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Abstract

Generalized algebraic datatypes (GADTS) are a hot topitén t
functional programming community. Recently we showed that
object-oriented languages such dsaBd Java can express GADT
declarations using Generics, but only some GADT prograrhs. T
addition of equational constraints on type parametersversaex-
pressivity. We now study this expressivity gap in more ddpth
extending an earlier translation from System F tbt€ handle
GADTs. Our efforts reveal some surprising limitations ofn@gcs
and provide further justification for equational consttsin

1. Introduction

Functional programming languages such as Haskell and Mk hav
long supported user-definethtatypes. A datatype declaration si-
multaneously defines a named type, parameterized by otpes,ty
and the means of constructing values of that type. For ex@rgpte

is a Haskell datatype of binary trees parameterized on fiextyf
data and typé of keys stored in the nodes:

data Tree k d = Leaf | Node k d (Tree k d) (Tree k d)

This definition implicitly defines twwalue constructors Leaf and
Node with polymorphic types:

Leaf :: Treek d
Node :: k — d — Treekd — Treekd — Treek d

Notice how both term constructors have the fully generialtegpe
Tree k d; there is no specialization of the type parametergite:.
Conversely, any value of typ&ree T o, for some concrete and

o, can either be a leaf or a node — the static type does not reveal

which. Observe that all recursive uses of the datatype wiisi
definition areTree k d: this makesTree aregular datatype.

The restrictions on ordinamyarameterized algebraic datatypes
(PADTSs) can be relaxed in the following three ways, yieldgeg-
eralized algebraic datatypes (GADTSs):

1. The restriction that constructors all return ‘genenistances of
the datatype can be removed. This feature defines GADTSs.

2. The regularity restriction can be removed, permittintatigoes
to be used at different instantiations within their own diéifin.
Writing useful functions over such types requipssymorphic
recursion: the ability to use a polymorphic function at different
types within its own definition. & Java and Haskell allow this,
ML does not.

3. A constructor can be allowed to mention additional type-va
ables that may appear in its argument types but do not appear i
its result type. These type arguments are hidden by the tfype o
the constructed term and thus existentially quantified.
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Most useful examples of GADTs make use of all three abilities
Consider the following typéizp t representing abstract syntax for
expressions of type, written in a recent extension of Haskell with
GADTs [?, 7]

data Ezp t where

Lit :: Int — FEzxp Int

Plus :: Fxp Int — FExp Int — FEzxp Int

FEquals :: Fxp Int — Ezxp Int — Fxp Bool
Cond :: Fxp Bool — Expa — FEzpa — Ezpa

Tuple :: Expa — Exzpb — Exp (a,b)
Fst :: Exp (a,b) — Ezpa

All constructors except foC'ond make use of feature (1), as their
result types refine the type arguments ffp: for example, Lit
has result typeFzp Int. All constructors except foi.it make
use of feature (2), using the datatype at different insaéiotis in
arguments to the constructor. Finallyst uses a hidden typé,
thus making use of feature (3).

Why is this interesting? Consider this evaluator for expi@ss,
defined by case analysis on values of type t:

eval :: Bxpt — t

eval e = case e of
Liti — 1 —t=1Int
Plus el e2 — eval el + eval e2 —1t = Int
FEquals el e2 — eval el == eval e2 —t = Bool

Cond ele2e3 - —t=a

if eval el then eval e2 else eval e3
Tuple el e2 — (eval el, eval €2) —t = (a,b)
Fste — fst(evale) —t=a

The fascinating thing aboutval is that the compiler doesn’t
reject it. Observe closely: each branch of tge expression re-
turns a computation of a different type. Thet branch returns an
integer, theEquals branch returns a boolean, thaple branch re-
turns a pair. In the ML type system, all the continuations obae
expression are required to have the same type and one would ex
pecteval to be rejected as type-incorrect. In GADT Haskell, this
requirement is subtly relaxed: each branch must, insteadelgn
have arappropriate type, given the type of its pattern and the type
of the scrutinee.

Although probably unintentional, both@nd Java Generics al-
ready support GADTSs. Consider thé €ode in Figure 1. This is
a straightforward encoding of the GADT Haskell datatypep t.
Abstract syntax trees are represented using an abstrastafi@x-
pressions, with a concrete subclass for each node type.niée i
preter is implemented by an abstrastal method in the expres-
sion class, overridden for each node type. Indeed, this ishtes
variant of thelnterpreter design pattern. Observe how the type pa-
rameter ofExp is refined in subclasses; moreover, this refinement
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public abstract class Exp<T>
{ public abstract T Eval(); }
public class Lit : Exp<int> { int value;
public Lit(int value) { this.value=value; }
public override int Eval() { return value; }
}
public class Plus : Exp<int> { Exp<int> el, e2;
public Plus(Exp<int> el, Exp<int> e2)
{ this.el=el; this.e2=e2; }
public override int Eval()
{ return el.Eval() + e2.Eval(); }
}
public class Equals : Exp<bool> { Exp<int> el, e2;
public Equals(Exp<int> el, Exp<int> e2)
{ this.el=el; this.e2=e2; }
public override bool Eval()
{ return el.Eval() == e2.Eval(); }
}
public class Cond<T> : Exp<T> {
Exp<bool> el; Exp<T> e2, e3;
public Cond(Exp<bool> el, Exp<T> e2, Exp<T> e3)
{ this.el=el; this.e2=e2; this.e3=e3; }
public override T Eval()
{ return el.Eval() ? e2.Eval() : e3.Eval(Q); }
}
public class Tuple<A,B>
Exp<A> el; Exp<B> e2;
public Tuple(Exp<A> el, Exp<B> e2)
{ this.el=el; this.e2=e2; }
public override Pair<A,B> Eval()
{ return new Pair<A,B>(el.Eval(), e2.Eval()); }

: Exp<Pair<A,B>> {

}
public class Fst<A,B> : Exp<A> { Exp<Pair<A,B>> e;
public Fst(Exp<Pair<A,B>> e){ this.e=e; }
public override A Eval(){ return e.Eval().fst; }
}

Figure 1. Typed expressions with evaluator

is reflected in the signature and code of the overridtierl meth-

ods. For exampleRlus.Eval has result typent and requires no
runtime casts in its calls te1.Eval() ande2.Eval(). Not only

is this a clever use of static typing, it is also more efficigran a

dynamically-typed version, particularly in an implemeita that

performs code specialization to avoid boxirg. [

Just like our Haskell datatype, thesé €lasses make use of all
three features that characterize GADTSs. Feature (1) isssgpd by
defining a subclass of a generic type that does not just padpag
its type parameters through to the superclaBiug is a non-
generic class that extends the particular instantiatigskint>.)
Feature (2) corresponds to the existence of fields in thelasgc
whose types are unrelated instantiations of the generi ¢yphe
superclass.Tuple<A,B> has a field of typ&xp<A> but superclass
Exp<Pair<A,B>>.) Feature (3) corresponds to the declaration of

type parameters on the subclass that are not referencecein th

superclass Fst<A,B> has superclassxp<A>, hidingB.)

Where the Haskeltval function uses case analysis on expres-
sions, the € code forEval uses virtual dispatch to select the over-
ride of Eval appropriate to the expression node. THes@nature
of Eval specified in theExp<T> class is a function of the type
parametelT. Because this parameter is instantiated differently in
each subclass, the overrides®fal receive different signatures,
obtained by substituting the actual type argument spedifiethe
superclass in place of the formal type paramateFor instance,
the signature for the methdd t .Eval is obtained by applying the
substitutiorT — Int to the signature specified in the superclass, so
the override must return amt, even though its declaration in the
superclass just returnsTa Similarly, the signature for the method

Tuple<A,B>.Eval is obtained by applying the substitutian—
Pair<A,B>, so the override must returnPair<A,B>.

Haskell's technique for typechecking theal example is rather
different. Haskell checks aase by checking each branch of the
case under some equational assumptions, derived fromieguat
the type (hereEzp t) of the scrutinee ) with the formal result
type of the constructor guarding the brandfig Int, Exzp Bool,
Ezp a, Ezp(a, b) etc). Ineval, the assumptions are the equations
on ¢t shown in comments in each branch. Thus all branches do
return at, but each branch is allowed to make and exploit its
own assumptions about whats, given the type of the constructor
guarding that branch. In general, typingase expression exploits
equational properties of types. In this code, each equaappens
to correspond to a substitution for so it's perhaps not surprising
that the example translates té,@here we can specialiZein each
superclass.

For a more involved example, consider the following anreatat
Haskell function,eq, that tests equality of expression values:

eq :: (Expt, Expt) — Bool
eq (this, that)
case this of
Liti — —t=Int
case that of

Litj — i==7 —t=Int
_ — False
Tuple el €2 —» — t = (a,b)
case that of
Tuple f1f2 —» — t=(c,d)

eq (e1,f1) && eq (e2,12)
_ — False

When Haskell typechecks the outer branch farple, it as-
sumes the type equation= (a, b) and type assignmeat :: Exp a,
€2 :: Ezp b. In the inner branch it assumes= (¢, d), f1:: Ezp ¢
andf2 :: Exp d (generating fresh names for the type parameters
to the Tuple constructor). Using transitivity to combine the equa-
tions ont it obtains(a, b) = (¢, d), and from this, derives = ¢
andb = d, using the fact that the product type construdtor) is
injective. HenceEzp a = Exp ¢ and similarly Ezp b = Eup d,
which lets Haskell type-checkqg(el, f1) and eq(e2, f2). This
use of equational decomposition, exploiting the injetyiaf type
constructors, is crucial to the type-checkingegf Type checking
eval was much easier: all equations were of the fares 7 and
there was no need to decompose constructed types.

Not let us try to translate theq example to €. We add a
virtual methodEq to Exp<T>, taking a single argumenrthat of
type Exp<T> and by default returning false. Sineg is a function
on pairs that performs nested case analysis, we implemien€Cht
by dispatching twice, first omhis, to the code that override®;,
and then orthat, to code specific to the types of bothis and
that (see Figure 2).

Unfortunately, this naive translation does not typechédke
problem is the override foTupleEq<C,D> in the Tuple<A,B>
class. The overriden method knows th&tPair<A,B> by su-
perclass specialisation, but it does not know theRair<C,D>,
which holds at its one and only call-site. Instead, consece®
of this additional equation, for instance ttgtp<A>=Exp<C> and
Exp<B>=Exp<D>, can only be asserted with casts, leading to the
code in Figure 3. The crux of the problem is this: althoughesup
class instantiations are propagated to overrides througblass
refinement, there is no way to constrain the type instaotiaif the
receiver of a virtual method. Here, the only caller of vittoeethod
TupleEq<C,D> happens to use the particular method instantia-
tion C=A,D=B on a receiver of typ&xp<T>=Exp<Pair<A,B>>.
But the virtual method cannot specify the call-site invatjaso
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public abstract class
public virtual bool

{ return false; }
public virtual bool

{ return false; }
public virtual bool

{ return false; }

Exp<T> { ...
Eq(Exp<T> that)

TupleEq<C,D>(Tuple<C,D> e)
LitEq(Lit e)

}
public class Lit : Exp<int> { ...
public override bool Eq(Exp<int> that)
{ return that.LitEq(this); }
public override bool LitEq(Lit e)
{ return value == e.value; }
}
public class Tuple<A,B> : Exp<Pair<A,B>> { ...
public override bool Eq(Exp<Pair<A,B>> that)
{ return that.TupleEq<A,B>(this); }
public override bool TupleEq<C,D>(Tuple<C,D> e)
{ return e.el.Eq(this.el) && e.e2.Eq(this.e2); }

Figure 2. Equality on values, type incorrect

public class Tuple<A,B> : Exp<Pair<A,B>> { ...
public override bool TupleEq<C,D>(Tuple<C,D> e)
{ return e.el.Eq(/(Exp<C>) (object) this.el) &&
e.e2.Eq( (Exp<D>) (object) this.e2); }

Figure 3. Equality on values, using casts

public abstract class Exp<T> { ...
public virtual bool TupleEq<C,D>(Tuple<C,D> e)
where T=Pair<C,D> { return false; }

public class Tuple<A,B> : Exp<Pair<A,B>> { ...
public override bool Eq(Exp<Pair<A,B>> that)
{ return that.TupleEq<A,B>(this); }
public override bool TupleEq<C,D>(Tuple<C,D> e)
{ return e.el.Eq(this.el) && e.e2.Eq(this.e2); }

Figure 4. Equality on values, using constraints

the particular override cannot assume it. Instead, it memsgr the
otherwise derivable type equalities using casts.

In [?], we propose extending Cto supportequational type
constraints on methods, as statically checked pre-conditions. Then
adding the constrainthere T=Pair<C,D> to the signature of
TupleEq allows us to restrict its callers, and so avoid any casts
(Figure 4). By instantiation of the superclass, the sigratof
the TupleEq override inherits the specialized constraifttere
Pair<A,B>=Pair<C,D>. From this, using a decomposition rule
(this time, for s constructed types), one can deriveC andB=D
and finallyExp<A>=Exp<C> andExp<B> = Exp<D>. Itisthese last
two equations that justify the recursive calls toHggmethod on the
fields ofthis ande. Here we rely on both method specialization in
the subclass, which instantiates the override’s signandeits im-
plicitly inherited equational constraint, and equatioredsoning,
to exploit equalities that flow from that specialised coaisit.

A casual reader might object that equations are superflusus b
cause one can instead directly define an equality method en th
class Tuple<A,B> that lets one compare anothBnple<A,B>
that to this. But this would be missing the point: in order
to call this method from theTupleEq<C,D> override in the
Tuple<A,B> class, one would first have to have establish that

Tuple<A,B> = Tuple<C,D>, again requiring equational reason-
ing on types or an assertion using a cast. Note that we argttyi
capture the rather general Haskell function that compavesek-
pressions of the same, but otherwise unknown, expressien ot

a family of functions that, for each particular form of exgs®n,
compares two instances of the same form and type.

Clearly, there is an expressivigap between ordinary €and
GADT Haskell. In [?] we show that many interesting Haskell ex-
amples translate well, but some practically interestingsorike
Weihrich's type reconstruction algorithm taking untypegmes-
sions to type expression3, [?], or the type safe LR parsers of Pot-
tier and Régis-Giana®] do not. These all fail for reasons exem-
plified by our contrived, but smalEq operation. Roughly speak-
ing, C* can express all of the datatypes of GADT Haskell, but only
some of its programs — which ones? éxtended with equational
constraints can express more GADT programs — but does it cap-
ture all of them? The aim of this paper to provide tentativenars
to these questions, by studying translations from GADTaras
of System F into € and, separately, into*Gnith equational con-
straints.

The structure of this paper is as follows. We start by presgnt
our object of study, a featherweight version df €alled G minor
(Section 2). We then present our first variant of System F lwhic
we call G minor (Section 3). G minor employs a case construct
that refines the types of branches using substitution ontlyian
inspired by @’s typing of virtual methods and their overrides. We
present a cast-free, type preserving translation from G@ntmC
minor, proving that € minor is a least as expressive as G minor.
Although quite natural, G minor has its own expressivitylpems,
requiring higher-order encodings to express some simpigrams
over PADTSs (Section 3.2). This limitation of G minor manifes
itself as a weakness in the design of bothadd Java Generics,
that has, surprisingly, gone unnoticed in the literature pelieve
that [?] is the first to make this observation). We then present
G major, our second variant of System F (Section 4). G major is
like G minor, but employs a more general typing rule for cédmse t
additionally derives equations particular to each casedirand
adds an equational theory on types. G major incorporateypireg
rule for case actually used in GADT Haskell and other studfes
GADTSs. Finally, we present Cmajor, an extension of Cminor
with equational constraints on both methods and classesaan
equational theory on types (Section 5) (allowing constsainn
classes is a slight improvement ové})| Like the system in7], C*
major both fixes the observed defect ifh @inor, and extends the
range of expressible GADT programs. We present a castifjiee,
preserving translation from G major td @ajor demonstrating that
this variant of ¢ major is at least as expressive as G major. Finally,
in Section 6, we sketch a way of transforming programs of tager
kind in G major into equivalent ones in G minor.

The languages and translations described in the paper maxe su
marised by the diagram:

(86)

—z— —

G minor §3) c G major §4)

(852)
l(§3.1) / l(§5.1)

C* minor (§2) C C* major §5)

2. C!minor

Our target language ‘Cminor’ [?] is a small, purely-functional
subset of € version 2.0 f]. Its syntax, typing rules and big-step
evaluation semantics are presented in Figures 5 and 6. Beoan
space, the figures also present @ajor with additions to ¢
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Syntax:

(class def) cd
(constr def) kd
(method qualifier) @

(method def) md

class O<X> : I where E {T f; kd md}
public C(T f) : base(f) {this.f=f;}
public virtual | public override

Q T m<X>(T T) where E {return ¢;}

(expression) e = z | e.f| eem<T>(@ | newlI(2) | (Te
(value) v, w := new [ (D)
(type) T,.U,V == X | I
(instantiated type) I = CO<T>
(equational constraint) E = T=U
(typing environment) T = X, Z:T,B
(method signature) = <X where E>T — T (X isboundinE, T, T)
Type Equivalence:
'k U=T I'ET=U Tk U=V
(eq-refl)— (eg-sym)——— (eg-tran)
'k X=X I'ET=U r=7T=v
T=U €T r'-T=U I'F C<T>=C<U>
(eg-hyp)——— (eg-con) — — (eg-decon)
e T=U 'k C<T>=C<U> '+ Ti=U;
Subtyping:
I'E T=U I'-T<:U THU<:V Xel
I'ET < U 'ET<V ' X <: object

class C<X>: [ where E {...}

'+ CO<T> <: [T/X)I

Well-formed contexts and types: X - TUOV ok Xer

FX,z: T,U=V ok I'- X ok

(ok ir]Snclass C<X>:IwhereE {...} THTok |T|=|X| TF[T/X|E
F C<T> ok

I
Typing:

(ty-var) T

Fe:lfields(I)=Tf THIok fields(I)=Tf Tre:T
yo:ThHx: T

r
(ty-fld) (ty-new)
I'kefi:T; I'kFnewli(e): 1

I'FUok T'ke: T Tke: T THT<:U TEUO
(ty-cast) (ty-sub)

T'E(U)e: U I'ke:U
'ke:I TFTok T'Fe:[T/X]U
(ty-meth) mtype(I.m) = <X where E>U — U Tk [T/X|E

I'Fe.m<T>C) : [T/X|U

Method and Class Typing:
class C<X> : I where By {...} mtype(I.m) notdefined
(ok-virtual) X, YT, T, Bz kX,Y,FE1,E2,%:T,this:C<X>F e: T
F public virtual 7 m<Y>(T %) where B> {return e;} okin C<X>

class C<X>: I where By {...} X,YF+F T,T ok
mtype(I.m) = <Y where B2>T — T
X,Y, By, By, %:T,this:C<X>Fe: T

F public override T m<Y>(T %) {return e;} okin C<X>

(ok-override)

XFI, T, Eok fields(I)=TU7g fandgdisjoint
F md okin C<X> kd = public C(U g, T f) base(q) {this.f=f; }

d
F class C<X>: [ where E {T f; kd md} ok

(ok-class)

Figure 5. Syntax and typing rules for‘Gninor (including highlighted changes fof @ajor)

4 2017/1/31



Evaluation rules:

FI< T

el new I(T) fields(I)=T f el e || new I (D)
(e-fld) (e-new) (e-cast)
e.fill w new I (€) | new I (v) (T)e | new I (v)
e new I (W) mbody(I.m<T>)=(Z,e') el v [v/%,newI(w)/this]e’ |} v
(e-meth)

Field lookup: —
P D(C) = class C<X> :

e.m<T>(e) | v

I where E {U1 fi; kd md}

fields([T/X|I) = Uz fo

fields(object) = {}

Method lookup:

D(C) = class C<X;> : I where By {...

fields(C<T>) =T fo, [T/X| Ui fi

md}

m not definecpublic virtual in md

D(C) = class C<X;> : I where By {... md}

mitype(C<T1>.m) = mtype([T1/X1]1.m)

public virtual U m<Xe>(U Z) where Ea {return e;} € md

Method dispatch: class O<Xo> :

mtype(C<T1>.m) = [T1/X1](<Xz where E2>U — U)
I{... md}

m not defined inmd

md}

class O<X1> :

I{...

mbody(C<T1>m<T2>) = mbody([T1 /X1]I.m<T2>)

Q U m<X2>(U T) {return e;} € md

mbody(C<T1>m<T2>) = (Z,[T1 /X1, T2/ Xz]e)

Figure 6. Evaluation rules and helper definitions fof @inor (including highlighted changes fof @ajor)

minor highlighted. For € minor, the additions should be treated
as whitespace and ignored.

This formalisation is based on Featherweight GJgnd has
similar aims: it is just enough for our purposes but does obeat”
— valid programs in €minor really are valid € programs. The
differences from Featherweight GJ are as follows:

e There are minor syntactic differences between Java and C
the use of !’ in place of extends, and base in place of
super. Methods must be declaredrtual explicitly, and are
overridden explicitly using the keyworskrerride.

e For simplicity, we omit bounds on type parameters.

¢ We include a separate rule for subsumption instead of iivedud
subtyping judgments in multiple rules.

* We fix the evaluation order to be call-by-value.

Like Featherweight GJ, this language does not include blijeo-
tity and encapsulated state, which arguably are definingifes
of the object-oriented programming paradigm. It does igeldy-
namic dispatch, generic methods and classes, and runtigte. ca
For readers unfamiliar with the work on Featherweight GJwa-s
marise the language here; for more details ke [

A type (ranged over byT', U and V) is either a formal type
parameter (ranged over by and Y') or the type instantiation of a
class (ranged over bg', D) written C<T> and ranged over by;
object abbreviatesbject<>.

A class definition cd consists of a class nam@ with formal
type parameterX, base class (superclagds)constructor definition
kd, typed instance fieldd" f and methodsnd. Method names in
‘md must be distinct.e. there is no support for overloading.

A method qualifier @ is eitherpublic virtual, denoting a
publicly-accessible method that can be inherited or oddem in
subclasses, opublic override, denoting a method that over-
rides a method of the same name in some superclass.

A method definition md consists of a method qualifi€p, a re-
turn type 7', namem, formal type parameter®, formal argument
namesz and typesT’, and a body consisting of a single statement
return e;.

A constructor kd simply initializes the fields declared by the
class and its superclass.

An expressione can be a method parameter a field access
e.f, the invocation of a virtual method at some type instardiati
e.m<T>(€) or the creation of an object with initial field values
new I (€). A value v is a fully-evaluated expression, and (always)
has the formew 7 (7).

A class tableD maps class names to class definitions. The
distinguished classbject is not in the table and treated specially.
A typing environment has the forml’ = X, Z: T where free
type variables inT" are drawn fromX. We write - to denote the

empty environment.

All of the judgment forms and helper definitions of Figures 5
and 6 assume a class tafite When we wish to be more explicit,
we annotate judgments and helpers viithWe say thaD is avalid
class table it-? cd ok for each class definitiond in D and the
class hierarchy is a tree rootedotject (not formalised here).

The operationmtype(T.m), given a statically known class
T = C<T> and method namez, looks up the generic signature
of methodm, by traversing the class hierarchy frofto find its
virtual definition.

The operationnbody(T.m<T>), given a runtime clas§’ =
C<U>, method namen and method instantiatio”’, walks the
class hierarchy fronC' to find the most specific override of the
virtual method, returning its body instantiated at tyfés

Theorem 1(C* minor evaluation preserves typingBuppose D is
validand FP e: T.Ife §P vthent? v : T.
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3. System F with GADTs

In previous work P] it was shown how a variant of System F, also
known as the polymorphic lambda calculus, can be transiatad
type-preserving way into Gninor. This demonstrated that generics
in the style of ¢ and Java is as expressive as the impredicative
‘first-class’ polymorphism of System F.

In this section we extend System F with a (weak) form of
GADTSs, and exhibit an extended translation intb @inor. Fol-
lowing the musical theme, we call this language G minor. Idiad
tion to GADTS, it features polymorphic recursion for furmtival-
ues, typically required by GADT-manipulating programseHyn-
tax, typing rules and big-step evaluation semantics of Gomame
presented in Figure 7. To conserve space, the figures alserre
G major withiadditions to G minor highlighted. For G minor, the
additions should be treated as whitespace and ignoredouth
somewhat artificial, we start with G minor because it is badh n
ural and simpler than G major, yet has not been describedein th
literature on GADTSs. o

A typing environmentl' = X,7T:A, consists of sequences of
type variable declarations, and type assignments to teriablas.
An enviroment isvalid whenX are distinctz are distinct and all
type variables free i: A are drawn fromX. A typing judgment
T'+ M : A should be read “in the context of a typing environment
T the term M has typeA” with free type variables inM and
A drawn fromT. An evaluation judgmentl/ | V should be
read “closed termM evaluates to produce a closed vall@.
We assume the presence of a global set of datatype decteatio
defined by a finite set of type construct@rsa functionX mapping
each type constructab € 7T to a finite set of term constructors
Kp, and each term constructér € Kp to a type of the form
VX;.(Ax — DAg). We assume that each type constructor
takes a fixed numbedrity (D) > 0 of type arguments, that all
constructor types arelosed, and that the term constructors of
distinct datatypes are disjoint, i€.p N Kpr = 0, whenD # D’.

We identify types and terms up to renaming of bound variables
and assume that names of variables are chosen so as to berdiffe
from names already bound Hy. The notation[B/X]A denotes
the capture-avoiding substitution & for X in A; likewise for
[B/AIM and[V /z] M.

Although there are no base types in G minor, booleans, Hatura
numbers, and pairs can be encoded in the usual way; examiiiles w
be sugared using such types and operations. Observe tleéibfun
values are polymorphic and recursive; moreover, functizarsbe
used polymorphically within their own definition.

Consider the introduction and elimination rules for GADTke
introduction rule (inj) is straightforward: it simply st that a term
kAN is typed as ifk were a polymorphic function (compare the
rule for function application). The elimination rule (ca$e more
subtle. Thecase term is annotated with a type functiah of the
same arity as the eliminated type constructor. The functidren
instantiated at the type arguments of the scrutinee, d@teshe
type of the entire case term. Each branch must be paramethiei
type arguments to the term constructor, but the type of thadir
varies according to the type arguments of the constructange.

To illustrate these features, consider thep type andeval
function from Section 1, expressed in G minor:

Y(Exp) ={ Lit:int — Expint
Plus : Expint x Expint — Expint
Equals : Expint x Expint — Exp bool
Cond : VY .(Expbool X Exp Y x Exp Y — Exp Y)
Tuple : VYZ.(Exp Y x ExpZ — Exp (Y X Z))
Fst:VYZ.(Exp (Y x Z) - Exp Y) }

Choosing the case annotatioi ) X, we can implementval using
substitution based refinement of each branch's type (just &
minor):
rec eval = AX A(z:Exp X): X.
case®)X g of

Lity =y

Plus y = evalint (m1y) + evalint (m2y)

Equals y = evalint (m1y) = evalint (m2y)

CondY y =

if eval bool (1Y) then eval Y (m2y) else eval Y (m3y)
Fst YZy = mi(eval Y X Z y)
Tuple YZ y = (eval Y (m1y),eval Z (m2y))

It it straightforward to prove that evaluation preservesety.
Theorem2. If F M : Aand M || Vthen - V : A.

Proof. Induction on the evaluation derivation, using the usual-Sub
stitution and Weakening Lemmas. |

3.1 Translation to C* minor

We now show how G minor programs can be translated to C
minor, thus demonstrating that' @an express at least the form
of GADTs supported by G minor. The translation is based on an
earlier translation from System F][ in particular, it uses a similar
scheme for translating polymorphic functions.

Figure 8 presents the scheme for translating a G minor #/pe
to a C' minor typeA*, together with global class definitiogsused
in the translation.

A polymorphic function typevX.(A — B) is translated into
a type-instantiation of a named function class, whose sipgly-
morphic methochpp<X > takes an argument of type correspond-
ing to A and result type corresponding . Function values are
translated to instances of closure classes that extenchfivemi-
ate function class, in which the closure class is paraneéry
the type parameters from the environment, the instancesfidlthe
closure class store variables from the environment, anddy
of the function is a method in the class that implementsathe
method. Recursion is translated into self-reference tjirathis.
Function application is translated simply as invocatiorhefapp
method.

Parameterized datatypes are translated to parametelisses,
with one subclass for each constructor, as described irfigyrim
Section 1.

We require that the translation of types commute with stibsti
tion on type parameters. This forces the translation of @amdppe
such as/X.(X — Y) to be an instantiation of theame class as
the translation of substitution instances suchvas (X — int).

In general, polymorphic types whose type variables appetrea
same position in the types’ structure should translate staittia-
tions of the same named class. To achive this we make use of an
operation that Odersky and Laufer call “lifting?]

Definition 1 (Lifting). The X-lifting of a C* minor type 7' isa
pair {(Y) U, T) inwhich (Y) U isthe abstracting out of maximal
subterms T of T that do not contain any X, replacing the subterms
by type variables Y suchthat 7 = [T/Y]U.

For example, thé-lifting of type Fun<Fun<X,Y>,Fun<Y,Y>>
is the type abstractiofz1, Z2)Fun<Fun<X, Z1>,Z2> together with
the typest andFun<Y, Y> which when substituted for variables
andz2 produce the original type.

The translation satisfies two important properties. Firstpes
not lose any type information, justifying the term “fully pg-
preserving”. Second, it commutes with substitution.

Lemmal. A* = B*iff A= B.
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Syntax: (types) A,B == X |

(terms) M, N ==

(values) V, W
(case contexts) ¢
(equations) &
(typing env’s) T'
Well-formed contexts and types:

(X)A
A=B
X, €, 7:A

Xel

VX.(A—B) | DA

x| MAN | recy=AX\=:A):B.M | kAM | MQA
| case® M of {kkaIk = Mk}keK
recy=AX\Nz:A):B.M | KAV

X, T+ A, B ok '+ 4 ok

'+ X ok

Equations:

(refl)
ILXFX=X

(d2

I'VX.(A— B) ok

A=B I'X+-FA=A" I, X-B=DB
D

DX, A=BA=BFrE FILEok

'+ D4 ok

(c2) — —
B I'+VX.(A— B)=VX.(A' > B')

Fr-A=A" THA =4"
(tran).

L A=BF €&
(d1)—— =

I''DA=DBFE

Typing: c

T, VX.(A = A)=VX.(B— B) &
s VX.(A — B) ok

A= A"
IX,2:A,yVX.(A— B)FM:B

:Ael
(var)—— (abs)
I'Fz: A
' B ok

T'EM:A 'FA=B

T'Frecy=AX\=:A):B.M :VX.(A— B)
I'+M:VX.(A— B)

I'-7Aok TFN:[A/X]A

(eqn) (app)

' M@B:B

. Y(D)(k)=k:YVX.A— DB
(inj)

I'-MAN:[A/X)B

I'4Ack TFN:[A/X]A

T'-kAN:D([A/X]B)

E(D) = {k‘ : VYkAk — D?k}ke)C F,7 F C ok
{T, Xx, B=By, m:Ar - My, : [Br/X)Clrex

(egn- case)

I'-M:DB

I'F case™C M of {k Xy 2x = My}iex : [B/X]C

M | recy = AY.)\(IZA_):B.M/
(e-app) [V /z][A/X][rec y = AX A(x:A):B.M'/y]M' | W

Evaluation:

(e-val)

NIV

MUV
(e-eqn)———
MQA |V

MV
(e-case)

MUykAV kek

MAN | W
[V /2r][A/ X My b W

(e-inj)—————
KAM UKAV

case® M of {k Xy, zx = My} rex § W

Figure 7. Syntax and semantics of G minor (and G major, highlightedtif)

Proof. Easy induction on structure of types, using the identiforati
of Fun types up to renaming of type variables. a

Lemma 2. ([B/X]A)* = [B*/X]A*.
Proof. Similar to [?]. a

Figure 8 defines the translation of terms. The translatioa of
term M is given by a judgment

iy FC M:A~einD

which should be read “In the context of typing environmErdnd
argument environmend, term M with type A translates to an
expressione and additional class definitiori® using fresh class
names prefixed by'”.

When translating the body/ of a function valuerec y =
AX .A(z:A):B.M itis necessary to distinguish three kinds of vari-
able: the argument, the functiony itself, or a free variable of

the function. Likewise, when translating the brancheszzfe con-
structs it is necessary to distinguish constructor argasnéom
free variables. To capture this in the translation the cdraentains
both an ordinary typing environmeftand argument environment
1 defined by the grammar

= y(X,z:A):B | kX (z:4)

inwhichy (X, z: A): B denotes an environment used when translat-
ing functions in whichz: A is the argument angkvVX.(4 — B)is
the function, and: X (z:A4) denotes a constructor environment for
constructork in which X are the type parameters to the constructor,
andz: A is the constructor argument with its type. A similar split-
context technique is used in treatments of typed closureersion
for functional languages?].

The translation of function abstractions and case makesfuse
an operatiorl” & ¢ that pushes the bindings froghinto I. It is
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Global class definitions G):

For eachD < 7T define
class D<X> : object { }

For eachk € Kp with ©(D)(k) = VX;.(Ar, — D Ay) define
class Dk<Xp> : D<A, > { Ax* z; public Dk(A;* z) {this.z=z;}}

For allX, T, U wherefreevars(T) \ X = Y andfreevars(U) \ X = Z and identified up to renaming of Y Z define
class Fun(y)TﬁU<ﬁ> { public virtual U app<X>(T z){ return this.app<X>(z);} }

Types:

X = X
(DAY = D<A
(VX.(A— B))" = Fun ), ,<TU>  whereX-lifting of A*is ((Y)T, T) andX-lifting of B*is ((Z)U, U)
Terms:
(tr-argvar) — - (tr-funvar) — - —
D y(X,2:A):BFC z: A~z [ y(X,2:A):BFC y : VX.(A — B) ~ this
(tr-funfree) ——— - (tr-casefree}——— -
X, T:A4;y(X,2:A):B FC 2 : A; ~» this.z; X, T:A; k X (x:A) FO gt Ay~
. X(D)(k)=VX.(A—B) T;9F°N:[A4/X]A~einD
(tr-casearg}—— = (tr-inj) — — —

Ik X (x:A)F" z: A~ this.z ;9 kAN : [A/X]|B ~» new Dk<A">(e) in D

T Y M VX (A> B)~einDy T2 N [A/X]A ~ ¢ in Dy
(tr-app)

;o ¢ MAN : [A/X]B ~ e.app<A*>(e’) in Dy UD;

TwWe;y(Y,0:A)BF Y M:BweinDy DT :Aw7e

(tr-abs) - — .
;¢ -9 rec y = AY A(2:4):B.M : VY .(A — B) ~ new C<X>(%) in DU Dy

Wy =X,T:A
class C<X> : (VY.(A — B))"
D=4 C~ {4 7;public C(A"T) { this.T=7;}
public override B* app<Y>(A* z) { returne; } }

S(D) = {k : VXi. Ay, — D Bi}rex T RO M DB~ e in Do
(tr-case\ F;wPCE:ZwE {F&Jw,kYk(IkAk) FCk My, : [B_k/V]B ~s e In Dk}kEKD
/1“;1/) FC caseMB M of {kYm = My }rek : [F/?]B ~ e.caseC<X>(€) inDUDy U U Ds
keK

Twy =X,7:4
D D+ class D<Y> : object { public virtual B* caseC<X>(A" Z) { return this.caseC<X>(Z);}},
" | Dk~ class Dk<Xy> : (D By)" { public override ([Bi/Y]B)" caseC<X>(A" T){ return e;; }}

Figure 8. Translation of types and terms

defined as follows: as parameters to thease method; notice how the refinement of
= = ) = result type in the branches maps directly to refinement ofifye
Pyy(X,zA)B = X,Iz:4,y:YX.(A > B) nature in the overridden methods.

Fywk X (z:4) = X,I'z:A We prove that the translation preserves types.

The translation is essentially defined by induction oversthecture Theorem 3(Translation preserves typedf ™" M : A ~ e in D
of the typing derivation of a tern;s) ¢ M : A ~ e in D is then D U G isavalid classtableand PV ¢ : A*.
defined whed" w1 = M : A.

Consider rules (tr-inj) and (tr-case) for GADT introductiand
elimination. Datatype constructors are translated to pkEmse
of new on the appropriate constructor class. Tdwse construct

Proof. Similar to analogous theorem if][ a

is translated to @ase method in the datatype class itself, together Future work is a theorem that the translation preservesiaval

with overriding methods in each subclass. The context isatted tion behaviour, proved using the techniques?f [
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3.2 An Anomaly of G minor and Object-Oriented Generics

It is both simple to state and prove sound, but there is sdangeth
quite odd about G minor’s (case) rule. Although the type efdase
scrutinee may be any instantiatidhof the datatype, each branch
must be completely parametric in its constructor's formglet
parameters (whether or not they have an existential flavésra
result, writing instantiation-specific case expressianextremely
awkward. For example, a (hon GADT) Haskell programmer would
expect to be able to translate the simple (first-order) function,
that adds the integers in a list, as follows:

S(List) = {Nil : VY.(unit — List Y)
Cons: VY.(Y x List Y — List Y)}
rec sum = \(z:Listint):int.case® z of
Nil Y y = 0
Cons Y y = (m1y) + sum (m2y)

Although (a variant of) this is legal in G major, the function
untypable in G minor: in the second branch, the typerof is
just Y, notint, so we can't pass it to +; the recursive call is
illegal becauser;y has type List Y, not List int. Luckily, every
instantiation-specific case expression over a PADT sutlisasan
be translated into an application of a polymorphic, higheter
function, match, that, given an instantiatioX, result typeR and a
value of the PADT, returns a higher-order function that&sland
applies the appropriate continuation from its suite of argnts.
For List X we can define, firsthatch, thensum as follows:

rec match
= AXR.A(z:List X):(unit -+ R) — (X x List X — R) —
Case(Z)(unit%R)%(ZXListZHR)HR x of
Nil Y y = Af:unit - RAg:Y x ListY — R.fy
Cons Yy = Af:unit = R Ag:Y xListY — R.gy
rec sum = A(z:List int):int.match intint z
(Ay:unit.0)
(Ay:int x Listint.(m1y) + sum (m2y))

R.

Cleary, rule (case), though expressive enough to captune so
GADT programs, is rather feeble at coping with workaday PADT
requiring higher-order chores for first-order tasks. A timeal pro-
grammer would find this tedious, but, surprisingly, thategisely
what the object-oriented programmer puts up with using @ese
For instance, to implement the summation function into @he
basically has two alternatives (Figure 9). The first is tolengent
an unsafe virtual methddhsafeSum that uses runtime casts to re-
cover thatT must actually beint. Because this approach relies on
exact runtime types, it is not an option in G minor and canreot b
checked at runtime in Java (due to its erasure semantice)sdd:
ond is to introduce a safe, generic visitor interfabéisit<T,R>,
that encapsulates a suite of methods, and visit the list &@tatic
methodAwvkwardSum, passing an instance of a specific visitor class
as the (higher-order) method suitetkwardSum is closely related
to the G minor workaround discussed above: methagkpt corre-
sponds to the higher-order functiamtch, its IVisit<T,R> argu-
ment to the (uncurried) suite of continuatiohsy. Unfortunately,
in the object-oriented setting this workaround is even ndistaste-
ful: introducing the visitor pattern fixes the class hietgrcooted
aList<T> — it is no longer extensible by future subclasses since
adding a new subclass requires a modification toIhesit in-
terface. To implementnsafeSum safely, we just need to capture
the invariant that it will only be invoked whehis int: this is ex-
pressed by the constrained declaratiosafeSum, which uses our
proposed extensior?] and is both natural and cast-free.

Why can’'t we apply the higher-order workaround to those prob
lematic GADT programs that require type specific case? Tab-pr

public abstract class List<T> {
public abstract int UnsafeSum();
public abstract R Accept<R>(IVisit<T,R> v);
public static int AwkwardSum(List<int> 1)
{ return 1.Accept<int>(new SumVisitor()); }
public abstract int SafeSum() where T = int;

public class Nil<A> : List<A> {
public override int UnsafeSum(){ return 0;}
public override R Accept<R>(IVisit<A,R> v)
{ return v.VisitNil(this);}
public override int SafeSum() // where A = int
{ return 0;}

public class Cons<A> : List<A> {
public A head; public List<A> tail;
public override int UnsafeSum()
{ return ((int) (object) this.head)
+ this.tail.UnsafeSum();}
public override R Accept<R>(IVisit<A,R> v)
{ return v.VisitCons(this);}
public override int SafeSum() // where A = int
{ return this.head + this.tail.SafeSum();}
}
public interface IVisit<T, R> {
R VisitNil(Nil<T> n); R VisitCons(Cons<T> c);

public class SumVisitor: IVisit<int,int> {
public int VisitNil(Nil<int> that){ return 0;}
public int VisitCons(Cons<int> that)
{ return that.head + that.tail.Accept(this);}

Figure 9. Summing list of integers

lem with GADTs is that defining a useful visitor interfaceeifs
requires placing equational constraints on the visitohmes [?].

4. System F with GADTs and equations

As we saw in Section 1, there are functions over GADTSs that
cannot be expressed using a type function to refine the types o
case branches. Instead, we can express the relationship between
the scrutinee’s type and the range of the constructors gitrtype
equations, and then use these equations in the branch body. To
this end, we extend G minor with equations, calling the exéeh
language G major. The extensions are highlighted in Figure 7

¢ The equational rules state that (a) type equality is a camgrel
(a reflexive, symmetric and transitive relation compatilulth
type formation), and (b) type constructors are injectivged-
tivity is crucial to typing examples likeq from Section 1.

e We introduce a new term forméd @ A and subsumption-like
typing rule (egn). This allows us to retypd at a derivably
equivalent type. We could have used implicit subsumption, b
terms would not then uniquely determine derivations, a@ryp
that makes the translations slightly easier to formalizsti&r
and Régis-Giana¥] introduce a similar device.

The (egn-case) typing rule extends (case) from Figure 7 sim-
ply by introducing equations into the context for each branc
Each equation equates the formal instantiati®nof the type

of the pattern with the actual instantiatidhof the type of the
scrutinee, potentially inducing more equations on bothype
variables bound by the pattefs, and the ambient type vari-
ables inl".

When we wish to be explicit, we write ™" M : A for typing

judgments in G minor, anft F™ 3/ : A for G major.
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rec sum = A(z:List int):int.caseX)"™ z of
NilYy=0
Cons Y y = ((m1y)Qint) + sum ((m2y)@Listint) //Y =int
rec eq = AX . A\(z:Exp X x Exp X):bool.
case(¥)bo0l 2 of
Lit y = case maz of
Ltz=y==2
... = false
TupleYY'y=> [/ X=Y xY'
case mox of
TupleZZ'z = [/ X=ZxZ'
eq Y (my, m2QExp Y) Aeq Y’ (may, ma2z@QExp Y')
. = false

Figure 10. Summing lists and equality on values, in G major

In rule (egn-case), iD is actually a PADT B, = Xy, for each
k), then the rule degenerates to ordinary case over PADTsuas fo
in vanilla Haskell and ML: the equations just instantiaig

Figure 10 presents the problematien andEq functions from
Sections 3.2 and 1, both written in G major. Notice the¢erms,
making use of the equations shown in comments, together with
rules (tran) and (c1) and, for functieq only, rule (d1).

Inspecting the rules shows G major is a conservative exiensi
of G minor.

Lemma3. IfCF™ M : AthenT F™ M : A.

The use of type equations in the (eqn-case) rule recallg othe
presentations of GADTs?[ ?, ?]. However, G major retains
the ability to refine the types of branches through a type func
tion (X) C. When this type function is constarite{ X are not free
in C) then refinement only occurs through equations. The follow-
ing lemma shows that equations alone suffice.

Lemma 4. If T ™ M : A then there is a term N such that
' =™ N : A, whose type-erasure is identical to that of A/ and
whose type function annotations are constant.

Proof. By induction on the typing derivation. For (egn-case), sup-
pose that we have a G minor term

case®C M of {kkak = My }kex

of type C'=[B/X]C. Assume (by induction) that/ transforms
to M’ and M, transforms toM), for eachk € K. Then we can
construct a G major term

case @ M of {k Xy o, = M{QC" Vex

which is well-typed because branch body; of type [B;/X]C
can be re-typed af”’ using rule (eqn) and the equatidh = By
from the context. |

Lemma 5 (Equation Elimination) Let 7 range over type forma-
tion, type equivalence and typing judgment forms (4, A = B and
M:A).fT,E-TJandT - EthenT + 7.

Proof. Induction on the derivation qQf . O
Theorem 4 (Evaluation preserves typing)lf - M : A and
M| Vthen -V : A.

Proof. Induction on the evaluation derivation. O

10

5. Adding equations to C

In Section 1 we observed that tAg method on expressions cannot
be typed without resorting to casts. We sketched how thetiaddi

of equational constraints on type parameters, togethdr same
equational reasoning on types, allows us to avoid thess.ddste,

we present a formalization of these ideas as an extensiorf to C
minor, called ¢ major. For a more gentle exposition, sé¢ [The
syntax, typing and helper definitions of @najor are shown in
Figures 5 and 6, but this time including the highlighted .bits
brief, G major extends €minor as follows:

e Class and virtual method declarations can specify setsus-eq
tions between types (typically involving class and methgmbt
parameters) as additional preconditions.

e Class constraints restrict the formation of constructgumsyto
those whose type arguments satisfy the constraints.

e Contexts now contain sets of equations as well as type parame
ters and type assignments.

* A new equational judgement on types states that (a) typd-equa
ity is a congruence, and (b) type constructors are injective

e Internal method signatures, returned by the helper relatio
miype, may mention equations, inherited from the virtual dec-
laration and possibly specialised through inheritance.

* The reflexivity rule for subtyping is extended to includeider
ably equal, not just identical types. The usual subsumptita
can now be used to re-type a term at a different, but equitjalen
type (as well as catering for subtyping as usual).

e The typing rules for methods extend the ones from Figure 5
simply by introducing well-formed class and (possibly irhe
ited) method constraints into the context of the method body

¢ In turn, method constraints restrict legal method invaretito
those that satisfy the constraints of both the enclosintaimns
tiated class and the instantiated method itself (Rule (k).
The former condition is implicit in the premidet e : I, since
this impliesT" F T ok.

C* major’s support for equational constraints on classeseste
[?], which only allows for constraints on methods. We include
this feature to enable the translation from G major. Ourdiation
closure-converts a G major function into &@ajor method, whose
enclosing class must capture the translated context ofihation.

To preserve types, the class of this method must now record an
equations in the G major context. This requires equatigraih-
strained classes.

The key to proving type preservation fof @ajor is the fol-
lowing lemma, that allows one to discharge established teans
hypotheses from typing judgments:

Lemma 6 (Equation Elimination) Let 7 range over type equiva-
lence, type formation, subtyping and typing judgment forms (e : T,
T=Uand T <: U).fT,E+ JandT - EthenT + 7.

Proof. Induction on the derivation qQf .

In [?], we prove a full Type Soundness theorem, combining
Preservation andProgress, but here we content ourselves with:

Theorem 5 (C* major evaluation preserves typingfuppose that
Disavalidclasstableand FP e¢: T.1fe {2 vthentP v: T.
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Constructor environment:

I y(

,2:A):B
vk X,

(z:4)

z
3

Translation of terms:

(tr_argvar)F; y(X,2:A)BrF z: A~z

(tr_funfree)Y, T:A; y(Y, z:A):B FC 2, : A; ~» this.z;

D)
(tr-inj)

= y(X,2:A):B | kX, & (x:A4)

tr-funvar
( )F; y(

(D)(k) =VX.(A — B)

X,2:A):B+° y:VX.(A — B) ~ this

(tr-casefree})(—jzz; kX, € (:A) FC 20 Ay @
T Y N:[A/X]A ~ ein D

(tr-caseargfx; kX, € (2:A)F° z: A~ this.z

D9 FoY M VX (A — B) ~ ein Dy

I FC LAN - [Z/Y]B ~ new Dk<A >(e) in D
I LC2 pr [A/X)A ~ ¢ in Dy

(tr-app) — —
;Y MAN : [A/X]|B ~ e.app<A*>(e’) in D1 U Dy
Dip b M:A~einD TwykA=B
(tr-egn)
;9% M@QB: B~ einD
(tr-a9) Twiy(Y,z:A)BFY M :BweinDy TiprCz:Adwe
r-abs)

vy =X,E,T:A
class C<X> :

E(D) = {k‘ VTkAk — DB_k}ke]g

(tr-egn-case) Ny HT:Awe

;9 F9 rec y = AV A(2:4):B.M : VY .(A — B) ~» new C<X>(€) in DU Dy
(VY.(A = B))" where &

D=<C+— {Z* T; public C(4A" T) { this.T =7T;}
public override B* app<Y>(A* z) { returne; } }

{T Wk Xy, B= By, (24:A1) F% My : [Bi/Y)B ~ ex, in D }rex

D0 O M . DB ~ ein Do

Frwy =X,E,T:A

-]

Dk — class Dk<X;> :

;¢ case(MB [ of {kykxk = My }rex : [E/?]B ~ e.caseC<X>(€) in DUDyU Uskex Dr

D+ class D<Y> { public virtual B* caseC<X> (A" T) where & ,Y=B" { return this.caseC<X>(z);}},
(D By)" { public override ([By/Y]B)" caseC<X>(A" T) {return ; } }

Figure 11. Translation from G major to Cmajor

5.1 Translation from G major to C* major

G major programs can be translated intor@ajor programs, ex-
tending the translation of Figure 8. The new translatiomass in
Figure 11, with the additions highlighted.

The argument environmeiitis extended with equations guard-
ing a constructor; these equations are propagated intotitextI’
through thew operation. The (tr-abs) rules closes over equations by
declaring them in the closure class; analogously, theqgtra@ase)
rule closes over equations by declaring them onctiee method.

In addition, (tr-eqn-case) declares an equafiéaB” which gets

refined in constructor subclasses?@*=B* as we require.

Lemma 7. Suppose that X,I' = T'=U with X not freeinT', and
that the X-lifting of T is ((Y)) V, T'). Then the X-lifting of U is
((Y)V,U) for some U suchthat X, I" - T=U.
Proof. By induction on the equality derivation. a
Lemma8. IfI'+ A = BthenT™* + A*=B*.

Proof. By induction on the derivation. Most cases are straightfor-
ward, with case (c2) relying on Lemma 7. |
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Theorem 6(Translation preserves typedf+™ M : A ~» e in D
then D U G isavalid classtableand -2 ¢ : A*.

Proof. As Theorem 3, with Lemma 8 used for rule (egn). O

5.2 Translation from G major to C* minor

C* minor does not support the equational constraints negessar
to express G major terms using static typing. However, tieee
translation that makes use of checked downcasts: for exsryofi
(eqn), the translation inserts a cast. We simply changetttez|()

rule to be:

Dip b M:A~einD TwykA=B
(tr-eqn)

;9 % M@QB : B~ (B)einD

Figure 3 illustrated this use of casts that is necessaryeimlisence
of equational constraints.

6. From G major to G minor

We have observed how rule (case) in G minor, and the use of poly
morphic inheritance in Eminor, force case analysis over GADTs
to be completely parametric in the type parameters of thatyjae.

2017/1/31



Equations, as featured in G major antir@ajor, provide a way oult,
expressing type specialization of the datatype. But we ladse
seen in Section 3.2 how in the case of ordinary datatypestiens class, because the applicability of such operations igictsd.
can be avoided, at the cost of introducing higher-ordertfans. That would be fine, provided the language provided somenalter
In general, when are equations required? It seems that the us tive mechanism for instantiation specific case analysisvéVer,
of the decomposition rules, expressing the injectivityyqfet con- the absence of any other instantiation specific constru¢sédely)
structors, is crucial. Consider the following simple exdenp dispatching on runtime types, and the fact that the worksdtcaf
_ . . . resorting to the (non-extensible) visitor pattern cordliatith that
E(D) ={k:¥X.(X D X), k; : bool — Dint } other object-oriented goal of preserving subtype extétgileads

one could also argue that instantiation specific operatisnsh
as Sum, really have no place as virtual methods on their generic

Y )bool
o case )Pl ¢ of . us to conclude that Generics is deficient in this regard, anttide
Az:Dint. Zl Xié y@int =5 //X =int improved by the addition of equational constraints aloreglihes
2 Z z

of C* major. The observation that, without constraints, GAD®s d
not admit Visitor patterns?], also hints at an incompleteness in

At first glance, this function over a GADT appears to make esse | ! r :
Generics that is remedied by our extension.

tial use of the equatioX = int. However, it turns out that the term

can be massaged a little to eliminate the us@pby abstracting it
out as acoercion whose type-erasure is the identity function:
Case(Y)(Yaint)abool z of
B Xy=A:(X—int).fy=5
k2 z = Af:(int — int).z

Az:Dint. (Aw:int.w)

In the general case, we believe that all uses of decomposite
(egn) can be abstracted out as functions passed thraisgh

Conjecture 1. Any decomposition-free use of (eqn) can be hoisted
outside its nearest enclosing case term by a meaning-preserving
transformation. If there is no further enclosing case thenit can be
eliminated completely.

Iterating this construction leads to the following corojtafor
any G major term that has a decomposition-free derivatlmaretis
a semantically-equivalent term in G minor.

7. Conclusion
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