is the type of boot-
strapped heaps. A bootstrapped heap is either empty, E,
or a node, H(x,p), consisting of a root element x of type
O.t and an F-constructed primitive heap p of bootstrapped
heaps. The root x caches the minimum element amongst all
those bootstrapped heaps contained in the primitive heap
p. Bootstrapped heaps are ordered by Boot.Elem.leq with
respect to their root values. Note the use of signature re-
cursion to construct the type Heap.heap from the recursive
application F(X.Elem) (which relies on the assumption that
F is applicative). With these data structures in place, the
construction uses bootstrapped heaps to represent heaps of
O.t elements as follows. To merge two heaps we insert the
underlying bootstrapped heap with the larger root into the
underlying bootstrapped heap with the smaller root, using
the insert operation on bootstrapped heaps (not heaps).
To insert an element into a heap, we create a singleton heap
from the element and merge it. The minimum element of a
(non-empty) heap is just the root at the node of the under-
lying bootstrapped heap. This construction improves the

running time of both findMin and merge to 0(1) worst-case
time, assuming that the original heap F supports insert in
0(1) and merge and findMin in 0(log n) worst-case time [13].

8. RELATED WORK AND CONCLUSION
For presentation purposes, we restricted our attention to

an explicitly typed, monomorphic Core language, but the
extension scales to full Standard ML [15], whose Core lan-
guage supports parameterised types and polymorphic val-
ues. Our extension is available in the current release of
Moscow ML [17]. Adding recursive structures to Standard
ML immediately extends the language with (explicit) poly-
morphic recursion, since a recursive function may call it-
self through a forward reference, that can be specified to
have the required polymorphic type. In combination with
Moscow ML’s first-class modules [16], recursive structures
may be used to define (syntactically heavy-weight) encod-
ings of class-based objects with virtual methods, using func-
tors to capture code inheritance (but not subtyping). Much
more compelling is the useful combination of Moscow ML’s
higher-order functors with recursive structures, that we il-
lustrated in Section 7.
Moscow ML’s implementation of recursive structures is

unsophisticated. We currently make no attempt to avoid
dynamic checks, and the cost of accessing a forward decla-
ration is proportional to its depth in the forward signature.
We do, however, depart from the naive dynamic semantics
by compiling enrichment as a coercion to a pruned structure
value: in particular, the heap allocated value for a forward
declaration is a pruned version of the structure body’s value,
reducing the potential for space leaks. Another obvious opti-
mization would be to flatten the representation of this value
to support depth-independent, constant-time access for each
component in the forward declaration. Although it is dif-
ficult to construct realistic benchmarks, the current cost of
calling a recursive function through a forward declaration
at depth 0 appears to be approximately 60% more expen-
sive than an ordinary recursive call. Removing the dynamic
check for definedness (when safe) reduces the figure to 40%.
Another possible optimisation is to represent the forward
reference as a cell storing, not a tagged value, but a function
that initially returns ⊥ and is updated with a function that
returns the value of the forward declaration, thus caching
the result of the check. Replacing the dynamic checks by
calls to these functions may be less expensive.
The important observation that recursive signatures can

be used to specify mutually recursive types that span mod-
ule boundaries, while recursive structures should be used to
define mutually recursive values, appears in the paper by
Crary, Harper and Puri [2] (recently revisited in [3]). That
work is more theoretical than ours, and presents recursive
signatures and modules as an extension of the phase dis-
tinction calculus of [9]. The authors use pseudo Standard
ML syntax for their examples but leave the integration with
Standard ML to future work. Our work may be seen as a
concrete design based on this proposal, but it does differ
in some aspects. In [2], a recursive signature does not con-
tain a forward signature: all types in the signature body
are considered to be mutually recursive and must be fully
transparent. We allow finer control of the recursion in sig-
natures and support opaque types in the signature body.
More importantly, in [2] the forward declaration in a recur-
sive module determines the type of the entire phrase, while
in our proposal the body of a recursive structure must only
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enrich the forward declaration, but the full complement of
its components will still be accessible from the expression as
a whole. Our construct is more practical for the program-
mer, who must only make a forward declaration for those
components that require forward references in the body; the
remaining components in the body will not be hidden by the
forward declaration, and need not be specified. Allowing for
the addition of ordinary subtyping to [2] does not remove
the distinction between our construct and theirs. Another
difference is that the system in [2] statically rejects recursive
modules that may be undefined, while we allow such mod-
ules at the cost of an inexpensive run-time check, that must
be performed only when recursion crosses a module bound-
ary. To allow fixed-points of module expressions other than
values, but at the same time guarantee definedness, [2] uses
a refined type system that draws a distinction between valu-
able and possibly undefined expressions. This is a cleaner
solution, but we prefer to pay the cost of the run-time check
rather than burden the Standard ML programmer with sup-
plying more accurate type information in signatures. An
optimizing compiler can still track valuability internally to
remove unnecessary heap indirections and dynamic checks.
Duggan and Sourelis’s [4] “mixin modules”, although re-

lated to this work, solve a more general problem: to allow
the definition of individual ML functions and datatypes to
span module boundaries. Their system is an extension of
SML-style Modules that allows datatypes, functions and ini-
tialisation code defined in one mixin module to be extended
by constructors, match rules and further initialisation code
defined in another, using a new operator called mixin com-
position. Composition merges two mixins to produce a new
mixin; a separate construct closes a mixin module to take
the fixed-point of its components. In [5], the authors propose
an additional construct that links a simultaneous declara-
tion of mixins containing unrelated, but mutually recursive,
components, supporting cross-module recursion of the kind
considered here. In combination, these extensions are more
expressive than our own, but they also require more sig-
nificant changes to Standard ML and its implementations.
The semantics of the linking construct are not spelled out
in detail, making a comparison with our approach difficult.
More distantly related to our work are Flatt and Felleisen’s

“units” [7], a module language for Scheme that caters for
cyclicly dependent and possibly dynamically linked “units”:
although the authors present a typed version of the lan-
guage, they point out that it does not give a satisfactory
treatment of ML style type sharing, which we do support.
Closely related to that proposal are Ancona and Zucca’s
[1] mixin modules, and Wells and Vestergaard’s [19] simi-
lar module calculus. In those systems, a module may only
contain terms, not types. The goals of these systems are
different from ours, but this simplification avoids the main
difficulty with type checking recursive modules, namely ac-
commodating mutually recursive, cross-module type defini-
tions, which is the focus of this paper.
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