
Transposing G to C♯: Expressivity of Generalized Algebraic
Data Types in an Object-Oriented Language

Andrew J. Kennedy
Microsoft Research Ltd, Cambridge, U.K.

akenn@microsoft.com

Claudio V. Russo
Microsoft Research Ltd, Cambridge, U.K.

crusso@microsoft.com

Abstract
Generalized algebraic datatypes (GADTs) are a hot topic in the
functional programming community. Recently we showed that
object-oriented languages such as C♯ and Java can express GADT
declarations using Generics, but only some GADT programs. The
addition of equational constraints on type parameters recovers ex-
pressivity. We now study this expressivity gap in more depthby
extending an earlier translation from System F to C♯ to handle
GADTs. Our efforts reveal some surprising limitations of Generics
and provide further justification for equational constraints.

1. Introduction
Functional programming languages such as Haskell and ML have
long supported user-defineddatatypes. A datatype declaration si-
multaneously defines a named type, parameterized by other types,
and the means of constructing values of that type. For example, here
is a Haskell datatype of binary trees parameterized on the typed of
data and typek of keys stored in the nodes:

data Tree k d = Leaf | Node k d (Tree k d) (Tree k d)

This definition implicitly defines twovalue constructors Leaf and
Node with polymorphic types:

Leaf :: Tree k d
Node :: k → d → Tree k d → Tree k d → Tree k d

Notice how both term constructors have the fully generic result type
Tree k d ; there is no specialization of the type parameters toTree .
Conversely, any value of typeTree τ σ, for some concreteτ and
σ, can either be a leaf or a node — the static type does not reveal
which. Observe that all recursive uses of the datatype within its
definition areTree k d : this makesTree a regular datatype.

The restrictions on ordinaryparameterized algebraic datatypes
(PADTs) can be relaxed in the following three ways, yieldinggen-
eralized algebraic datatypes (GADTs):

1. The restriction that constructors all return ‘generic’ instances of
the datatype can be removed. This feature defines GADTs.

2. The regularity restriction can be removed, permitting datatypes
to be used at different instantiations within their own definition.
Writing useful functions over such types requirespolymorphic
recursion: the ability to use a polymorphic function at different
types within its own definition. C♯, Java and Haskell allow this,
ML does not.

3. A constructor can be allowed to mention additional type vari-
ables that may appear in its argument types but do not appear in
its result type. These type arguments are hidden by the type of
the constructed term and thus existentially quantified.

Most useful examples of GADTs make use of all three abilities.
Consider the following typeExp t representing abstract syntax for
expressions of typet , written in a recent extension of Haskell with
GADTs [?, ?]:

data Exp t where

Lit :: Int → Exp Int
Plus :: Exp Int → Exp Int → Exp Int
Equals :: Exp Int → Exp Int → Exp Bool
Cond :: Exp Bool → Exp a → Exp a → Exp a
Tuple :: Exp a → Exp b → Exp (a, b)
Fst :: Exp (a, b) → Exp a
. . .

All constructors except forCond make use of feature (1), as their
result types refine the type arguments ofExp: for example,Lit
has result typeExp Int . All constructors except forLit make
use of feature (2), using the datatype at different instantiations in
arguments to the constructor. Finally,Fst uses a hidden typeb,
thus making use of feature (3).

Why is this interesting? Consider this evaluator for expressions,
defined by case analysis on values of typeExp t :

eval :: Exp t → t
eval e = case e of

Lit i → i — t = Int
Plus e1 e2 → eval e1 + eval e2 — t = Int
Equals e1 e2 → eval e1 == eval e2 — t = Bool
Cond e1 e2 e3 → — t = a

if eval e1 then eval e2 else eval e3
Tuple e1 e2 → (eval e1, eval e2) — t = (a, b)
Fst e → fst (eval e) — t = a
. . .

The fascinating thing abouteval is that the compiler doesn’t
reject it. Observe closely: each branch of thecase expression re-
turns a computation of a different type. TheLit branch returns an
integer, theEquals branch returns a boolean, theTuple branch re-
turns a pair. In the ML type system, all the continuations of acase
expression are required to have the same type and one would ex-
pecteval to be rejected as type-incorrect. In GADT Haskell, this
requirement is subtly relaxed: each branch must, instead, merely
have anappropriate type, given the type of its pattern and the type
of the scrutinee.

Although probably unintentional, both C♯ and Java Generics al-
ready support GADTs. Consider the C♯ code in Figure 1. This is
a straightforward encoding of the GADT Haskell datatypeExp t .
Abstract syntax trees are represented using an abstract class of ex-
pressions, with a concrete subclass for each node type. The inter-
preter is implemented by an abstractEval method in the expres-
sion class, overridden for each node type. Indeed, this is a subtle
variant of theInterpreter design pattern. Observe how the type pa-
rameter ofExp is refined in subclasses; moreover, this refinement

1 2017/1/31

public abstract class Exp<T>
{ public abstract T Eval(); }

public class Lit : Exp<int> { int value;
public Lit(int value) { this.value=value; }
public override int Eval() { return value; }

}
public class Plus : Exp<int> { Exp<int> e1, e2;
public Plus(Exp<int> e1, Exp<int> e2)

{ this.e1=e1; this.e2=e2; }
public override int Eval()

{ return e1.Eval() + e2.Eval(); }
}
public class Equals : Exp<bool> { Exp<int> e1, e2;
public Equals(Exp<int> e1, Exp<int> e2)

{ this.e1=e1; this.e2=e2; }
public override bool Eval()

{ return e1.Eval() == e2.Eval(); }
}
public class Cond<T> : Exp<T> {
Exp<bool> e1; Exp<T> e2, e3;
public Cond(Exp<bool> e1, Exp<T> e2, Exp<T> e3)

{ this.e1=e1; this.e2=e2; this.e3=e3; }
public override T Eval()

{ return e1.Eval() ? e2.Eval() : e3.Eval(); }
}
public class Tuple<A,B> : Exp<Pair<A,B>> {
Exp<A> e1; Exp e2;
public Tuple(Exp<A> e1, Exp e2)

{ this.e1=e1; this.e2=e2; }
public override Pair<A,B> Eval()

{ return new Pair<A,B>(e1.Eval(), e2.Eval()); }
}
public class Fst<A,B> : Exp<A> { Exp<Pair<A,B>> e;
public Fst(Exp<Pair<A,B>> e){ this.e=e; }
public override A Eval(){ return e.Eval().fst; }

}

Figure 1. Typed expressions with evaluator

is reflected in the signature and code of the overriddenEval meth-
ods. For example,Plus.Eval has result typeint and requires no
runtime casts in its calls toe1.Eval() ande2.Eval(). Not only
is this a clever use of static typing, it is also more efficientthan a
dynamically-typed version, particularly in an implementation that
performs code specialization to avoid boxing [?].

Just like our Haskell datatype, these C♯ classes make use of all
three features that characterize GADTs. Feature (1) is expressed by
defining a subclass of a generic type that does not just propagate
its type parameters through to the superclass. (Plus is a non-
generic class that extends the particular instantiationExp<int>.)
Feature (2) corresponds to the existence of fields in the subclass
whose types are unrelated instantiations of the generic type of the
superclass. (Tuple<A,B> has a field of typeExp<A> but superclass
Exp<Pair<A,B>>.) Feature (3) corresponds to the declaration of
type parameters on the subclass that are not referenced in the
superclass. (Fst<A,B> has superclassExp<A>, hidingB.)

Where the Haskelleval function uses case analysis on expres-
sions, the C♯ code forEval uses virtual dispatch to select the over-
ride of Eval appropriate to the expression node. The C♯ signature
of Eval specified in theExp<T> class is a function of the type
parameterT. Because this parameter is instantiated differently in
each subclass, the overrides ofEval receive different signatures,
obtained by substituting the actual type argument specifiedfor the
superclass in place of the formal type parameterT. For instance,
the signature for the methodLit.Eval is obtained by applying the
substitutionT 7→ Int to the signature specified in the superclass, so
the override must return anInt, even though its declaration in the
superclass just returns aT. Similarly, the signature for the method

Tuple<A,B>.Eval is obtained by applying the substitutionT 7→
Pair<A,B>, so the override must return aPair<A,B>.

Haskell’s technique for typechecking theeval example is rather
different. Haskell checks acase by checking each branch of the
case under some equational assumptions, derived from equating
the type (hereExp t) of the scrutinee (e) with the formal result
type of the constructor guarding the branch (Exp Int , Exp Bool ,
Exp a, Exp(a, b) etc). Ineval , the assumptions are the equations
on t shown in comments in each branch. Thus all branches do
return a t , but each branch is allowed to make and exploit its
own assumptions about whatt is, given the type of the constructor
guarding that branch. In general, typing acase expression exploits
equational properties of types. In this code, each equationhappens
to correspond to a substitution fort , so it’s perhaps not surprising
that the example translates to C♯, where we can specializeT in each
superclass.

For a more involved example, consider the following annotated
Haskell function,eq , that tests equality of expression values:

eq :: (Exp t , Exp t) → Bool
eq (this, that) =
case this of

Lit i → — t = Int
case that of

Lit j → i == j — t = Int
→ False

Tuple e1 e2 → — t = (a, b)
case that of

Tuple f 1 f 2 → — t = (c, d)
eq (e1, f 1) && eq (e2, f 2)
→ False

When Haskell typechecks the outer branch forTuple, it as-
sumes the type equationt = (a, b) and type assignmente1 :: Exp a,
e2 :: Exp b. In the inner branch it assumest = (c, d), f 1 :: Exp c
and f 2 :: Exp d (generating fresh names for the type parameters
to theTuple constructor). Using transitivity to combine the equa-
tions ont it obtains(a, b) = (c, d), and from this, derivesa = c
andb = d , using the fact that the product type constructor(,) is
injective. HenceExp a = Exp c and similarlyExp b = Exp d ,
which lets Haskell type-checkeq(e1, f 1) and eq(e2, f 2). This
use of equational decomposition, exploiting the injectivity of type
constructors, is crucial to the type-checking ofeq . Type checking
eval was much easier: all equations were of the formt = τ and
there was no need to decompose constructed types.

Not let us try to translate theeq example to C♯. We add a
virtual methodEq to Exp<T>, taking a single argumentthat of
typeExp<T> and by default returning false. Sinceeq is a function
on pairs that performs nested case analysis, we implement itin C♯

by dispatching twice, first onthis, to the code that overridesEq,
and then onthat, to code specific to the types of boththis and
that (see Figure 2).

Unfortunately, this naive translation does not typecheck.The
problem is the override forTupleEq<C,D> in the Tuple<A,B>
class. The overriden method knows thatT=Pair<A,B> by su-
perclass specialisation, but it does not know thatT=Pair<C,D>,
which holds at its one and only call-site. Instead, consequences
of this additional equation, for instance thatExp<A>=Exp<C> and
Exp=Exp<D>, can only be asserted with casts, leading to the
code in Figure 3. The crux of the problem is this: although super-
class instantiations are propagated to overrides through subclass
refinement, there is no way to constrain the type instantiation of the
receiver of a virtual method. Here, the only caller of virtual method
TupleEq<C,D> happens to use the particular method instantia-
tion C=A,D=B on a receiver of typeExp<T>=Exp<Pair<A,B>>.
But the virtual method cannot specify the call-site invariant, so

2 2017/1/31

public abstract class Exp<T> { ...
public virtual bool Eq(Exp<T> that)
{ return false; }

public virtual bool TupleEq<C,D>(Tuple<C,D> e)
{ return false; }

public virtual bool LitEq(Lit e)
{ return false; }

}
public class Lit : Exp<int> { ...

public override bool Eq(Exp<int> that)
{ return that.LitEq(this); }

public override bool LitEq(Lit e)
{ return value == e.value; }

}
public class Tuple<A,B> : Exp<Pair<A,B>> { ...

public override bool Eq(Exp<Pair<A,B>> that)
{ return that.TupleEq<A,B>(this); }

public override bool TupleEq<C,D>(Tuple<C,D> e)
{ return e.e1.Eq(this.e1) && e.e2.Eq(this.e2); }

}

Figure 2. Equality on values, type incorrect

public class Tuple<A,B> : Exp<Pair<A,B>> { ...
public override bool TupleEq<C,D>(Tuple<C,D> e)

{ return e.e1.Eq((Exp<C>) (object) this.e1) &&

e.e2.Eq((Exp<D>) (object) this.e2); }
}

Figure 3. Equality on values, using casts

public abstract class Exp<T> { ...
public virtual bool TupleEq<C,D>(Tuple<C,D> e)

where T=Pair<C,D> { return false; }
}
public class Tuple<A,B> : Exp<Pair<A,B>> { ...

public override bool Eq(Exp<Pair<A,B>> that)
{ return that.TupleEq<A,B>(this); }

public override bool TupleEq<C,D>(Tuple<C,D> e)
{ return e.e1.Eq(this.e1) && e.e2.Eq(this.e2); }

}

Figure 4. Equality on values, using constraints

the particular override cannot assume it. Instead, it must assert the
otherwise derivable type equalities using casts.

In [?], we propose extending C♯ to supportequational type
constraints on methods, as statically checked pre-conditions. Then
adding the constraintwhere T=Pair<C,D> to the signature of
TupleEq allows us to restrict its callers, and so avoid any casts
(Figure 4). By instantiation of the superclass, the signature of
the TupleEq override inherits the specialized constraintwhere
Pair<A,B>=Pair<C,D>. From this, using a decomposition rule
(this time, for C♯’s constructed types), one can deriveA=C andB=D
and finallyExp<A>=Exp<C> andExp = Exp<D>. It is these last
two equations that justify the recursive calls to theEqmethod on the
fields ofthis ande. Here we rely on both method specialization in
the subclass, which instantiates the override’s signatureand its im-
plicitly inherited equational constraint, and equationalreasoning,
to exploit equalities that flow from that specialised constraint.

A casual reader might object that equations are superfluous be-
cause one can instead directly define an equality method on the
class Tuple<A,B> that lets one compare anotherTuple<A,B>
that to this. But this would be missing the point: in order
to call this method from theTupleEq<C,D> override in the
Tuple<A,B> class, one would first have to have establish that

Tuple<A,B> = Tuple<C,D>, again requiring equational reason-
ing on types or an assertion using a cast. Note that we are trying to
capture the rather general Haskell function that compares two ex-
pressions of the same, but otherwise unknown, expression type, not
a family of functions that, for each particular form of expression,
compares two instances of the same form and type.

Clearly, there is an expressivitygap between ordinary C♯ and
GADT Haskell. In [?] we show that many interesting Haskell ex-
amples translate well, but some practically interesting ones, like
Weihrich’s type reconstruction algorithm taking untyped expres-
sions to type expressions [?, ?], or the type safe LR parsers of Pot-
tier and Régis-Gianas [?] do not. These all fail for reasons exem-
plified by our contrived, but small,Eq operation. Roughly speak-
ing, C♯ can express all of the datatypes of GADT Haskell, but only
some of its programs — which ones? C♯ extended with equational
constraints can express more GADT programs — but does it cap-
ture all of them? The aim of this paper to provide tentative answers
to these questions, by studying translations from GADT variants
of System F into C♯ and, separately, into C♯ with equational con-
straints.

The structure of this paper is as follows. We start by presenting
our object of study, a featherweight version of C♯, called C♯ minor
(Section 2). We then present our first variant of System F which
we call G minor (Section 3). G minor employs a case construct
that refines the types of branches using substitution only and is
inspired by C♯’s typing of virtual methods and their overrides. We
present a cast-free, type preserving translation from G minor to C♯

minor, proving that C♯ minor is a least as expressive as G minor.
Although quite natural, G minor has its own expressivity problems,
requiring higher-order encodings to express some simple programs
over PADTs (Section 3.2). This limitation of G minor manifests
itself as a weakness in the design of both C♯ and Java Generics,
that has, surprisingly, gone unnoticed in the literature (we believe
that [?] is the first to make this observation). We then present
G major, our second variant of System F (Section 4). G major is
like G minor, but employs a more general typing rule for case that
additionally derives equations particular to each case branch and
adds an equational theory on types. G major incorporates thetyping
rule for case actually used in GADT Haskell and other studiesof
GADTs. Finally, we present C♯ major, an extension of C♯ minor
with equational constraints on both methods and classes, and an
equational theory on types (Section 5) (allowing constraints on
classes is a slight improvement over [?]). Like the system in [?], C♯

major both fixes the observed defect in C♯ minor, and extends the
range of expressible GADT programs. We present a cast-free,type
preserving translation from G major to C♯ major demonstrating that
this variant of C♯ major is at least as expressive as G major. Finally,
in Section 6, we sketch a way of transforming programs of a certain
kind in G major into equivalent ones in G minor.

The languages and translations described in the paper are sum-
marised by the diagram:

G minor (§3)

(§3.1)

��

⊂ G major (§4)

(§6)

ss ❳
❭❴❜

❢

(§5.1)

��

(§5.2)

tt❥❥
❥
❥❥
❥
❥
❥
❥❥
❥
❥
❥❥
❥

C♯ minor (§2) ⊂ C♯ major (§5)

2. C♯ minor
Our target language ‘C♯ minor’ [?] is a small, purely-functional
subset of C♯ version 2.0 [?]. Its syntax, typing rules and big-step
evaluation semantics are presented in Figures 5 and 6. To conserve
space, the figures also present C♯ major with additions to C♯

3 2017/1/31

Syntax:

(class def) cd ::= class C<X > : I where E {T f ; kd md}
(constr def) kd ::= public C(T f) : base(f) {this.f = f ;}

(method qualifier) Q ::= public virtual | public override

(method def) md ::= Q T m<X >(T x) where E {return e;}
(expression) e ::= x | e.f | e.m<T>(e) | new I (e) | (T)e

(value) v ,w ::= new I (v)
(type) T ,U ,V ::= X | I

(instantiated type) I ::= C<T>
(equational constraint) E ::= T=U

(typing environment) Γ ::= X , x : T , E

(method signature) ::= <X where E >T → T (X is bound inE ,T ,T)

Type Equivalence:

(eq-refl)
Γ ⊢ X =X

(eq-sym)
Γ ⊢ U =T

Γ ⊢ T=U
(eq-tran)

Γ ⊢ T=U Γ ⊢ U =V

Γ ⊢ T=V

(eq-hyp)
T=U ∈ Γ

Γ ⊢ T=U
(eq-con)

Γ ⊢ T=U

Γ ⊢ C<T>=C<U >
(eq-decon)

Γ ⊢ C<T>=C<U >

Γ ⊢ Ti=Ui

Subtyping:

Γ ⊢ T=U

Γ ⊢ T <: U

Γ ⊢ T <: U Γ ⊢ U <: V

Γ ⊢ T <: V

X ∈ Γ

Γ ⊢ X <: object

class C<X > : I where E { . . . }

Γ ⊢ C<T> <: [T/X]I

Well-formed contexts and types:
X ⊢ T ,U ,V ok

⊢ X , x : T ,U =V ok

X ∈ Γ

Γ ⊢ X ok

(ok-inst)
class C<X > : I where E { . . . } Γ ⊢ T ok |T | = |X | Γ ⊢ [T/X]E

Γ ⊢ C<T> ok
Typing:

(ty-var)
Γ, x :T ⊢ x : T

(ty-fld)
Γ ⊢ e : I fields(I) = T f

Γ ⊢ e.fi : Ti

(ty-new)
Γ ⊢ I ok fields(I) = T f Γ ⊢ e : T

Γ ⊢ new I (e) : I

(ty-cast)
Γ ⊢ U ok Γ ⊢ e : T

Γ ⊢ (U)e : U
(ty-sub)

Γ ⊢ e : T Γ ⊢ T <: U Γ ⊢ U ok

Γ ⊢ e : U

(ty-meth)

Γ ⊢ e : I Γ ⊢ T ok Γ ⊢ e : [T/X]U

mtype(I .m) = <X where E >U → U Γ ⊢ [T/X]E

Γ ⊢ e.m<T>(e) : [T/X]U

Method and Class Typing:

(ok-virtual)
class C<X > : I where E1 { . . . } mtype(I .m) not defined
X ,Y ⊢ T ,T , E2 okX ,Y , E1, E2 , x :T , this:C<X > ⊢ e : T

⊢ public virtual T m<Y >(T x) where E2 {return e;} ok in C<X >

(ok-override)

class C<X > : I where E1 { . . . } X ,Y ⊢ T ,T ok
mtype(I .m) = <Y where E2 >T → T

X ,Y , E1, E2 , x :T , this:C<X > ⊢ e : T

⊢ public override T m<Y >(T x) {return e;} ok in C<X>

(ok-class)
X ⊢ I ,T , E ok fields(I) = U g f andg disjoint
⊢ md ok in C<X > kd = public C(U g ,T f) base(g) {this.f =f ; }

⊢ class C<X> : I where E {T f ; kd md} ok

Figure 5. Syntax and typing rules for C♯ minor (including highlighted changes for C♯ major)

4 2017/1/31

Evaluation rules:

(e-fld)
e ⇓ new I (v) fields(I) = T f

e.fi ⇓ vi

(e-new)
e ⇓ v

new I (e) ⇓ new I (v)
(e-cast)

e ⇓ new I (v) ⊢ I <: T

(T)e ⇓ new I (v)

(e-meth)
e ⇓ new I (w) mbody(I .m<T>) = 〈x , e ′〉 e ⇓ v [v/x , new I (w)/this]e ′ ⇓ v

e.m<T>(e) ⇓ v

Field lookup:

fields(object) = {}

D(C) = class C<X> : I where E {U1 f1; kd md} fields([T/X]I) = U2 f2

fields(C<T>) = U2 f2, [T/X]U1 f1

Method lookup:
D(C) = class C<X1> : I where E1 { . . . md} m not definedpublic virtual in md

mtype(C<T1>.m) = mtype([T1/X1]I .m)

D(C) = class C<X1> : I where E1 { . . . md} public virtual U m<X2>(U x) where E2 {return e;} ∈ md

mtype(C<T1>.m) = [T1/X1](<X2 where E2>U → U)

Method dispatch:
class C<X1> : I { . . . md} m not defined inmd

mbody(C<T1>.m<T2>) = mbody([T1/X1]I .m<T2>)

class C<X1> : I { . . . md} Q U m<X2>(U x) {return e;} ∈ md

mbody(C<T1>.m<T2>) = 〈x , [T1/X1,T2/X2]e〉

Figure 6. Evaluation rules and helper definitions for C♯ minor (including highlighted changes for C♯ major)

minor highlighted. For C♯ minor, the additions should be treated
as whitespace and ignored.

This formalisation is based on Featherweight GJ [?] and has
similar aims: it is just enough for our purposes but does not “cheat”
– valid programs in C♯ minor really are valid C♯ programs. The
differences from Featherweight GJ are as follows:

• There are minor syntactic differences between Java and C♯:
the use of ‘:’ in place of extends, and base in place of
super. Methods must be declaredvirtual explicitly, and are
overridden explicitly using the keywordoverride.

• For simplicity, we omit bounds on type parameters.

• We include a separate rule for subsumption instead of including
subtyping judgments in multiple rules.

• We fix the evaluation order to be call-by-value.

Like Featherweight GJ, this language does not include object iden-
tity and encapsulated state, which arguably are defining features
of the object-oriented programming paradigm. It does include dy-
namic dispatch, generic methods and classes, and runtime casts.
For readers unfamiliar with the work on Featherweight GJ we sum-
marise the language here; for more details see [?].

A type (ranged over byT , U andV) is either a formal type
parameter (ranged over byX andY) or the type instantiation of a
class (ranged over byC ,D) writtenC<T> and ranged over byI ;
object abbreviatesobject<>.

A class definitioncd consists of a class nameC with formal
type parametersX , base class (superclass)I , constructor definition
kd , typed instance fieldsT f and methodsmd . Method names in
md must be distincti.e. there is no support for overloading.

A method qualifier Q is eitherpublic virtual, denoting a
publicly-accessible method that can be inherited or overridden in
subclasses, orpublic override, denoting a method that over-
rides a method of the same name in some superclass.

A method definitionmd consists of a method qualifierQ , a re-
turn typeT , namem , formal type parametersX , formal argument
namesx and typesT , and a body consisting of a single statement
return e;.

A constructor kd simply initializes the fields declared by the
class and its superclass.

An expressione can be a method parameterx , a field access
e.f , the invocation of a virtual method at some type instantiation
e.m<T>(e) or the creation of an object with initial field values
new I (e). A value v is a fully-evaluated expression, and (always)
has the formnew I (v).

A class tableD maps class names to class definitions. The
distinguished classobject is not in the table and treated specially.

A typing environmentΓ has the formΓ = X , x :T where free
type variables inT are drawn fromX . We write · to denote the
empty environment.

All of the judgment forms and helper definitions of Figures 5
and 6 assume a class tableD. When we wish to be more explicit,
we annotate judgments and helpers withD. We say thatD is avalid
class table if⊢D cd ok for each class definitioncd in D and the
class hierarchy is a tree rooted atobject (not formalised here).

The operationmtype(T .m), given a statically known class
T ≡ C<T> and method namem , looks up the generic signature
of methodm , by traversing the class hierarchy fromC to find its
virtual definition.

The operationmbody(T .m<T>), given a runtime classT ≡
C<U >, method namem and method instantiationT , walks the
class hierarchy fromC to find the most specific override of the
virtual method, returning its body instantiated at typesT .

Theorem 1(C♯ minor evaluation preserves typing). Suppose D is
valid and ⊢D e : T . If e ⇓D v then ⊢D v : T .

5 2017/1/31

3. System F with GADTs
In previous work [?] it was shown how a variant of System F, also
known as the polymorphic lambda calculus, can be translatedin a
type-preserving way into C♯ minor. This demonstrated that generics
in the style of C♯ and Java is as expressive as the impredicative
‘first-class’ polymorphism of System F.

In this section we extend System F with a (weak) form of
GADTs, and exhibit an extended translation into C♯ minor. Fol-
lowing the musical theme, we call this language G minor. In addi-
tion to GADTs, it features polymorphic recursion for function val-
ues, typically required by GADT-manipulating programs. The syn-
tax, typing rules and big-step evaluation semantics of G minor are
presented in Figure 7. To conserve space, the figures also present
G major with additions to G minor highlighted. For G minor, the
additions should be treated as whitespace and ignored. Although
somewhat artificial, we start with G minor because it is both nat-
ural and simpler than G major, yet has not been described in the
literature on GADTs.

A typing environmentΓ = X , x :A, consists of sequences of
type variable declarations, and type assignments to term variables.
An enviroment isvalid whenX are distinct,x are distinct and all
type variables free inx :A are drawn fromX . A typing judgment
Γ ⊢ M : A should be read “in the context of a typing environment
Γ the termM has typeA” with free type variables inM and
A drawn fromΓ. An evaluation judgmentM ⇓ V should be
read “closed termM evaluates to produce a closed valueV ”.
We assume the presence of a global set of datatype declarations,
defined by a finite set of type constructorsT , a functionΣ mapping
each type constructorD ∈ T to a finite set of term constructors
KD , and each term constructork ∈ KD to a type of the form
∀Xk .(Ak → D Ak). We assume that each type constructorD
takes a fixed numberarity(D) ≥ 0 of type arguments, that all
constructor types areclosed, and that the term constructors of
distinct datatypes are disjoint, ie.KD ∩ KD′ = ∅, whenD 6= D ′.

We identify types and terms up to renaming of bound variables,
and assume that names of variables are chosen so as to be different
from names already bound byΓ. The notation[B/X]A denotes
the capture-avoiding substitution ofB for X in A; likewise for
[B/A]M and[V /x]M .

Although there are no base types in G minor, booleans, natural
numbers, and pairs can be encoded in the usual way; examples will
be sugared using such types and operations. Observe that function
values are polymorphic and recursive; moreover, functionscan be
used polymorphically within their own definition.

Consider the introduction and elimination rules for GADTs.The
introduction rule (inj) is straightforward: it simply states that a term
k AN is typed as ifk were a polymorphic function (compare the
rule for function application). The elimination rule (case) is more
subtle. Thecase term is annotated with a type functionφ, of the
same arity as the eliminated type constructor. The function, when
instantiated at the type arguments of the scrutinee, determines the
type of the entire case term. Each branch must be parametric in the
type arguments to the term constructor, but the type of the branch
varies according to the type arguments of the constructor’srange.

To illustrate these features, consider theExp type andeval
function from Section 1, expressed in G minor:

Σ(Exp) = { Lit : int → Exp int
Plus : Exp int× Exp int → Exp int
Equals : Exp int× Exp int → Exp bool
Cond : ∀Y .(Exp bool× ExpY × ExpY → ExpY)
Tuple : ∀YZ .(ExpY × ExpZ → Exp (Y × Z))
Fst : ∀YZ .(Exp (Y × Z) → ExpY) }

Choosing the case annotation(X)X , we can implementeval using
substitution based refinement of each branch’s type (just asin C♯

minor):

rec eval = ΛX .λ(x :ExpX):X .

case(X)X x of
Lit y ⇒ y
Plus y ⇒ eval int (π1y) + eval int (π2y)
Equals y ⇒ eval int (π1y) = eval int (π2y)
CondY y ⇒
if eval bool (π1y) then evalY (π2y) else evalY (π3y)

FstYZ y ⇒ π1(evalY × Z y)
TupleYZ y ⇒ (evalY (π1y), evalZ (π2y))

It it straightforward to prove that evaluation preserves types.

Theorem 2. If ⊢ M : A and M ⇓ V then ⊢ V : A.

Proof. Induction on the evaluation derivation, using the usual Sub-
stitution and Weakening Lemmas.

3.1 Translation to C♯ minor

We now show how G minor programs can be translated to C♯

minor, thus demonstrating that C♯ can express at least the form
of GADTs supported by G minor. The translation is based on an
earlier translation from System F [?]; in particular, it uses a similar
scheme for translating polymorphic functions.

Figure 8 presents the scheme for translating a G minor typeA
to a C♯ minor typeA⋆, together with global class definitionsG used
in the translation.

A polymorphic function type∀X .(A → B) is translated into
a type-instantiation of a named function class, whose single poly-
morphic methodapp<X > takes an argument of type correspond-
ing to A and result type corresponding toB . Function values are
translated to instances of closure classes that extend the appropri-
ate function class, in which the closure class is parameterized by
the type parameters from the environment, the instance fields of the
closure class store variables from the environment, and thebody
of the function is a method in the class that implements theapp
method. Recursion is translated into self-reference through this.
Function application is translated simply as invocation oftheapp
method.

Parameterized datatypes are translated to parameterized classes,
with one subclass for each constructor, as described informally in
Section 1.

We require that the translation of types commute with substitu-
tion on type parameters. This forces the translation of an open type
such as∀X .(X → Y) to be an instantiation of thesame class as
the translation of substitution instances such as∀X .(X → int).
In general, polymorphic types whose type variables appear at the
same position in the types’ structure should translate to instantia-
tions of the same named class. To achive this we make use of an
operation that Odersky and Läufer call “lifting” [?].

Definition 1 (Lifting) . The X -lifting of a C♯ minor type T is a
pair 〈(Y)U ,T 〉 in which (Y)U is the abstracting out of maximal
subterms T of T that do not contain any X , replacing the subterms
by type variables Y such that T = [T/Y]U .

For example, theX-lifting of type Fun<Fun<X,Y>,Fun<Y,Y>>
is the type abstraction(Z1, Z2)Fun<Fun<X,Z1>,Z2> together with
the typesY andFun<Y,Y> which when substituted for variablesZ1
andZ2 produce the original type.

The translation satisfies two important properties. First,it does
not lose any type information, justifying the term “fully type-
preserving”. Second, it commutes with substitution.

Lemma 1. A⋆ = B⋆ iff A = B .

6 2017/1/31

Syntax: (types) A,B ::= X | ∀X .(A → B) | D A

(terms) M ,N ::= x | M AN | rec y = ΛX .λ(x :A):B .M | k AM | M@A

| caseφ M of {kk Xk xk ⇒ Mk}k∈K

(values) V ,W ::= rec y = ΛX .λ(x :A):B .M | k AV

(case contexts) φ ::= (X)A
(equations) E ::= A ≡ B

(typing env’s) Γ ::= X , E , x : A

Well-formed contexts and types:

X ⊢ A, B ,C ok

⊢ X , B ≡ C , x :A ok

X ∈ Γ

Γ ⊢ X ok

X ,Γ ⊢ A,B ok

Γ ⊢ ∀X .(A → B) ok

Γ ⊢ A ok

Γ ⊢ D A ok

Equations:

(refl)
Γ,X ⊢ X ≡ X

(id)
A ≡ B ∈ Γ

Γ ⊢ A ≡ B
(c1)

Γ ⊢ A ≡ B

Γ ⊢ D A ≡ D B
(c2)

Γ,X ⊢ A ≡ A
′ Γ,X ⊢ B ≡ B

′

Γ ⊢ ∀X .(A → B) ≡ ∀X .(A′ → B
′)

(d1)
Γ,A ≡ B ⊢ E

Γ,D A ≡ D B ⊢ E
(d2)

Γ,X ,A ≡ B ,A′ ≡ B
′ ⊢ E ⊢ Γ, E ok

Γ,∀X .(A → A
′) ≡ ∀X .(B → B

′) ⊢ E
(sym)

Γ ⊢ B ≡ A

Γ ⊢ A ≡ B
(tran)

Γ ⊢ A ≡ A
′ Γ ⊢ A

′ ≡ A
′′

Γ ⊢ A ≡ A
′′

Typing:
(var)

x :A ∈ Γ

Γ ⊢ x : A
(abs)

Γ ⊢ ∀X .(A → B) ok Γ,X , x :A, y :∀X .(A → B) ⊢ M : B

Γ ⊢ rec y = ΛX .λ(x :A):B .M : ∀X .(A → B)

(eqn)
Γ ⊢ M : A Γ ⊢ B ok Γ ⊢ A ≡ B

Γ ⊢ M@B : B
(app)

Γ ⊢ M : ∀X .(A → B) Γ ⊢ A ok Γ ⊢ N : [A/X]A

Γ ⊢ M AN : [A/X]B

(inj)
Σ(D)(k) = k : ∀X .A → D B Γ ⊢ A ok Γ ⊢ N : [A/X]A

Γ ⊢ k AN : D ([A/X]B)

(eqn-case)

Σ(D) = {k : ∀Xk .Ak → D Bk}k∈K Γ,X ⊢ C ok Γ ⊢ M : D B

{Γ,Xk , B ≡ Bk , xk :Ak ⊢ Mk : [Bk/X]C}k∈K

Γ ⊢ case
(X)C

M of {k Xk xk ⇒ Mk}k∈K : [B/X]C

Evaluation:

(e-val)
V ⇓ V

(e-eqn)
M ⇓ V

M@A ⇓ V
(e-app)

M ⇓ rec y = ΛX .λ(x :A):B .M ′ N ⇓ V

[V /x][A/X][rec y = ΛX .λ(x :A):B .M ′/y]M ′ ⇓ W

M AN ⇓ W

(e-inj)
M ⇓ V

k AM ⇓ k AV
(e-case)

M ⇓ k AV k ∈ K [V /xk][A/Xk]Mk ⇓ W

case
φ
M of {k Xk xk ⇒ Mk}k∈K ⇓ W

Figure 7. Syntax and semantics of G minor (and G major, highlighted additions)

Proof. Easy induction on structure of types, using the identification
of Fun types up to renaming of type variables.

Lemma 2. ([B/X]A)⋆ = [B⋆/X]A⋆.

Proof. Similar to [?].

Figure 8 defines the translation of terms. The translation ofa
termM is given by a judgment

Γ;ψ ⊢C
M : A e in D

which should be read “In the context of typing environmentΓ and
argument environmentψ, term M with type A translates to an
expressione and additional class definitionsD using fresh class
names prefixed byC ”.

When translating the bodyM of a function valuerec y =
ΛX .λ(x :A):B .M it is necessary to distinguish three kinds of vari-
able: the argumentx , the functiony itself, or a free variable of

the function. Likewise, when translating the branches ofcase con-
structs it is necessary to distinguish constructor arguments from
free variables. To capture this in the translation the context contains
both an ordinary typing environmentΓ and argument environment
ψ defined by the grammar

ψ ::= y(X , x :A):B | k X (x :A)

in whichy(X , x :A):B denotes an environment used when translat-
ing functions in whichx :A is the argument andy :∀X .(A → B) is
the function, andk X (x :A) denotes a constructor environment for
constructork in whichX are the type parameters to the constructor,
andx :A is the constructor argument with its type. A similar split-
context technique is used in treatments of typed closure conversion
for functional languages [?].

The translation of function abstractions and case makes useof
an operationΓ ⊎ ψ that pushes the bindings fromψ into Γ. It is

7 2017/1/31

Global class definitions (G):

For eachD ∈ T define
class D<X > : object { }

For eachk ∈ KD with Σ(D)(k) = ∀Xk .(Ak → D Ak) define
class Dk<Xk> : D<Ak

⋆
> { Ak

⋆ x; public Dk(Ai
⋆ x) { this.x = x;} }

For allX ,T ,U wherefreevars(T) \X = Y andfreevars(U) \X = Z and identified up to renaming ofXYZ define
class Fun(X)T→U

<YZ> { public virtual U app<X >(T x){ return this.app<X>(x);} }

Types:
X ⋆ = X

(D A)
⋆

= D<A
⋆
>

(∀X .(A → B))
⋆

= Fun(X)T→U
<TU > whereX -lifting of A⋆ is 〈(Y)T ,T 〉 andX -lifting of B⋆ is 〈(Z)U ,U 〉

Terms:

(tr-argvar)
Γ; y(X , x :A):B ⊢C

x : A x
(tr-funvar)

Γ; y(X , x :A):B ⊢C
y : ∀X .(A → B) this

(tr-funfree)
X , x :A; y(X , x :A):B ⊢C

xi : Ai this.xi
(tr-casefree)

X , x :A; k X (x :A) ⊢C
xi : Ai xi

(tr-casearg)
Γ; k X (x :A) ⊢C

x : A this.x
(tr-inj)

Σ(D)(k) = ∀X .(A → B) Γ;ψ ⊢C
N : [A/X]A e in D

Γ;ψ ⊢C
k AN : [A/X]B new Dk<A

⋆
>(e) in D

(tr-app)
Γ;ψ ⊢C1

M : ∀X .(A → B) e in D1 Γ;ψ ⊢C2
N : [A/X]A e

′
in D2

Γ;ψ ⊢C
M AN : [A/X]B e.app<A⋆>(e

′
) in D1 ∪ D2

(tr-abs)
Γ ⊎ ψ; y(Y , x :A):B ⊢C1

M : B e in D0 Γ;ψ ⊢C
x : A e

Γ;ψ ⊢C
rec y = ΛY .λ(x :A):B .M : ∀Y .(A → B) new C<X>(e) in D ∪D0

Γ ⊎ ψ = X , x :A

D =

C 7→
class C<X > : (∀Y .(A → B))

⋆

{ A
⋆
x; public C(A

⋆
x) { this.x = x;}

public override B⋆ app<Y >(A⋆ x) { return e; } }

(tr-case)

Σ(D) = {k : ∀Xk .Ak → D Bk}k∈K Γ;ψ ⊢C0 M : D B e in D0

Γ;ψ ⊢C x : A e {Γ ⊎ ψ; k Xk (xk :Ak) ⊢
Ck Mk : [Bk/Y]B ek in Dk}k∈KD

Γ;ψ ⊢C
case

(Y)B
M of {k Xk xk ⇒ Mk}k∈K : [B/Y]B e.caseC<X >(e) in D ∪ D0 ∪

⋃

k∈K

Dk

Γ ⊎ ψ = X , x :A

D =

{

D 7→ class D<Y > : object { public virtual B⋆ caseC<X >(A
⋆
x) { return this.caseC<X>(x);}},

Dk 7→ class Dk<Xk> : (D Bk)
⋆
{ public override ([Bk/Y]B)

⋆
caseC<X >(A

⋆
x){ return ek; }}

}

Figure 8. Translation of types and terms

defined as follows:

Γ ⊎ y(X , x :A):B = X ,Γ, x :A, y : ∀X .(A → B)
Γ ⊎ k X (x :A) = X ,Γ, x :A

The translation is essentially defined by induction over thestructure
of the typing derivation of a term:Γ;ψ ⊢C M : A e in D is
defined whenΓ ⊎ ψ ⊢ M : A.

Consider rules (tr-inj) and (tr-case) for GADT introduction and
elimination. Datatype constructors are translated to a simple use
of new on the appropriate constructor class. Thecase construct
is translated to acase method in the datatype class itself, together
with overriding methods in each subclass. The context is abstracted

as parameters to thecase method; notice how the refinement of
result type in the branches maps directly to refinement of thesig-
nature in the overridden methods.

We prove that the translation preserves types.

Theorem 3(Translation preserves types). If ⊢min M : A e in D
then D ∪ G is a valid class table and ⊢D∪G e : A⋆.

Proof. Similar to analogous theorem in [?].

Future work is a theorem that the translation preserves evalua-
tion behaviour, proved using the techniques of [?].

8 2017/1/31

3.2 An Anomaly of G minor and Object-Oriented Generics

It is both simple to state and prove sound, but there is something
quite odd about G minor’s (case) rule. Although the type of the case
scrutinee may be any instantiationB of the datatype, each branch
must be completely parametric in its constructor’s formal type
parameters (whether or not they have an existential flavour). As a
result, writing instantiation-specific case expressions is extremely
awkward. For example, a (non GADT) Haskell programmer would
expect to be able to translate the simple (first-order)sum function,
that adds the integers in a list, as follows:

Σ(List) = {Nil : ∀Y .(unit → ListY)
Cons : ∀Y .(Y × ListY → ListY)}

rec sum = λ(x :List int):int.caseφ x of
NilY y ⇒ 0
ConsY y ⇒ (π1y) + sum (π2y)

Although (a variant of) this is legal in G major, the functionis
untypable in G minor: in the second branch, the type ofπ1y is
just Y , not int, so we can’t pass it to +; the recursive call is
illegal becauseπ1y has type ListY , not List int. Luckily, every
instantiation-specific case expression over a PADT such asList can
be translated into an application of a polymorphic, higher-order
function,match, that, given an instantiationX , result typeR and a
value of the PADT, returns a higher-order function that selects and
applies the appropriate continuation from its suite of arguments.
ForListX we can define, firstmatch, thensum as follows:

rec match
= ΛXR.λ(x :ListX):(unit → R) → (X × ListX → R) → R.

case(Z)(unit→R)→(Z×List Z→R)→R x of
NilY y ⇒ λf :unit → R.λg :Y × ListY → R.f y
ConsY y ⇒ λf :unit → R.λg :Y × ListY → R.g y

rec sum = λ(x :List int):int.match int int x
(λy :unit.0)
(λy :int× List int.(π1y) + sum (π2y))

Cleary, rule (case), though expressive enough to capture some
GADT programs, is rather feeble at coping with workaday PADTs,
requiring higher-order chores for first-order tasks. A functional pro-
grammer would find this tedious, but, surprisingly, that’s precisely
what the object-oriented programmer puts up with using Generics.
For instance, to implement the summation function into C♯, one
basically has two alternatives (Figure 9). The first is to implement
an unsafe virtual methodUnsafeSum that uses runtime casts to re-
cover thatT must actually beint. Because this approach relies on
exact runtime types, it is not an option in G minor and cannot be
checked at runtime in Java (due to its erasure semantics). The sec-
ond is to introduce a safe, generic visitor interface,IVisit<T,R>,
that encapsulates a suite of methods, and visit the list froma static
methodAwkwardSum, passing an instance of a specific visitor class
as the (higher-order) method suite.AwkwardSum is closely related
to the G minor workaround discussed above: methodAccept corre-
sponds to the higher-order functionmatch, itsIVisit<T,R> argu-
ment to the (uncurried) suite of continuationsf , g . Unfortunately,
in the object-oriented setting this workaround is even moredistaste-
ful: introducing the visitor pattern fixes the class hierarchy rooted
a List<T> — it is no longer extensible by future subclasses since
adding a new subclass requires a modification to theIVisit in-
terface. To implementUnsafeSum safely, we just need to capture
the invariant that it will only be invoked whenT is int: this is ex-
pressed by the constrained declaration ofSafeSum, which uses our
proposed extension [?] and is both natural and cast-free.

Why can’t we apply the higher-order workaround to those prob-
lematic GADT programs that require type specific case? The prob-

public abstract class List<T> {
public abstract int UnsafeSum();
public abstract R Accept<R>(IVisit<T,R> v);
public static int AwkwardSum(List<int> l)

{ return l.Accept<int>(new SumVisitor()); }
public abstract int SafeSum() where T = int;

}
public class Nil<A> : List<A> {

public override int UnsafeSum(){ return 0;}
public override R Accept<R>(IVisit<A,R> v)

{ return v.VisitNil(this);}
public override int SafeSum() // where A = int

{ return 0;}
}
public class Cons<A> : List<A> {

public A head; public List<A> tail;
public override int UnsafeSum()
{ return ((int) (object) this.head)

+ this.tail.UnsafeSum();}
public override R Accept<R>(IVisit<A,R> v)
{ return v.VisitCons(this);}
public override int SafeSum() // where A = int
{ return this.head + this.tail.SafeSum();}

}
public interface IVisit<T, R> {

R VisitNil(Nil<T> n); R VisitCons(Cons<T> c);
}
public class SumVisitor: IVisit<int,int> {

public int VisitNil(Nil<int> that){ return 0;}
public int VisitCons(Cons<int> that)

{ return that.head + that.tail.Accept(this);}
}

Figure 9. Summing list of integers

lem with GADTs is that defining a useful visitor interface itself
requires placing equational constraints on the visitor methods [?].

4. System F with GADTs and equations
As we saw in Section 1, there are functions over GADTs that
cannot be expressed using a type function to refine the types of
case branches. Instead, we can express the relationship between
the scrutinee’s type and the range of the constructors through type
equations, and then use these equations in the branch body. To
this end, we extend G minor with equations, calling the extended
language G major. The extensions are highlighted in Figure 7.

• The equational rules state that (a) type equality is a congruence
(a reflexive, symmetric and transitive relation compatiblewith
type formation), and (b) type constructors are injective. Injec-
tivity is crucial to typing examples likeeq from Section 1.

• We introduce a new term formerM@A and subsumption-like
typing rule (eqn). This allows us to retypeM at a derivably
equivalent type. We could have used implicit subsumption, but
terms would not then uniquely determine derivations, a property
that makes the translations slightly easier to formalize. Pottier
and Régis-Gianas [?] introduce a similar device.

• The (eqn-case) typing rule extends (case) from Figure 7 sim-
ply by introducing equations into the context for each branch.
Each equation equates the formal instantiationBk of the type
of the pattern with the actual instantiationB of the type of the
scrutinee, potentially inducing more equations on both thetype
variables bound by the patternXk and the ambient type vari-
ables inΓ.

When we wish to be explicit, we writeΓ ⊢min M : A for typing
judgments in G minor, andΓ ⊢maj M : A for G major.

9 2017/1/31

rec sum = λ(x :List int):int.case(X)int x of
NilY y ⇒ 0
ConsY y ⇒ ((π1y)@int) + sum ((π2y)@List int) //Y ≡ int

rec eq = ΛX .λ(x :ExpX × ExpX):bool.

case(X)bool π1x of
Lit y ⇒ case π2x of

Lit z ⇒ y = z
. . . ⇒ false

TupleYY ′ y ⇒ //X ≡ Y × Y ′

case π2x of
TupleZZ ′ z ⇒ //X ≡ Z × Z ′

eqY (π1y , π1z@ExpY) ∧ eqY ′ (π2y , π2z@ExpY ′)
. . . ⇒ false

Figure 10. Summing lists and equality on values, in G major

In rule (eqn-case), ifD is actually a PADT (Bk ≡ Xk , for each
k), then the rule degenerates to ordinary case over PADTs as found
in vanilla Haskell and ML: the equations just instantiateXk .

Figure 10 presents the problematicsum andEq functions from
Sections 3.2 and 1, both written in G major. Notice the@ terms,
making use of the equations shown in comments, together with
rules (tran) and (c1) and, for functioneq only, rule (d1).

Inspecting the rules shows G major is a conservative extension
of G minor.

Lemma 3. If Γ ⊢min M : A then Γ ⊢maj M : A.

The use of type equations in the (eqn-case) rule recalls other
presentations of GADTs [?, ?, ?]. However, G major retains
the ability to refine the types of branches through a type func-
tion (X)C . When this type function is constant (i.e. X are not free
in C) then refinement only occurs through equations. The follow-
ing lemma shows that equations alone suffice.

Lemma 4. If Γ ⊢maj M : A then there is a term N such that
Γ ⊢maj N : A, whose type-erasure is identical to that of M and
whose type function annotations are constant.

Proof. By induction on the typing derivation. For (eqn-case), sup-
pose that we have a G minor term

case
(X)C

M of {k Xk xk ⇒ Mk}k∈K

of typeC ′=[B/X]C . Assume (by induction) thatM transforms
to M ′ andMk transforms toM ′

k for eachk ∈ K. Then we can
construct a G major term

case
(Z)C ′

M
′
of {k Xk xk ⇒ M

′
k@C

′}k∈K

which is well-typed because branch bodyM ′
k of type [Bk/X]C

can be re-typed atC ′ using rule (eqn) and the equationB ≡ Bk

from the context.

Lemma 5 (Equation Elimination). Let J range over type forma-
tion, type equivalence and typing judgment forms (A, A ≡ B and
M : A). If Γ, E ⊢ J and Γ ⊢ E then Γ ⊢ J .

Proof. Induction on the derivation ofJ .

Theorem 4 (Evaluation preserves typing). If ⊢ M : A and
M ⇓ V then ⊢ V : A.

Proof. Induction on the evaluation derivation.

5. Adding equations to C♯

In Section 1 we observed that theEq method on expressions cannot
be typed without resorting to casts. We sketched how the addition
of equational constraints on type parameters, together with some
equational reasoning on types, allows us to avoid these casts. Here,
we present a formalization of these ideas as an extension to C♯

minor, called C♯ major. For a more gentle exposition, see [?]. The
syntax, typing and helper definitions of C♯ major are shown in
Figures 5 and 6, but this time including the highlighted bits. In
brief, C♯ major extends C♯ minor as follows:

• Class and virtual method declarations can specify sets of equa-
tions between types (typically involving class and method type
parameters) as additional preconditions.

• Class constraints restrict the formation of constructed types to
those whose type arguments satisfy the constraints.

• Contexts now contain sets of equations as well as type parame-
ters and type assignments.

• A new equational judgement on types states that (a) type equal-
ity is a congruence, and (b) type constructors are injective.

• Internal method signatures, returned by the helper relation
mtype, may mention equations, inherited from the virtual dec-
laration and possibly specialised through inheritance.

• The reflexivity rule for subtyping is extended to include deriv-
ably equal, not just identical types. The usual subsumptionrule
can now be used to re-type a term at a different, but equivalent,
type (as well as catering for subtyping as usual).

• The typing rules for methods extend the ones from Figure 5
simply by introducing well-formed class and (possibly inher-
ited) method constraints into the context of the method body.

• In turn, method constraints restrict legal method invocations to
those that satisfy the constraints of both the enclosing instan-
tiated class and the instantiated method itself (Rule (ty-meth)).
The former condition is implicit in the premiseΓ ⊢ e : I , since
this impliesΓ ⊢ I ok.

C♯ major’s support for equational constraints on classes extends
[?], which only allows for constraints on methods. We include
this feature to enable the translation from G major. Our translation
closure-converts a G major function into a C♯ major method, whose
enclosing class must capture the translated context of the function.
To preserve types, the class of this method must now record any
equations in the G major context. This requires equationally con-
strained classes.

The key to proving type preservation for C♯ major is the fol-
lowing lemma, that allows one to discharge established equational
hypotheses from typing judgments:

Lemma 6 (Equation Elimination). Let J range over type equiva-
lence, type formation, subtyping and typing judgment forms (e : T ,
T=U and T <: U). If Γ, E ⊢ J and Γ ⊢ E then Γ ⊢ J .

Proof. Induction on the derivation ofJ .

In [?], we prove a full Type Soundness theorem, combining
Preservation andProgress, but here we content ourselves with:

Theorem 5 (C♯ major evaluation preserves typing). Suppose that
D is a valid class table and ⊢D e : T . If e ⇓D v then ⊢D v : T .

10 2017/1/31

Constructor environment: ψ ::= y(X , x :A):B | k X , E (x :A)

Γ ⊎ y(X , x :A):B = X ,Γ, x :A, y : ∀X .(A → B)

Γ ⊎ k X , E (x :A) = X ,Γ, E , x :A

Translation of terms:

(tr-argvar)
Γ; y(X , x :A):B ⊢C

x : A x
(tr-funvar)

Γ; y(X , x :A):B ⊢C
y : ∀X .(A → B) this

(tr-funfree)
X , x :A; y(X , x :A):B ⊢C

xi : Ai this.xi
(tr-casefree)

X , x :A; k X , E (x :A) ⊢C
xi : Ai xi

(tr-casearg)
Γ; k X , E (x :A) ⊢C

x : A this.x
(tr-inj)

Σ(D)(k) = ∀X .(A → B) Γ;ψ ⊢C
N : [A/X]A e in D

Γ;ψ ⊢C
k AN : [A/X]B new Dk<A

⋆
>(e) in D

(tr-app)
Γ;ψ ⊢C1

M : ∀X .(A → B) e in D1 Γ;ψ ⊢C2
N : [A/X]A e

′
in D2

Γ;ψ ⊢C
M AN : [A/X]B e.app<A⋆>(e

′
) in D1 ∪ D2

(tr-eqn)
Γ;ψ ⊢C

M : A e in D Γ ⊎ ψ ⊢ A ≡ B

Γ;ψ ⊢C
M@B : B e in D

(tr-abs)
Γ ⊎ ψ; y(Y , x :A):B ⊢C1

M : B e in D0 Γ;ψ ⊢C
x : A e

Γ;ψ ⊢C
rec y = ΛY .λ(x :A):B .M : ∀Y .(A → B) new C<X>(e) in D ∪D0

Γ ⊎ ψ = X , E , x :A

D =

C 7→
class C<X> : (∀Y .(A → B))

⋆
where E

⋆

{ A
⋆
x; public C(A

⋆
x) { this.x = x;}

public override B⋆ app<Y >(A⋆ x) { return e; } }

(tr-eqn-case)

Σ(D) = {k : ∀Xk .Ak → D Bk}k∈K Γ;ψ ⊢C0 M : D B e in D0

Γ;ψ ⊢C x : A e {Γ ⊎ ψ; k Xk , B ≡ Bk (xk :Ak) ⊢
Ck Mk : [Bk/Y]B ek in Dk}k∈K

Γ;ψ ⊢C case(Y)B M of {k Xk xk ⇒ Mk}k∈K : [B/Y]B e.caseC<X>(e) in D ∪D0 ∪
⋃

k∈K
Dk

Γ ⊎ ψ = X , E , x :A

D =

{

D 7→ class D<Y > { public virtual B⋆ caseC<X >(A
⋆
x) where E

⋆
,Y =B

⋆
{ return this.caseC<X >(x);} },

Dk 7→ class Dk<Xk> : (D Bk)
⋆
{ public override ([Bk/Y]B)

⋆
caseC<X >(A

⋆
x) {return ek; } }

}

Figure 11. Translation from G major to C♯ major

5.1 Translation from G major to C ♯ major

G major programs can be translated into C♯ major programs, ex-
tending the translation of Figure 8. The new translation is shown in
Figure 11, with the additions highlighted.

The argument environmentψ is extended with equations guard-
ing a constructor; these equations are propagated into the contextΓ
through the⊎ operation. The (tr-abs) rules closes over equations by
declaring them in the closure class; analogously, the (tr-eqn-case)
rule closes over equations by declaring them on thecase method.
In addition, (tr-eqn-case) declares an equationY =B

⋆
which gets

refined in constructor subclasses toBk

⋆
=B

⋆
as we require.

Lemma 7. Suppose that X ,Γ ⊢ T=U with X not free in Γ, and
that the X -lifting of T is 〈(Y)V ,T 〉. Then the X -lifting of U is
〈(Y)V ,U 〉 for some U such that X ,Γ ⊢ T=U .

Proof. By induction on the equality derivation.

Lemma 8. If Γ ⊢ A ≡ B then Γ⋆ ⊢ A⋆=B⋆.

Proof. By induction on the derivation. Most cases are straightfor-
ward, with case (c2) relying on Lemma 7.

Theorem 6(Translation preserves types). If ⊢maj M : A e in D
then D ∪ G is a valid class table and ⊢D∪G e : A⋆.

Proof. As Theorem 3, with Lemma 8 used for rule (eqn).

5.2 Translation from G major to C ♯ minor

C♯ minor does not support the equational constraints necessary
to express G major terms using static typing. However, thereis a
translation that makes use of checked downcasts: for every use of
(eqn), the translation inserts a cast. We simply change the (tr-eqn)
rule to be:

(tr-eqn)
Γ;ψ ⊢C

M : A e in D Γ ⊎ ψ ⊢ A ≡ B

Γ;ψ ⊢C
M@B : B (B

⋆
)e in D

Figure 3 illustrated this use of casts that is necessary in the absence
of equational constraints.

6. From G major to G minor
We have observed how rule (case) in G minor, and the use of poly-
morphic inheritance in C♯ minor, force case analysis over GADTs
to be completely parametric in the type parameters of the datatype.

11 2017/1/31

Equations, as featured in G major and C♯ major, provide a way out,
expressing type specialization of the datatype. But we havealso
seen in Section 3.2 how in the case of ordinary datatypes, equations
can be avoided, at the cost of introducing higher-order functions.

In general, when are equations required? It seems that the use
of the decomposition rules, expressing the injectivity of type con-
structors, is crucial. Consider the following simple example:

Σ(D) = { k1 : ∀X .(X → D X), k2 : bool → D int }

λx :D int.

case(Y)bool x of
k1 X y ⇒ y@int = 5 //X ≡ int
k2 z ⇒ z

At first glance, this function over a GADT appears to make essen-
tial use of the equationX ≡ int. However, it turns out that the term
can be massaged a little to eliminate the use of@, by abstracting it
out as acoercion whose type-erasure is the identity function:

λx :D int.

case(Y)(Y→int)→bool x of
k1 X y ⇒ λf :(X → int).f y = 5
k2 z ⇒ λf :(int → int).z

 (λw:int.w)

In the general case, we believe that all uses of decomposition-free
(eqn) can be abstracted out as functions passed throughcase.

Conjecture 1. Any decomposition-free use of (eqn) can be hoisted
outside its nearest enclosing case term by a meaning-preserving
transformation. If there is no further enclosing case then it can be
eliminated completely.

Iterating this construction leads to the following corollary: for
any G major term that has a decomposition-free derivation, there is
a semantically-equivalent term in G minor.

7. Conclusion
We have characterized the ‘expressivity gap’ between GADT pro-
grams in C♯ and GADT programs in functional languages by study-
ing two extensions of System F, one using type functions to refine
the typings ofcase branches, and the other using more powerful
type equations. We proved that C♯ minor (hence C♯) is at least ex-
pressive as the weaker, first variant, and, once extended with equa-
tional constraints, at least as expressive as the second variant too.
We have not shown that our translations preserve evaluation(termi-
nation behaviour), but that should be possible using the techniques
in [?]. In future, it would be nice toprove that there are G ma-
jor (cast-free C♯ major) programs, such aseq (Eq), that cannot be
expressed in G minor (cast-free C♯ minor), pinning down the ex-
pressivity of the weaker systems, but that would require more so-
phisticated methods.

We originally believed that C♯ was as expressive as GADT
Haskell. We only stumbled upon G minor by attempting to for-
mulate a simple variant of System F with GADTs, suitable as a
source language for our translation, but without the complications
of nested pattern matching, constrained polymorphism, higher-
kinded type variablesetc. found in other presentations. We were
surprised to find that G minor was too simple, and could not ex-
press some GADT programs expressible in Haskell. This is how
we identified the problematicEq example in C♯. It took a second
look at the presentation of GADTs in the literature for us to fully
appreciate the advantage of building in an equational theory on
types, including the crucial decomposition rules. One conclusion
that could be drawn from this work is that the anomaly of C♯ minor
(Section 3.2), which only became apparent to us when we formu-
lated the case rule of G minor, reveals a flaw in the design of C♯ and
Java Generics. It seems odd for Generics to provide elegant support
for some, but not all, GADT programs, but rather poor supportfor
programming with ordinary PADTs such asList<T>. Of course,

one could also argue that instantiation specific operations, such
asSum, really have no place as virtual methods on their generic
class, because the applicability of such operations is restricted.
That would be fine, provided the language provided some alterna-
tive mechanism for instantiation specific case analysis. However,
the absence of any other instantiation specific construct for (safely)
dispatching on runtime types, and the fact that the workaround of
resorting to the (non-extensible) visitor pattern conflicts with that
other object-oriented goal of preserving subtype extensibilty, leads
us to conclude that Generics is deficient in this regard, and could be
improved by the addition of equational constraints along the lines
of C♯ major. The observation that, without constraints, GADT’s do
not admit Visitor patterns [?], also hints at an incompleteness in
Generics that is remedied by our extension.

References
[1] J. Cheney and R. Hinze. First-class phantom types. Technical Report

1901, Cornell University, 2003.

[2] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# version 2.0 speci-
fication, 2005. Available fromhttp://msdn.microsoft.com/
vcsharp/team/language/default.aspx.

[3] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. InConference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA),
1999.

[4] A. J. Kennedy and C. Russo. Generalized algebraic data types and
object-oriented programming. InOOPSLA ’05: 20th annual ACM
SIGPLAN conference on Object-oriented Programming Systems,
Languages, and Applications. ACM Press, 2005.

[5] A. J. Kennedy and D. Syme. Design and implementation of
generics for the .NET Common Language Runtime. InProgramming
Language Design and Implementation. ACM, 2001.

[6] A. J. Kennedy and D. Syme. Transposing F to C♯: Expressivity
of parametric polymorphism in an object-oriented language. Con-
currency and Computation: Practice and Experience, 16:707–733,
2004.

[7] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion.
In ACM Symposium on Principles of Programming Languages, pages
271–283, St. Petersburg, FL, January 1996.

[8] M. Odersky and K. Läufer. Putting type annotations to work. In ACM
Symposium on Principles of Programming Languages. ACM, 1996.

[9] S. Peyton Jones, G. Washburn, and S. Weirich. Wobbly types: type
inference for generalised algebraic data types. Draft, July 2004.

[10] Simon Peyton Jones et al. The ghc compiler version 6.4, March 2005.
Download athttp://haskell.org/ghc.

[11] F. Pottier and N. Gauthier. Polymorphic typed defunctionalization.
In 31st ACM Symposium on Principles of Programming Languages
(POPL’04), pages 89–98, Venice, Italy, January 2004.

[12] F. Pottier and Y. Régis-Gianas. Towards efficient, typed LR parsers.
In ACM Workshop on ML, Electronic Notes in Theoretical Computer
Science, pages 149–173, September 2005.

[13] F. Pottier and Y. Régis-Gianas. Stratified type inference for
generalized algebraic data types. InProceedings of the 33st ACM
Symposium on Principles of Programming Languages (POPL’06),
Charleston, South Carolina, January 2006.

[14] Stephanie Weirich. Type-checker to generate typed term from untyped
source, September 2004. Response to challenge at Dagstuhl’04 set
by Lennart Augustsson. In ghc regression suite (tc.hs).

[15] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype
constructors. InPOPL ’03: Proceedings of the 30th ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages, pages
224–235. ACM Press, 2003.

12 2017/1/31

