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Abstract

The programming language Standard ML is an amalgam of two, largely or-
thogonal, languages. The Core language expresses details of algorithms and
data structures. The Modules language expresses the modular architecture
of a software system. Both languages are statically typed, with their static
and dynamic semantics specified by a formal definition.

Over the past decade, Standard ML Modules has been the source of
inspiration for much research into the type-theoretic foundations of modules
languages. Despite these efforts, a proper type-theoretic understanding of its
static semantics has remained elusive. In this thesis, we use Type Theory as
a guideline to reformulate the unconventional static semantics of Modules,
providing a basis for useful extensions to the Modules language.

Our starting point is a stylised presentation of the existing static seman-
tics of Modules, parameterised by an arbitrary Core language. We claim that
the type-theoretic concepts underlying Modules are type parameterisation,
type quantification and subtyping. We substantiate this claim by giving
a provably equivalent semantics with an alternative, more type-theoretic
presentation. In particular, we show that the notion of type generativity
corresponds to existential quantification over types. In contrast to previous
accounts, our analysis does not involve first-order dependent types.

Our first extension generalises Modules to higher-order, allowing modules
to take parameterised modules as arguments, and return them as results.
We go beyond previous proposals for higher-order Modules by supporting
a notion of type generativity. We give a sound and complete algorithm for
type-checking higher-order Modules. Our second extension permits modules
to be treated as first-class citizens of an ML-like Core language, greatly
extending the range of computations on modules. Each extension arises
from a natural generalisation of our type-theoretic semantics.

This thesis also addresses two pragmatic concerns. First, we propose a
simple approach to the separate compilation of Modules, which is adequate
in practice but has theoretical limitations. We suggest a modified syntax
and semantics that alleviates these limitations. Second, we study the type
inference problem posed by uniting our extensions to higher-order and first-
class modules with an implicitly-typed, ML-like Core language. We present
a hybrid type inference algorithm that integrates the classical algorithm for
ML with the type-checking algorithm for Modules.
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Chapter 1

Introduction

Standard ML is a very high level programming language that is suited for the
construction of both small and large programs. It is actually an amalgam
of two, to a large extent orthogonal, programming languages. “Program-
ming in the small” is captured by the Core language. “Programming in the
large” is captured by the Modules language, which provides constructs for
organising related Core language definitions into self-contained modules with
descriptive interfaces. While the Core is used to express details of algorithms
and data structures, Modules is used to express the overall architecture of a
software system.

Modules allows definitions of identifiers denoting Core language types
and terms to be packaged together into possibly nested structures. Access
to structure components is by the dot notation and provides good control of
the name space in a large program development. Structures are transparent :
by default, the identity of a type component within a structure is evident
from outside the structure. This provides good support for the incremental
construction of large programs.

Signatures are used to specify the interfaces, or types, of structures, by
specifying their individual components. A type component may be specified
loosely, permitting a variety of realisations, or concretely, by equating it with
a particular definition. The latter form supports the specification of shar-
ing between type components defined in different structures. A structure
matches a signature if it provides an implementation for all of the speci-
fied components, and possibly more. A signature may be used to curtail a
matching structure. This restricts access to only those components specified
in the signature, while preserving the actual realisations of loosely specified
types. A signature may also be used to abstract a matching structure, re-
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2 Introduction

stricting access to components but also generating new, and thus abstract,
types for loosely specified type components. This provides support for the
informal notion of data abstraction.

Finally, Modules allows the definition of parameterised structures called
functors. A functor is a first-order mapping from structures to structures.
A functor is created by specifying a signature for its formal argument, and
supplying a structure body defined with respect to this argument. A func-
tor may be applied to any structure that matches its argument’s signature,
resulting in a concrete implementation of the functor body. The actual reali-
sations of the argument’s type components are propagated to the result. Any
abstract types defined in the functor body are generated afresh each time
the functor is applied. Functors may be used to express design abstractions
and allow flexible code re-use.

The Modules and Core languages are stratified in the sense that modules,
i.e. functors and structures, may not be manipulated as ordinary values of
the Core. This is a limitation, since it means that the architecture of a
software system cannot be reconfigured according to run-time demands.

Standard ML is distinguished from most other programming languages
by the existence of a formal definition of both its syntax and semantics. It is
a strongly typed language with static type checking of programs performed
prior to program execution. These two phases are defined, respectively, by
separate static and dynamic semantics. Type checking ensures the absence
of certain run-time type errors, such as accessing an undefined component
of a structure, or using a Core value component at a type incompatible with
its definition. In this sense, Standard ML is similar to the formal languages
studied in Type Theory. This field of logic has close connections to Com-
puter Science and provides a rational basis for the design of programming
languages. Indeed, the type-theoretic underpinnings of the Core language
are well-understood.

In recent years, largely inspired by the success of Standard ML Modules,
the study of the type-theoretic foundations of module languages has be-
come an active topic of research. Nevertheless, despite numerous attempts,
a proper type-theoretic understanding of Standard ML Modules, and its
static semantics in particular, has remained elusive. The benefits of a type-
theoretic understanding are twofold. Type Theory provides us with a frame-
work for analysing existing features of the language and for synthesising new
features by generalisation.
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1.1 Objectives and Approach

This thesis has two main objectives. The first is to provide a better, more
type-theoretic formulation of the static semantics of Modules. The second is
to use this formulation as the rational basis for designing proper extensions
of the static semantics.

We stress that the primary concern of this thesis is the static semantics of
Modules. Our justification for deliberately omitting the dynamic semantics
of Modules is that it is already well-understood; moreover, adapting the
dynamic semantics to support our static extensions is straightforward.

Our approach is to use concepts from Type Theory as a guideline for
reformulating the existing semantics of Modules, resulting in a provably
equivalent, but hopefully more declarative, accessible and generalisable pre-
sentation. The benefit of this approach is that our subsequent extensions
to the language can be readily integrated with the existing definition and
implementations of Standard ML.

This approach is rather different from those of other researchers in the
area. Reductionist approaches aimed at providing type-theoretic semantics
of Modules by a translation into existing type theories have either failed to
capture significant features and properties of the language, or imposed severe
limitations inherited from the chosen model. Others approaches have relied
on introducing new, and often badly behaved, type-theoretic constructs.

We therefore see no distinct advantage in abandoning the existing for-
malism. Instead, we adhere to the existing semantics as much as possible,
deviating from the original presentation only when this serves to simplify or
clarify it.

1.2 Thesis Outline

In Chapter 2 we give a brief overview of Standard ML, an introduction to
relevant concepts from Type Theory, and a survey of related work.

In Chapter 3 we set the scene for the remainder of this thesis by pre-
senting the static semantics of a Modules and Core language in the style
of the definition of Standard ML [MTH90, MTH96]. The two languages
are presented separately. We first present the Modules language. It models
the main features of Standard ML’s Modules language. Modules makes rela-
tively few assumptions on the structure of the Core: our definition is param-
eterised by an arbitrary Core language. For concreteness, we also present a
particular instance of the Core language: Core-ML. Although much simpler
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than Standard ML’s Core, it nevertheless captures those features of the lan-
guage that are relevant to the definition of Modules. Finally, we define Mini-
SML as the language obtained by combining the definitions of Modules and
Core-ML. We then proceed with an informal analysis of the type-theoretic
underpinnings of Mini-SML. In particular, we find no evidence to support
the often-made claim that a type-theoretic model of Modules requires first-
order dependent types. Apart from the feature of type generativity, that
lends the static semantics a procedural flavour by requiring it to manage a
state of generated type variables during type checking, the type structure of
Modules is easily explained in terms of the simpler, second-order notions of
type parameterisation, universal quantification over types, and subtyping.

In Chapter 4 we present a new, declarative static semantics for Modules.
It is intended as a more type-theoretic alternative to the semantics given
in Chapter 3. Our main objective is to first explain and then eliminate
the state of generative type variables maintained by the static semantics
of Chapter 3. In particular, we reveal that type generativity is no more
than a particularly procedural implementation of existential quantification
over types. We prove that the two static semantics are equivalent. We
claim that the new presentation is more type-theoretic in style, and easier
to understand. In subsequent chapters, we substantiate this claim by using
this semantics as the basis for significant extensions to the language.

In Chapter 5, we extend the Modules language of Chapter 3 to higher-
order. Functors are given the same status currently enjoyed by structures:
they may be bound as components of structures, specified as functor ar-
guments and returned as functor results. We give a sound and complete
algorithm for signature matching that forms the basis of a type checking
algorithm for Higher-Order Modules. This chapter builds on the alterna-
tive semantics of generativity given in Chapter 4 and on previous work by
Biswas [Bis95] that extends a skeletal fragment of Modules to higher-order.
We reformulate, generalise and clarify his definitions, and use them to prove
analogous results. Our work furthers his by capturing a notion of type gen-
erativity, and by catering for more realistic Core languages, e.g. languages
supporting polymorphic values and parameterised types.

In Chapter 6 we briefly discuss the foundations of a separate compilation
system for Modules. One of the main criticisms of Standard ML Modules is
its perceived lack of support for separate compilation. We review the simple
approach to separate compilation in traditional programming languages and
explain why previous attempts to adopt this approach in Standard ML have
failed. Unlike other researchers, we place the blame for this failure on an
inappropriate choice of compilation unit, not on the semantics of Modules.
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Instead, we identify an alternative notion of compilation unit that satisfies
the requirements of separate compilation. Although acceptable in practice,
from a theoretical perspective this solution is only partial. After analysing
the problem, we suggest appropriate modifications to the semantics, which
are formalised for a skeletal higher-order modules calculus. The adequacy
of these modifications is expressed by a theorem, whose proof is sketched.

In Chapter 7 we turn our attention to the particular Core language
presented in Chapter 3, Core-ML, and consider relaxing the stratification
between Core and Modules. We obtain a language with first-class modules:
modules may be passed as arguments to Core-ML functions, returned as
results of arbitrary computations, selected using conditional expressions,
stored in data structures and so on. Our approach is novel in maintaining
the distinction between Core and Modules. Instead of amalgamating the
features of both in a single language, we provide constructs for packing
and unpacking module terms as Core values, allowing programs to alternate
between Core and Modules level computation.

In Chapter 8 we consider the type inference problem posed by Core-
ML in the presence of both Higher-Order and First-Class Modules. We
first review the classical, unification-based type inference algorithm for ML,
the language on which Core-ML is based. We then discuss why the naive
combination of the type checker for Modules with the traditional type in-
ference algorithm for ML is inadequate. We design a suitably generalised
unification algorithm, and present a derived, hybrid typing algorithm that
combines type checking of Modules with type inference for Core-ML. We
state correctness properties of these algorithms but leave their verification
to future work. The algorithms have been tested in a prototype implemen-
tation.

Chapter 9 concludes this thesis with a summary of our achievements, a
comparison with related work, and directions for future research.

Chapter 10, which was written five years after this thesis was completed,
is an epilogue that relates these results to the author’s subsequent work on
elaborating and implementing the proposed extensions to Modules in Moscow
ML [RRS00], a widely used Standard ML compiler.

1.3 Implementation

A prototype interpreter for higher-order and first-class Modules, using Core-
ML as a Core language, is available electronically [Rus98a]. It implements
the static semantics of Chapters 5 and 7 using a literal implementation of
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the type inference algorithms in Chapter 8. It also implements a straight-
forward dynamic semantics, allowing programs to be executed. The Core
is enriched with recursion and a smattering of base types to support simple
programming examples. In addition, the Modules language supports the
definition of signature identifiers, and allows signatures (and functor signa-
tures) to be refined by imposing equational constraints on loosely specified
type components. The implementation has been used to check all of the
examples in Chapters 5 and 7.



Chapter 2

Background

In this chapter, we give a brief overview of Standard ML (Section 2.1), an
introduction to relevant concepts from Type Theory (Section 2.2), and a
survey of related work (Section 2.3).

2.1 An Overview of Standard ML

The aim of this section is to briefly review the main features of the pro-
gramming language Standard ML. A terse and completely formal semantics
of Standard ML appears in [MTH90]; [MT91] is an extensive commentary
on this definition, sketching some of its meta-theory. A revised definition,
with the two-fold aim of simplifying the semantics and meeting some user
requests, appears in [MTH96]. Numerous research reports and textbooks
provide more tutorial introductions to programming in Standard ML. We
recommend the textbook by Paulson [Pau91] and the report by Tofte [Tof89].
Our overview is intentionally informal — the syntax and static semantics of
the language will be formalised in Chapter 3. Note that the syntax of our
examples, although consistent with the rest of this thesis, deviates slightly
from Standard ML. The motivation for this departure is to clearly demar-
cate the grammar of the Core from the grammar of Modules, facilitating the
work in subsequent chapters.

2.1.1 The Standard ML Core language

Standard ML’s Core is a strongly typed language. Core terms, or programs,
are required to obey the typing rules of the Core before being evaluated
(executed). The typing rules are sound in the sense that evaluation of any
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well-typed term is guaranteed to produce no run-time type errors. Rather
than present Standard ML’s Core, we will sketch a simpler language which
shares enough of its features to enable us to present interesting examples of
Modules.

Our Core comes with a number of built-in types and terms for creating
and manipulating values of those types. For instance, the type int supports
an infinite set of constants . . . -2, -1, 0, 1, 2. . . of type int. The term ifzero
i e e’ tests whether the term i, which must have type int, evaluates to
zero. If it does, e is evaluated, otherwise e’ is evaluated. The terms e and
e’ must have the same type.

The Core is a functional language. For example, the built-in function
+ has type int→(int→int). When applied to two integer arguments, e.g.
+ 1 2, it returns their sum, e.g. 3. We can define our own functions using
parameterised terms. The term λx. + x 1 defines the successor function on
integers. The variable x is the formal argument or parameter of the function.
The type of the successor function is int→int, denoting the function space
on integers. Even though the Core is strongly typed, we do not have to
specify the type of the parameter x. Instead, its type is inferred from the
way in which it is used; in this case, x is used as an integer argument of
+. Core functions can be higher-order, in the sense that they may take
functions as arguments and return functions as results.

Core terms can be polymorphic. For instance, the identity function λx.x
can be given the type u→u, for any type u. The Core uses type vari-
ables ’a, ’b, . . . to represent indeterminate types. By universally quan-
tifying over indeterminates in the type of a term, we obtain a schematic
description, called a type scheme, of all of a term’s possible types. For in-
stance, the possible types for the identity are captured by the type scheme
∀’a.’a→’a, read “for any type ’a, ’a→’a”. A specific instance of a poly-
morphic type is obtained by substituting actual types for its quantified
variables. For example, ∀’a.’a→’a has instances int→int, bool→bool
and (int→int)→(int→int), obtained by substituting int, bool, and
(int→int) for ’a. A polymorphic term may be used at any type that
is an instance of its type scheme. Some type schemes are more general than
others. For example, the identity can also be given the type scheme ∀’a
’b.(’a→’b)→(’a→’b). However, ∀’a.’a→’a is more general than ∀’a
’b.(’a→’b)→(’a→’b) because the first scheme has all the instances of
the second one, plus some more.

In the Core, we can define recursive functions using a fix-point com-
binator fix with type scheme ∀’a ’b.((’a→’b)→(’a→’b))→(’a→’b).
Intuitively, fix f x evaluates to f (fix f) x. For example, consider the
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higher-order function:

λb. λf. fix (λiterbf. λx. ifzero x b (f (iterbf (+ x (- 1)))))

When applied to actual arguments b, f and x, it returns the result of the
x-fold application of the function f to the base case b. Of course, x must be
a positive integer, otherwise the function diverges. The most general type
scheme of this function is:

∀’a.’a→(’a→’a)→(int→’a).

In Modules, we can define a value identifier by binding it to the value
of a Core term. The identifier can then be used in subsequent phrases.
In particular, we can exploit the definition’s polymorphism by using the
identifier at different types.

The Core supports parameterised types. For instance, the type list u
is the type of lists of elements of type u. We can construct lists using the
polymorphic term constants nil, of type ∀’a.list ’a, and cons, of type
∀’a.’a→(list ’a)→(list ’a). The phrase list, on its own, is not a
type, but a phrase which, when applied to a type argument, yields a type:
list is a parameterised type. Since list expects a single type argument,
we say that its arity or kind is 1.

We can express our own parameterised types by using type phrases of the
form Λ(’a1 · · · ’ak).u. The prefix Λ declares the variables ’a1 through
’ak as parameters of the type u. We say that the parameterised type has
arity or kind k, since it expects k type arguments. For instance, we can use
the parameterised type Λ(’a,’b,’c).(’b→’c)→(’a→’b)→(’a→’c) as
a uniform description of a family of types: when applied to any three type
arguments, it returns the type of a function that takes two functions and
returns another.

Given that Core terms are implicitly typed, the ability to express pa-
rameterised types does not seem very useful. However, Modules is explicitly
typed and requires some syntax in order to specify Core type and value
components. Fortunately, in Modules we can define a type identifier by
binding it to a parameterised type. The identifier can then be used as a
proper abbreviation, either in the definition of another type identifier, or in
the specification of a value component’s type.

Standard ML’s Core has a number of other features not illustrated here.
Indeed, it comes with a rich collection of basic types, supports the definition
of mutually recursive types and functions, has first-class, dynamically allo-
cated references (typed pointers), exceptions and pattern-matching. Most
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type nat = int;
val zero = 0;
val succ = λx.+ x 1;
val iter = λb.λf.

fix (λiterbf.λx.ifzero x b (f (iterbf (x + (- 1)))));
...
val even = λn.iter true not n

Figure 2.1: A sequence of Core type and term definitions.

structure IntNat =
struct type nat = int;

val zero = 0;
val succ = λx.+ x 1;
val iter = λb.λf.

fix (λiterbf.λx.ifzero x b (f (iterbf (+ x (- 1)))))
end

Figure 2.2: An implementation of the natural numbers represented as inte-
gers.

of these features have little or no interaction with Modules, and we shall not
consider them any further in this thesis.

2.1.2 The Standard ML Modules Language

At the most basic level, Modules extends the Core language with a facility for
defining type identifiers denoting parameterised types, and value identifiers
denoting the values of Core terms. Subsequent definitions may refer to
previously defined identifiers. The reason we view definitions as part of
Modules and not the Core is that they also give rise to module components,
as we shall see shortly.

For instance, the sequence of definitions in Figure 2.1 defines the type
identifier nat (with no parameters), and the value identifiers zero, succ
(the successor function) and iter (an iterator). The definition of even uses
iter to give a simple-minded test for whether a (positive) integer is even.

Writing a large program as a long sequence of mostly unrelated defi-
nitions quickly becomes unmanageable. In Modules, we can encapsulate a



2.1 An Overview of Standard ML 11

structure IntNatAdd =
struct structure Nat = IntNat;

val add = λn.λm.(Nat.iter) n (Nat.succ) m
end

Figure 2.3: A structure with a substructure.

sig type nat = int;
val zero : nat;
val succ : nat→nat;
val iter : ∀’a.’a → (’a → ’a) → (nat →’a)

end

Figure 2.4: The signature of a structure implementing naturals using the
integers.

body of Core definitions into a unit called a structure, by surrounding it with
the keywords struct and end. We can then bind this anonymous structure
to a structure identifier. In Figure 2.2, the identifier IntNat refers to the
collection of components in its definition. Intuitively, IntNat defines an
implementation of the natural numbers as a subset of the integers.

The components of a structure identifier can be accessed by using the dot
notation. For instance, the type IntNat.nat refers to the type component
nat of IntNat and denotes the type int. The term IntNat.zero refers to
the value component zero of IntNat. It evaluates to 0, and has type int.

Structure bodies may themselves contain definitions of (sub)structures.
We can use this to express the architecture of a system as a hierarchy of
components. Figure 2.3 defines a structure IntNatAdd with one substructure
Nat and an addition function derived from Nat. Component structures are
also accessed via the dot notation, e.g. IntNatAdd.Nat. By iterating the dot
notation, we can refer to type, term and structure components defined at
arbitrary depths. Component identifiers must be uniquely defined within a
structure body, but may be reused within different substructures, providing
a good mechanism for name space control.

Signature expressions are used to specify the types of structures, by list-
ing the specifications of their components. A signature expression consists of
a body of component specifications, encapsulated by the key words sig and
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sig type nat : 0;
val zero : nat;
val succ : nat → nat;
val iter : ∀’a.’a → (’a → ’a) → (nat →’a)

end

Figure 2.5: The signature of a structure implementing naturals using an
arbitrary type.

structure ResIntNat =
IntNat � sig type nat : 0;

val succ : nat → nat;
val iter : nat → (nat → nat) → (nat → nat)

end

Figure 2.6: A curtailed view of IntNat.

end. Subsequent specifications may refer to previously defined and specified
identifiers. The signature in Figure 2.4 specifies the type of a structure im-
plementing naturals using the given definition int for the type component
nat. The signature in Figure 2.5, on the other hand, specifies the type of
a structure implementing naturals using some definition of kind 0 for the
type component nat. Observe that a type component may be specified in
one of two ways, either by specifying its actual definition, or, more flexibly,
by only specifying its kind, permitting a variety of actual definitions.

Roughly speaking, a structure expression matches a signature if it im-
plements all of the components specified in the signature. In particular, the
structure must realise all of the type components that are merely specified
but not defined in the signature. Moreover, the structure must enrich the
signature subject to this realisation: every specified type must be imple-
mented by an equivalent type; every specified value must be implemented
by a value whose type is at least as general as its specification; finally, ev-
ery specified structure must be implemented by a structure that enriches
its specification. The order in which components of the structure are actu-
ally defined is irrelevant. Furthermore, the structure is free to define more
components than specified in the signature.

Signatures play a number of different roles.



2.1 An Overview of Standard ML 13

structure AbsNat =
IntNat \ sig type nat : 0;

val zero : nat;
val succ : nat → nat;
val iter : ∀’a.’a → (’a → ’a) → (nat → ’a)

end

Figure 2.7: An abstract view of IntNat.

In Figure 2.6 we define a new structure ResIntNat corresponding to a
restricted view of IntNat. The infix operator � means that the signature,
which is matched by IntNat, is used to curtail its implementation by hiding
its zero component and restricting the polymorphism of its iter component.
However, the actual realisation of the type component ResIntNat.nat by
the type int remains transparent, even though its definition is not specified
in the signature. For instance the application ResIntNat.succ (-3) is still
well-typed, because -3 has type int. Note, however, that -3 does not
correspond to the representation of a natural number.

In Figure 2.7 we define a new structure AbsNat corresponding to an
abstract view of IntNat. The infix operator \ means that the signature,
which is matched by IntNat, is used to abstract its implementation by
generating a new type for the specified type nat. The realisation of the
type component nat by the type int is effectively forgotten. In this way,
AbsNat defines an abstract datatype of natural numbers. For instance the
application AbsNat.succ (-3) is no longer well-typed, since -3 has type
int but AbsNat.succ expects a value of the abstract type AbsNat.nat,
e.g. AbsNat.zero. In general, abstractions also have a curtailment effect,
although this is not illustrated in this example.

Finally, Standard ML supports the definition of parameterised structures
called functors. Intuitively, a functor is a function mapping structures to
structures. Figure 2.8 defines a functor called AddFun with formal param-
eter N, which is assumed to match the specified signature. The structure
expression to the right of the = sign is the body of the functor and refers to
the formal argument. The body may assume no more information about N
than is specified in its signature. This provides another form of abstraction:
the functor AddFun can be defined before any structure implementing the
naturals has been written.

A functor is used to create a structure by applying it to an actual ar-
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functor AddFun(N:sig type nat : 0;
val zero : nat;
val succ : nat → nat;
val iter : ∀’a.’a → (’a → ’a) →

(nat → ’a)
end) =

struct structure Nat = N;
val add = λn.λm. (Nat.iter) n (Nat.succ) m

end
in

...

structure IntNatAdd = AddFun IntNat;
structure AbsNatAdd = AddFun AbsNat

Figure 2.8: A functor and its application.

gument. The actual argument must match the formal argument’s signa-
ture. Figure 2.8 shows two different applications of AddFun. The defini-
tion of IntNatAdd evaluates to the same implementation as IntNatAdd in
Figure 2.3. Observe that AddFun is applied twice, to arguments that actu-
ally differ in the implementation of their type component nat (recall that
AbsNat.nat is an abstract type distinct from int). Moreover, each applica-
tion propagates the actual realisation of the specified type component. Thus
we can exploit the fact that IntNatAdd.Nat.nat is actually int, and that
AbsNatAdd.Nat.nat is the same as the abstract type AbsNat.nat.

The functor GenFun in Figure 2.9 illustrates a different property of func-
tors. GenFun almost defines an identity function on natural number struc-
tures, except that it returns the result of abstracting its argument by its
signature. In particular, each application GenFun generates a new abstract
type: we call this the generative property of functor application. For ex-
ample, the types X.nat and Y.nat are incompatible, even though GenFun is
applied to the same argument in each case.

In general, functors allow us to decompose a large programming task into
separate subtasks which may be implemented in isolation. The propagation
of type realisations means that we can use functors to extend existing types
with operations compatible with those types. The generative property of
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functor GenFun(N:sig type nat : 0;
val zero : nat;
val succ : nat → nat;
val iter : ∀’a.’a → (’a → ’a) →

(nat → ’a)
end) =

N \ sig type nat : 0;
val zero : nat;
val succ : nat → nat;
val iter : ∀’a.’a → (’a → ’a) → (nat → ’a)

end
in
structure X = GenFun IntNat;
structure Y = GenFun IntNat

Figure 2.9: A generative functor.

functors ensures that conceptually distinct applications of the same functor
return distinct abstract types. In Standard ML, a functor may only be
defined at the outermost or top-level of a program. In particular, a functor
may not be defined as a component of a structure, applied to a functor, or
return another functor as a result. These restrictions mean that functors
are first-order mappings on structures.

Functors are commonly used to combine structures. Frequently, these
structures need to interact via values of a shared type. Consider the example
in Figure 2.10. The functor SQ is a first attempt to implement a sum-of-
squares function using the addition and multiplication functions provided
by its argument’s substructures, AddNat and MultNat. Unfortunately, it
fails to type-check because the argument’s signature does not specify that
these substructures must share the same representation of natural num-
bers. In the original version of Standard ML [MTH90], we could specify
the required sharing by inserting a type sharing constraint sharing type
AddNat.Nat.nat = MultNat.Nat.nat at the end of the argument’s signa-
ture. Another way of achieving this, adopted in the revision of Standard ML
[MTH96], and illustrated in Figure 2.11, is to specify the sharing directly
at the specification of MultNat.Nat.nat by using the concrete specification
type nat = AddNat.Nat.nat.

Remark 2.1.1. Originally, Standard ML [MTH90] also supported an addi-
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functor SQ(X:sig structure AddNat :
sig structure Nat :

sig type nat : 0
end;

val add: Nat.nat → Nat.nat → Nat.nat
end;

structure MultNat :
sig structure Nat :

sig type nat : 0
end;

val mult: Nat.nat → Nat.nat → Nat.nat
end

end) =
struct val sumsquare =

λn.λm. X.AddNat.add (X.MultNat.mult n n)
(X.MultNat.mult m m)

end;

Figure 2.10: A functor that fails to type-check due to inadequate sharing.
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functor SQ(X:sig structure AddNat :
sig structure Nat :

sig type nat : 0
end;

val add: Nat.nat → Nat.nat → Nat.nat
end;

structure MultNat :
sig structure Nat :

sig type nat = AddNat.Nat.nat
end;

val mult: Nat.nat → Nat.nat → Nat.nat
end

end) =
struct val sumsquare =

λn.λm. X.AddNat.add (X.MultNat.mult n n)
(X.MultNat.mult m m)

end;

Figure 2.11: A functor that type-checks thanks to specified sharing.
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tional, stronger notion of sharing, called structure sharing. Encapsulating a
body of declarations within struct and end generated a new internal struc-
ture name, or stamp, for the expression, similar to the generation of a fresh
abstract type. However, the name identified the entire structure, not just in-
dividual types. In signatures, structure sharing constraints could be used to
specify structure components with shared names. This made it possible to
specify sharing not only of types, but also of values, since any two structures
which shared the same name must have originated from a common ancestor.
This interesting but little used feature has been abandoned in the revised
definition of Standard ML [MTH96]. The move simplifies the semantics,
benefitting both the working programmer and language implementor.

2.1.3 Summary

At first glance, the Modules language appears to be nothing more than
a small, explicitly typed functional language. On closer inspection, how-
ever, this analogy breaks down because Modules has many interesting fea-
tures that are not accounted for in conventional functional programming
languages. The ability to define structures, containing definitions of both
types and values, is novel, and raises the question of what it means to project
a type component from a structure: in particular, do we need to evaluate
the structure at run-time to determine the meaning of the type component,
or is it sufficient to know the compile-time type of the structure. The syn-
tax of Modules seems to suggest that signatures are the types of structures,
but this cannot really be the case, because signatures can contain loosely
specified type components. For instance, the signature of a functor’s formal
argument may not fully determine the functor’s domain, while the declared
type of a function’s formal argument typically does determine the function’s
domain. Indeed, a functor can be applied to any argument that both realises
and enriches its argument signature. This is much more flexible than the
usual notion of function application, that requires the domain of the func-
tion and the type of its actual argument to be equal. Finally, the fact that
curtailing a structure by a signature does not hide the actual realisation of
the signature’s type components means that the curtailment phrase cannot
simply be regarded as the analog of a type constraint in a functional lan-
guage. The analogy does not hold for the abstraction phrase either, because
it can generate new types.



2.2 An Introduction to Type Theory 19

2.2 An Introduction to Type Theory

Although the published definition of Standard ML [MTH90, MT91, MTH96]
formally defines the Modules language, it makes few concessions to help the
reader understand its features. It particular, no attempt is made to relate
these features to well-known concepts developed in the theory of program-
ming languages. This has presented an obstacle not only to the understand-
ing of the language, but also to its further development.

Type Theory provides a framework for discussing issues of programming
language semantics. Mitchell’s textbook [Mit96] is a good introduction to
the use of Type Theory as a foundation for programming language analysis
and design. In this thesis, we use Type Theory as a guideline to both clarify
and generalise the static semantics of Modules. Our first step will be to
recast the static semantics of Modules using well-known concepts from Type
Theory. The purpose of this section is to provide a gentle introduction to
these concepts. We shall illustrate the ideas with examples that deliberately
evoke the examples used to present Standard ML in Section 2.1.

In its most general sense, a type theory is a formal language based on
a conceptual organisation of phrases in the language. A type is a phrase
that describes a collection of phrases with a common property: the type of
natural numbers, the type of pairs, the type of functions, and so on. It is
typically possible to distinguish between, on the one hand, the syntactic class
of term phrases exhibiting properties, and, on the other hand, the syntactic
class of type phrases describing these properties. The basic statements, or
judgements, we make in type theory are concerned with the classification
of term phrases (e.g. does a term have a type) and the equivalence of two
well-typed term phrases (e.g. are two terms equivalent at a type). In more
complicated type theories, we may even distinguish between different kinds
of type phrases, and make similar statements regarding the classification
and equivalence of type phrases. Typically, each judgement is captured by
a relation, whose definition is specified by a set of inference rules.

Type Theory has its origins in logic. Indeed, many type theories exhibit
a close correspondence with particular systems of constructive logic. For
such theories, types correspond to propositions of some logic and the rules
defining the well-typedness of terms can be put in one-to-one relation with
the inference rules of the logic. Such a correspondence is known as a Curry-
Howard isomorphism, and gives rise to the interpretation of “propositions as
types” [CF58, How80]. Each proposition is identified with a type, and each
proof of the proposition with a term of that type. The correspondence goes
deeper than this because the notions of equivalent proofs and equivalent
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terms also coincide. Thompson’s textbook [Tho91] gives a nice introduction
to the logical interpretation of Type Theory.

There is another interpretation of Type Theory that is more closely
related to Computer Science. In this interpretation, terms are programs,
and types are their specifications. The equational judgements between terms
capture program equivalences that may be directed to yield a notion of
program execution. In the special case where the type theory corresponds
to a constructive logic, we can think of the terms of the theory as programs
for constructing canonical proofs of their types.

For typed, general-purpose programming languages, that is languages
with state, non-termination, exceptions and other features, the connections
with logic are more tenuous. Nevertheless, the notion of type remains use-
ful as it can be viewed as a partial specification of a program’s behaviour.
Typically, the well-typedness of a program will guarantee the absence of
certain run-time errors corresponding to type violations such as using a nat-
ural number as a function, or accessing an undefined field of a record. In
an untyped programming language, these run-time errors are either ignored
at one’s peril, or must be detected and trapped at run-time, incurring an
additional overhead. Still, a program’s type may tell us nothing at all about
the program’s other properties such as termination, effect on the store or
exceptional behaviour. It is in this sense that types are merely partial spec-
ifications.

The following sections give a whistle-stop tour of some basic type theo-
retic constructs. We will focus on the kinds of programs these theories allow
us to express. The notation we use is inspired by the logical origins of each
construct, to which we shall allude whenever appropriate. We will start with
the simply typed λ-calculus, and then consider a sequence of orthogonal but
compatible extensions to it.

2.2.1 The Simply Typed Lambda Calculus

Figure 2.12 defines the phrase classes and grammar of the simply typed
λ-calculus (with type variables). Kind phrases κ ∈ Kind are used to classify
type phrases τ ∈ Type. The meta-variable α ranges over an infinite set of
type variables. Type phrases of kind ? (read “type”) are used to classify term
phrases e ∈ Term. The set of terms defines a language of explicitly typed
functions. The meta-variable x ranges over an infinite set of term variables.
A context C ∈ Context is a finite sequence of declarations (or assumptions)
relating term variables to their types and type variables to their kinds. Since
there is only a single kind ? ∈ Kind, the set of kinds is superfluous in this
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κ ∈ Kind ::= ? types classifying terms

τ ∈ Type ::= α type variable
| τ → τ ′ function space

e ∈ Term ::= x term variable
| λx:τ.e function
| e e′ application

C ∈ Context ::= εC empty context
| C,x:τ term declaration
| C,α:κ type declaration

Figure 2.12: Grammar of the simply typed λ-calculus.

theory; it is included here because we shall generalise it in later sections.
The judgements defining the theory of the simply typed λ-calculus are

defined as the least relations closed under the inference rules in Figure 2.13.
Because type and term phrases can contain free variables, our judgements
are relative to a context of assumptions concerning the classifications of free
variables.

The judgement ` C valid defines the set of valid contexts. The notation
Dom(C) is used to denote the set of variables declared in the context C. A
context is valid provided each variable in its domain is uniquely declared,
and the classification of each variable is well-formed with respect to the
preceding declarations in the context. The other judgments are formulated
in a way that ensures that contexts are valid. Note that a term variable’s
type must have kind ?.

The judgement C ` κ kind, read “in context C, κ is a kind”, defines
the set of valid kinds. In this system, the judgement happens to be trivial
because we only have the single kind ?.

The judgement C ` τ : κ, read “in context C, type τ has kind κ”,
classifies a type by its kind. A type variable α has a kind provided it
is declared with that kind in the context. The function space τ → τ ′,
classifying the collection of functions with domain τ and range τ ′, has kind
? provided the domain and range have kind ?.

The judgement C ` e : κ, read “in context C, term e has type τ”,
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Valid Contexts ` C valid

` εC valid

C ` κ kind α 6∈ Dom(C)
` C, α : κ valid

C ` τ : ? x 6∈ Dom(C)
` C, x : τ valid

Valid Kinds C ` κ kind

` C valid
C ` ? kind

Type Classification C ` τ : κ

` C, α : κ,C′ valid
C, α : κ,C′ ` α : κ

C ` τ : ? C ` τ ′ : ?
C ` τ → τ ′ : ?

Term Classification C ` e : τ

` C, x : τ,C′ valid
C, x : τ,C′ ` x : τ

C, x : τ ` e : τ ′

C ` λx:τ.e : τ → τ ′

C ` e : τ ′ → τ C ` e′ : τ ′

C ` e e′ : τ

Term Equivalence C ` e = e′ : τ

C ` λx:τ ′.e : τ ′ → τ C ` e′ : τ ′

C ` (λx:τ ′.e) e′ = [e′/x] (e) : τ (β)

(rules for congruence, symmetry, reflexivity and transitivity omitted)

Figure 2.13: Judgements of the simply typed λ-calculus.
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classifies a term by its type. A term variable x has a type provided it is
declared with that type in the context. A function λx:τ.e has type τ → τ ′

provided its body e has the type τ ′ under the additional assumption that
the parameter x has the declared type τ . An application e e′ has type τ ,
provided e is a function with domain τ ′ and range τ , and e′ has type τ ′.

The final judgement C ` e = e′ : τ , read “in context C, term e is
equivalent to term e′ at type τ” defines the notion of equivalence between
terms of the same type. We have only presented the key rule, Rule (β),
that equates a function application with the term obtained by substituting
the actual argument for the formal parameter of the function. By ordering
this equation from left-to-right we obtain a notion of typed reduction, which
can be used to evaluate terms to their normal form (the intuitive notion of
a term’s value). The resulting reduction relation is typed because it still
mentions premises requiring the well-typedness of terms. By erasing these
premises, we obtain a much more efficient notion of untyped reduction. It is
a meta-theorem of the theory that untyped reduction from well-typed terms
respects the equational judgements.

Example 2.2.1 (Typical Examples of Well-typed terms). The simplest exam-
ple of a function is the identity on terms of type α:

α : ? ` λx:α.x : α→ α.

A more involved example is the higher-order function that composes two
functions f and g:

α : ?, β : ?, γ : ? ` λf:β → γ.λg:α→ β.λx:α.f (g x)
: (β → γ) → (α→ β) → (α→ γ)

Remark 2.2.1 (The Logical Interpretation). By ignoring term phrases, read-
ing type variables as atomic propositions, and the function space as logical
implication ( ⊃ ), it is easy to see that the term classification rules corre-
spond to the inference rules of minimal intuitionistic propositional logic.

Remark 2.2.2 (The Phase Distinction). A typed programming language is
said to obey a phase distinction [Car88b] if the type of any term in the
language can be checked without evaluating arbitrary terms. This allows
the semantics of the language to be split into a static semantics of type
checking, that is performed at compile-time, and a dynamic semantics of
evaluation, that is performed at run-time. The phase distinction is impor-
tant because it ensures that the tractability of type checking is independent
of term evaluation, which, in typical programming languages, may fail to
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terminate. Viewing a type theory as a programming language, we can re-
gard its classification judgements as defining the type-checking phase, and
its term equivalence judgement as defining the evaluation phase. It is easy
to see that the simply typed λ-calculus obeys a natural phase distinction
because the classification rules for both terms and types are defined inde-
pendently of the term equivalence judgement.

As a programming language, the simply typed λ-calculus is not very
interesting. However, it is very easy to extend the calculus by adding new
phrases and inference rules. For instance, to define the type of integers
we can add the type constant int, numeric constants ī for each integer
i ∈ {. . . ,−2,−1, 0, 1, 2, . . .}, addition +, negation −, and a family of zero
tests ifzeroτ , together with the classification rules:

` C valid
C ` int : ?

` C valid i ∈ {. . . ,−2,−1, 0, 1, 2, . . .}
C ` ī : int
` C valid

C ` − : int → int
` C valid

C ` + : int → int → int
C ` τ : ?

C ` ifzeroτ : int → τ → τ → τ

and the equational rules:

C ` + ī j̄ : int
C ` + ī j̄ = i+ j : int

C ` − ī : int
C ` − ī = −i : int

C ` ifzeroτ 0̄ e e′ : τ
C ` ifzeroτ 0̄ e e′ = e : τ

C ` ifzeroτ ī e e′ : τ ī 6≡ 0̄
C ` ifzeroτ ī e e′ = e′ : τ

where ī ≡ j̄ if, and only if, the numeric constants ī and j̄ are syntactically
equal.

It is also possible to axiomatise structured types such as pairs, variants,
and lists. For instance, we can extend the calculus with labeled records
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of terms by assuming some infinite set of labels l ∈ Label, and adding
record type phrases {l0 : τ0, . . . , lk−1 : τk−1} (for k ≥ 0). The term phrase
{l0 = e0, . . . , lk−1 = ek−1} (for k ≥ 0) introduces a record type. The term
phrase e.l eliminates a record type by projecting on a field. We implicitly
identify record types that differ only in the ordering of fields. The rules will
ensure that all the fields of a record have distinct labels. Let [k] denote the
set of indices {i | 0 ≥ i < k} for k ≥ 0, and let l ≡ l′ hold if, and only if, the
labels l and l′ are syntactically equal. We extend our judgements with the
following rules:

∀i ∈ [k].C ` τi : ? ∀j ∈ [i− 1].li 6≡ lj

C ` {l0 : τ0, . . . , lk−1 : τk−1} : ?

∀i ∈ [k].C ` ei : τi ∀j ∈ [i− 1].li 6≡ lj

C ` {l0 = e0, . . . , lk−1 = ek−1} : {l0 : τ0, . . . , lk−1 : τk−1}

C ` e : {l0 : τ0, . . . , li : τi, . . . , lk−1 : τk−1} i ∈ [k]
C ` e.li : τi

For brevity, we omit the equational rules for records.
More importantly, it is easy to extend the computational power of the

calculus. For instance, by introducing fix-point operators, we obtain a lan-
guage with unbounded recursion. We simply add the term constant fixτ ,
one for each type τ , and the rule schemes:

C ` τ : ?
C ` fixτ : (τ → τ) → τ

C ` fixτ e : τ
C ` fixτ e = e (fixτ e) : τ

This turns the calculus into a general-purpose programming language.
Of course, adding fix-points makes the term equivalence judgement unde-
cidable. However, because of the phase distinction, the decidability of the
classification judgements is preserved.

Example 2.2.2 (Programming Examples). Using λ-abstraction, we can define
the successor function on integers as:

succ ≡ λx:int.+ x 1̄.

It is easy to derive:
` succ : int → int.
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We can group zero with the successor function to form a record whose
components may be used to generate the natural numbers:

` {z = 0̄, s = succ} : {z : int, s : int → int}.

For a given type τ , we can define a function for iterating functions over
τ as follows:

` λb:τ.λf:τ → τ .fixint→τ (λI:int → τ .λi:int.ifzeroτ i b (f (I (+ i (− 1̄)))))
: τ → (τ → τ) → (int → τ).

Unfortunately, we have to redefine this function for each choice of τ .
This is because we need to appeal to different incarnations of the fix point
operator and zero test whenever we need a different result type τ .

2.2.2 Quantification over Types of a Kind

From a logical perspective, a natural generalisation of propositional logic
is to allow universal and existential quantification over propositional vari-
ables, leading to second-order propositional logic. Figure 2.14 summarises
the additional phrases and rules.

Let us first consider the addition of universally quantified types ∀α:κ.τ .
In the simply-typed λ-calculus, we could parameterise a term by a term,
and apply a parameterised term to a term argument. In this extension,
we can parameterise a term by a type, and apply a type-parametric term
to a type argument. If e has type τ , then the parameterised term Λα:κ.e
has type ∀α:κ.τ , introducing a universal quantifier. If e has type ∀α:κ.τ ′

then the application e [τ ] has type [τ/α] (τ ′), eliminating a universal quan-
tifier. We adopt the standard notational convention of using Λ to bind type
parameters, to distinguish it from λ that binds term parameters; we also
enclose type arguments in square brackets ([ ]) to distinguish them from
term arguments.

Example 2.2.3 (Typical Examples of Well-typed terms). A simple example
is the function that, for any type argument, returns the identity function on
that type:

` Λα:?.λx:α.x : ∀α:?.α→ α

By applying this function, call it id , to different type arguments, we obtain
different instances of the identity function. Thus, assuming int and bool
are types we have:

` id [int] : int → int,
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τ ∈ Type ::= . . .
| ∀α:κ.τ universal quantification
| ∃α:κ.τ existential quantification

e ∈ Term ::= . . .
| Λα:κ.e type parameterisation
| e [τ ] type application
| pack τ e as ∃α:κ.τ ′ type abstraction
| open e as α:κ, x:τ in e′ accessing an abstraction

Type Classification C ` τ : κ

C, α : κ ` τ : ?
C ` ∀α:κ.τ : ?

C, α : κ ` τ : ?
C ` ∃α:κ.τ : ?

Term Classification C ` e : τ

C, α : κ ` e : τ
C ` Λα:κ.e : ∀α:κ.τ

C ` e : ∀α:κ.τ ′ C ` τ : κ
C ` e [τ ] : [τ/α] (τ ′)

C ` ∃α:κ.τ ′ : ? C ` τ : κ C ` e : [τ/α] (τ ′)
C ` pack τ e as ∃α:κ.τ ′ : ∃α:κ.τ ′

C ` ∃α:κ.τ : ? C ` e : ∃α:κ.τ C, α : κ, x : τ ` e′ : τ ′ C ` τ ′ : ?
C ` open e as α:κ, x:τ in e′ : τ ′

Term Equivalence C ` e = e′ : τ

C ` Λα:κ.e : ∀α:κ.τ ′ C ` τ : κ
C ` (Λα:κ.e) [τ ] = [τ/α] (e) : [τ/α] (τ ′)

C ` open (pack τ e as ∃α:κ.τ ′) as α:κ, x:τ ′ in e′ : τ ′′

C ` open (pack τ e as ∃α:κ.τ ′) as α:κ, x:τ ′ in e′ = [e/x] ([τ/α] (e′)) : τ ′′

Figure 2.14: Adding Second-Order Quantification.
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and
` id [bool] : bool → bool.

Similarly, we can define a function that, when applied to three type
arguments, returns a composition function for functions on those types:

` Λα:?.Λβ:?.Λγ:?.λf:β → γ.λg:α→ β.λx:α.f (g x) :
∀α:?.∀β:?.∀γ:?.(β → γ) → (α→ β) → (α→ γ)

From a programming language perspective, adding universal quantifica-
tion allows us to express polymorphic programs. A polymorphic program is
a program whose operation is generic in a type. The operation of appending
two lists is a good example of a polymorphic operation, since it is indepen-
dent of the type of elements stored in the list. With simple types, we have
to define a new, but essentially identical, append operation for each type of
list element. Polymorphism allows us to get away with a single definition,
leading to substantial savings in code and maintenance.

Example 2.2.4 (Programming Examples). With the ability to declare univer-
sally quantified types we can replace the infinite sets of constants ifzeroτ

and fixτ by two polymorphic constants ifzero and fix:

` C valid
C ` ifzero : ∀α:?.int → α→ α→ α

C ` ifzero [τ ] 0̄ e e′ : τ
C ` ifzero [τ ] 0̄ e e′ = e : τ

C ` ifzero [τ ] ī e e′ : τ i 6≡ 0
C ` ifzero [τ ] ī e e′ = e′ : τ

` C valid
C ` fix : ∀α:?.(α→ α) → α

C ` fix [τ ] e : τ
C ` fix [τ ] e = e (fix [τ ] e) : τ

Moreover, we can exploit the polymorphism of fix and ifzero to give a
polymorphic definition of iteration:

iter ≡
Λα:?.λb:α.λf:α→ α.

fix [int → α] (λI:int → α.λi:int.ifzero [α] i b (f (I (+ i (− 1̄)))))
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It is easy to derive:

` iter : ∀α:?.α→ (α→ α) → (int → α)

We can now group the definition of zero, successor and polymorphic
iteration into a record providing an implementation of the natural numbers:

IntNat ≡ {z = 0̄, s = succ, i = iter}.

If we define the syntactic abbreviation:

NAT (τ) ≡ {z : τ, s : τ → τ, i : ∀α:?.α→ (α→ α) → (τ → α)},

then we can show that:

` IntNat : NAT (int).

Finally, we can define something like a functor on records of type NAT (α),
for any α:

AddFun ≡ Λα:?.λX:NAT (α).{N = X,add = λn:α.λm:α.X.i [α] n X.s m}.

For AddFun, we have:

` AddFun : ∀α:?.NAT (α) → {N : NAT (α),add : α→ α→ α}.

We stress that NAT (τ) is a meta-level type abbreviation: it is not part
of the syntax of the calculus.

Existential quantification, on the other hand, allows us to make the type
of a term abstract by hiding some of the structure of its type. The term
pack τ e as ∃α:κ.τ ′ pairs the type τ with the term e and introduces an
existential quantifier. Its type is derived from e’s type, by hiding occurrences
of the specified type τ according to the template ∃α:κ.τ ′. The template is
necessary to indicate which occurrences of τ (i.e. those marked by α) are to
be hidden, and which are to remain visible. We can think of τ as the witness
to the existentially quantified type variable, and e as the term component of
the compound term.

The term open e as α:κ, x:τ in e′ eliminates an existential quantifier.
Assume e has the existential type ∃α:κ.τ . Opening e provides the term e′

with access to the witness and term component of e. The type τ ′ of the
entire phrase is the type of e′. To ensure the witness remains hidden, e′ may
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assume no more about it than that it is simply some type α of kind κ, and
that the term component is a term x of type τ (mentioning α): the witness
is hypothetical. The premise C ` τ ′ : ? ensures that the hypothetical witness
does not escape its scope by appearing in the result type τ ′: this guarantees
that the type of the complete phrase is independent of the actual witness to
α.

As a programming construct, existential types correspond to abstract
data types [MP88]. Informally, an abstract data type consists of a set with a
hidden representation and one or more operations over that representation,
packaged up in a way that limits access to the representation according to
some interface. Similarly, a term e of type ∃α:κ.τ defines some type (the
witness of α) with an operation (the term component of e) over this type.
The type τ describes the interface of the abstract type to any client of e.
Access to the abstract type is provided by opening e in the scope of the client.
The operation e may, of course, be a record containing several operations,
with its interface τ taking the form of a record type.

Example 2.2.5 (Programming Example). For instance, if we define:

AbsNat ≡ pack int IntNat as ∃β:?.NAT (β)

then, having quantified over all occurrences of int in the type of IntNat , we
obtain:

` AbsNat : ∃β:?.NAT (β).

To use this term as an abstract implementation of the natural numbers,
we first have to open it:

open AbsNat as β:?,X:NAT (β) in
pack β AddFun [β] X as ∃γ:?.{N : NAT (γ),add : γ → γ → γ}

This term evaluates to an abstract implementation of the naturals with
addition. Since β is an ordinary type variable, denoting the witness of
AbsNat, the fact that this witness is actually int is hidden from the client:

pack β AddFun [β] X as ∃γ:?.{N : NAT (γ),add : γ → γ → γ}.

Indeed, we can replace AbsNat by another abstract data type that uses a
different representation of the naturals, without affecting the type of the
complete program. In fact, we can replace AbsNat by any term of type
∃β:?.NAT (β) allowing the choice of representation to vary with the run-
time value of that term.
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Remark 2.2.3 (Impredicativity). In this system, quantified types are just
ordinary types of kind ?. This means that we can write programs which,
at run-time, choose between different implementations of an abstract data
type or polymorphic function.

Type theories such as this, in which quantifying over some element of
a universe (in this instance, the universe of types of kind ?) results in an
element of the same universe, are called impredicative. This terminology
distinguishes them from predicative theories in which quantification results
in an element of a higher universe to which typically fewer operations apply.

2.2.3 Parameterisation over Types of a Kind

In Section 2.2.2, adding polymorphism meant extending the grammar
of term phrases with terms parameterised by types, and terms applied to
types. A rather different, in fact orthogonal, extension of the simply typed λ-
calculus is to generalise the class of type phrases to allow types parameterised
by types, Λα:κ.τ , and applications of types to types, τ [τ ′].

An intuitive example of a parameterised type is the generic type constant
list that, when applied to an actual type argument τ , constructs the type
list [τ ]. Intuitively, this type classifies terms that evaluate to lists of terms
of type τ . This raises the question of what kind of type list is. The type
constant list is a type phrase, but is not itself of kind ?, since it doesn’t
directly classify terms. Instead, we should think of list as a function on
types: supplied with an argument τ of kind ?, it constructs a type of kind
?. To formalise this intuition, we extend the grammar of kinds with the
function space κ→ κ′. We can then express the kind of list as the function
space ?→ ?.

Figure 2.15 summarises the additional phrases and rules needed to ex-
tend the simply typed λ-calculus with parameterised types. Intuitively, these
additions amount to turning the syntax of types into a simply typed λ-
calculus, with types playing the role of “terms”, and kinds playing the role
of “types”. The calculus at this level is a little simpler than the one in
Section 2.2.1 since we only have a single “type” constant, the kind ?, and
no “type” variables, but the ideas are the same. Since the equivalence of
type phrases is no longer syntactic, but must take into account the notion
of β-equivalence at the level of types, we also introduce the new equational
judgement C ` τ = τ ′ : κ that formalises the equivalence between type
phrases of the same kind. To make use of this equivalence, we require an
additional term classification rule that allows us to view a term at syntacti-
cally different, but equivalent, types.
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κ ∈ Kind ::= . . .
| κ→ κ′ function space

τ ∈ Type ::= . . .
| Λα:κ.τ type parameterisation
| τ [τ ′] type application

Type Classification C ` τ : κ

C, α : κ ` τ : κ′

C ` Λα:κ.τ : κ→ κ′

C ` τ : κ′ → κ C ` τ ′ : κ′

C ` τ [τ ′] : κ

Type Equivalence C ` τ = τ ′ : κ

C, α : κ′ ` τ : κ C ` τ ′ : κ′

C ` (Λα:κ′.τ) [τ ′] = [τ ′/α] (τ) : κ

(rules for congruence, symmetry, reflexivity and transitivity omitted)

Term Classification C ` e : τ

C ` e : τ C ` τ = τ ′ : ?
C ` e : τ ′

Figure 2.15: Adding Type Parameterisation.
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Remark 2.2.4 (The Logical Interpretation). From a logical perspective, this
extension alone is not particularly meaningful. However, if we combine it
with the extension to quantified types, we obtain a system that corresponds
to higher-order propositional logic. That is, we can now quantify not only
over propositions, but also over functions from propositions to propositions
and so on.

Example 2.2.6 (Programming Examples). Assuming the presence of quan-
tified types, we can extend the calculus with parametric lists by adding
the type constant list and the polymorphic term constants nil, succ and
listcase with the following axioms.

` C valid
C ` list : ?→ ?

` C valid
C ` nil : ∀α:?.list [α]

` C valid
C ` cons : ∀α:?.α→ (list [α]) → (list [α])

` C valid
C ` listcase : ∀α:?.∀β:?.(list [α]) → β → (α→ (list [α]) → β) → β

C ` listcase [τ ] [τ ′] (nil [τ ]) e e′ : τ ′

C ` listcase [τ ] [τ ′] (nil [τ ]) e e′ = e : τ ′

C ` listcase [τ ] [τ ′] (cons [τ ] a l) e e′ : τ ′

C ` listcase [τ ] [τ ′] (cons [τ ] a l) e e′ = e′ a l : τ ′

In Example 2.2.4, we defined the shorthand NAT (τ) as an informal
syntactic abbreviation at the meta-level; now we can express the equivalent
parameterised type within the language:

NAT ≡ Λα:?.{z : α, s : α→ α, i : ∀β:?.β → (β → β) → (α→ β)}.

and use it as object-level syntax. It is easy to show that ` NAT : ?→ ?.
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Similarly, since we can parameterise over higher kinds (i.e. functional
kinds), we can give an analogous specification of a package for polymorphic
stacks, parameterised by the type constructor α implementing stacks:

Stack ≡ Λα:?→ ?.

{empty : ∀β:?.α [β],push : ∀β:?.β → (α [β]) → (α [β]), . . .}.

It is easy to show that ` Stack : (?→ ?) → ?. For instance, we can show
that the naive implementation of stacks in terms of the list constructor has
the type Stack [list]:

` {empty = nil,push = cons, . . .} : Stack [list].

Remark 2.2.5 (The Effect on the Phase Distinction). This extension does
not affect the phase distinction, since none of the additional classification
rules mention the term equivalence judgement. Although a type checker
must do some non-trivial equational reasoning on types, the reasoning is
still independent of the run-time equivalence of terms.

2.2.4 Subtypes

In the previous section, we extended the calculus with an equational theory
on types, and added a rule allowing us to treat a term as having different,
but equivalent types. Intuitively, equivalent type phrases classify equiva-
lent collections of terms. A generalisation of this idea is to impose, not an
equivalence relation, but a pre-order on types. Intuitively, if the pre-order
C ` τ ⊆ τ ′ : ? holds (in context C), then the collection of terms classified by
τ is a sub-collection of the terms classified by τ ′. We say that τ is a subtype
of τ ′. To make use of subtyping, we need to add a new term classification
rule, called the subsumption rule, that allows any term e of type τ to be
used at type τ ′. For subtyping to make sense, it must be the case that every
operation on terms of type τ ′ is also defined on terms of the type τ . A more
permissive interpretation of subtyping is to allow C ` τ ⊆ τ ′ : ? provided
each term e in the collection τ can be coerced to a term in the collection
τ ′ in some coherent manner1. This corresponds to allowing a non-trivial
injection from τ into τ ′ rather than a simple inclusion of τ in τ ′.

In theories with subtyping and functions, one typically adopts the fol-
lowing subtyping rule for function spaces. We say that τ1 → τ2 is a subtype
of τ ′1 → τ ′2 if, and only if, the domain τ ′1 is a subtype of τ1, and the range τ2

1Roughly speaking, coherence means that the coercions resulting from different deriva-
tions of the same classification judgement are semantically equivalent.
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SubTyping C ` τ ⊆ τ ′ : κ

C ` α : ?
C ` α ⊆ α : κ

C ` τ1 → τ2 : ? C ` τ ′1 → τ ′2 : ?
C ` τ ′1 ⊆ τ1 : ? C ` τ2 ⊆ τ ′2 : ?

C ` τ1 → τ2 ⊆ τ ′1 → τ ′2 : ?

Term Classification C ` e : τ

C ` e : τ C ` τ ⊆ τ ′ : ?
C ` e : τ ′

Figure 2.16: Adding Subtyping.

is a subtype of τ ′2. Observe that this definition is monotonic in the ranges,
but anti-monotonic in the domains of the function spaces, which is why it
is often called the contravariant rule. It is easy to motivate the contravari-
ant rule if we view types as collections of terms. If every term in τ ′1 also
belongs to τ1, then any function on terms in τ1 is, less generally, a function
on terms in τ ′1. Similarly, if every term in τ2 also belongs to τ ′2, then any
function returning terms in τ2 is, less generally, a function returning terms
in τ ′2. Combining these ideas, we can say that the collection of functions
with domain τ1 and range τ2 is a subcollection of the functions with domain
τ ′1 and range τ ′2.

Figure 2.16 shows the addition of subtyping to the simply typed λ-
calculus, employing contravariant subtyping of function spaces and reflexive
subtyping of type variables. Of course, this definition is trivial unless we
add some specific subtyping judgements to get things started.

Remark 2.2.6 (The Logical Interpretation). If τ and τ ′ represent propositions
in the context C, then the judgement C ` τ ⊆ τ ′ : ? means that every proof
of τ is also a proof of τ ′.

Example 2.2.7 (Record Subtyping). A very natural idea is to construct a
subtyping relation based on the structure of records. The intention is to
allow the language to treat any record of type τ ≡ {l0 : τ0, . . . , lm−1 : τm−1}
as a record of type τ ′ ≡ {l0 : τ0, . . . , ln−1 : τn−1}, provided m ≥ n, i.e.
every field of τ ′ is declared with the same type in τ . Intuitively, this makes
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sense because a record of the wider type τ already supports all the field
projections required of a record of the narrower type τ ′ (and then some).
Informally, we can view τ as a subcollection of τ ′ if we interpret the record
type {l0 : τ0, . . . , ln−1 : τn−1} as the collection of record terms containing
at least the named components l0 through ln−1 of the appropriate type. To
axiomatise subtyping on records, we add record types as before together
with the subtyping rule:

C ` {l0 : τ0, . . . , lm−1 : τm−1} : ? C ` {l0 : τ ′0, . . . , ln−1 : τ ′n−1} : ?
∀i ∈ [n].C ` τi ⊆ τ ′i : ? m ≥ n

C ` {l0 : τ0, . . . , lm−1 : τm−1} ⊆ {l0 : τ ′0, . . . , ln−1 : τ ′n−1} : ?

This rule is slightly more general than we let on: it merely requires
that the types of corresponding fields are in the subtype relation, without
requiring them to be equivalent. Note also that the equivalence on record
types means that the ordering of fields is arbitrary, so there is no requirement
that the fields actually occur in the order we chose to present the rule.

Example 2.2.8 (Programming Examples). Suppose we adopt record subtyp-
ing and extend subtyping to quantified types by adding the covariant rule:

C ` ∀α:κ.τ : ? C ` ∀α:κ.τ ′ : ? C, α : κ ` τ ⊆ τ ′ : ?
C ` ∀α:κ.τ ⊆ ∀α:κ.τ ′ : ?

and an analogous rule for the existential quantifier.
Then, continuing with our previous examples, consider the record IntNat ′:

IntNat ′ ≡
{z = 0̄, s = succ, i = iter ,p = λx:int.ifzero [int] x 0̄ (+ x (− 1̄))}

It generalises IntNat by declaring an additional field p containing the
predecessor function. Without appealing to subtyping we have:

` IntNat ′ :
{z : int, s : int → int, i : ∀α:?.α→ (α→ α) → (int → α),p : int → int}.

Unfortunately, the application AddFun [int] IntNat ′ is ill-typed, since the
function AddFun [int] does not expect an argument with a p-component.

However, with record subtyping, we have:

`{z : int, s : int → int, i : ∀α:?.α→ (α→ α) → (int → α),p : int → int}
⊆ {z : int, s : int → int, i : ∀α:?.α→ (α→ α) → (int → α)} : ?
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Hence we can derive:

` IntNat ′ : {z : int, s : int → int, i : ∀α:?.α→ (α→ α) → (int → α)}

and effectively ignore the existence of the additional p-component. It follows
that the application AddFun [int] IntNat ′ is well-typed.

In fact, arguing rather differently, we can preserve the original type of
IntNat ′ but employ the contravariant subtyping rule for function spaces.
The idea is to reason that AddFun [int] also has the type of a function with
the richer domain:

{z : int, s : int → int, i : ∀α:?.α→ (α→ α) → (int → α),p : int → int},

and then use this judgement to show that the application is well-typed.

Remark 2.2.7 (The Effect on the Phase Distinction). Adding subtypes does
not affect the phase distinction. Although a type checker must do some
non-trivial reasoning about subtypes, this reasoning is still independent of
the run-time equational theory of terms.

2.2.5 First-Order Quantification

From a logical perspective, a natural generalisation of propositional logic
is to extend the grammar of propositions with predicates on terms, and to
permit the formation of new propositions by first-order universal and exis-
tential quantification over terms. This leads to first-order predicate logic.
Figures 2.17 and 2.18 summarise the additions to the simply typed λ-calculus
needed for a type-theoretic interpretation of predicates and first-order quan-
tifiers. Types with first-order dependencies on terms are often called depen-
dent types in the literature.

The idea is to view a predicate as a type phrase, that, when applied to
some terms, yields a proposition. To do this, we generalise the grammar of
type phrases with applications, τ e, of types to terms. To classify this new
form of application, we also extend the structure of kinds with the function
space τ → κ that classifies type phrases mapping terms of type τ to types
of kind κ.

For instance, if we view the type variable α as a collection of terms, then
the kind α→ ? classifies the collection of unary predicates on α. Similarly,
the kind α→ α→ ? classifies the collections of binary predicates on α. If Φ
is a predicate of kind α→ ?, and a is a term of type α, then the application,
Φ a, is the proposition that Φ holds for a.
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κ ∈ Kind ::= . . .
| τ → κ function space

τ ∈ Type ::= . . .
| τ e type application
| ∀x:τ.τ ′ universal quantification
| ∃x:τ.τ ′ existential quantification

e ∈ Term ::= . . .
| 〈e, e′〉 as ∃x:τ.τ ′ pairing
| fst e first projection
| snd e second projection

Valid Kinds C ` κ kind

C ` τ : ? C ` κ kind
C ` τ → κ kind

Type Classification C ` τ : κ

C ` τ : τ ′ → κ C ` e : τ ′
C ` τ e : κ

C, x : τ ` τ ′ : ?
C ` ∀x:τ.τ ′ : ?
C, x : τ ` τ ′ : ?
C ` ∃x:τ.τ ′ : ?

Figure 2.17: Adding First-Order Quantification.
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Type Equivalence C ` τ = τ ′ : κ

C ` τ : τ ′ → κ C ` e = e′ : τ ′

C ` τ e = τ e′ : κ (=)

(other rules for congruence, symmetry, reflexivity and transitivity omitted)

Term Classification C ` e : τ

C, x : τ ` e : τ ′

C ` λx:τ.e : ∀x:τ.τ ′

C ` e : ∀x:τ ′.τ C ` e′ : τ ′

C ` e e′ : [e′/x] (τ)

C ` ∃x:τ.τ ′ : ? C ` e : τ C ` e′ : [e/x] (τ ′)
C ` 〈e, e′〉 as ∃x:τ.τ ′ : ∃x:τ.τ ′

C ` e : ∃x:τ.τ ′
C ` fst e : τ

C ` e : ∃x:τ.τ ′

C ` snd e : [fst e/x] (τ ′)

C ` e : τ ′ C ` τ ′ = τ : ?
C ` e : τ

Term Equivalence C ` e = e′ : τ

C ` λx:τ ′.e : ∀x:τ ′.τ C ` e′ : τ ′

C ` (λx:τ ′.e) e′ = [e′/x] (e) : [e′/x] (τ)

C ` fst (〈e, e′〉 as ∃x:τ.τ ′) : τ
C ` fst (〈e, e′〉 as ∃x:τ.τ ′) = e : τ

C ` snd (〈e, e′〉 as ∃x:τ.τ ′) : τ ′′

C ` snd (〈e, e′〉 as ∃x:τ.τ ′) = e′ : τ ′′

Figure 2.18: Adding First-Order Quantification (cont.)
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In order to classify functions from term to terms, we need to extend
the notion of simple function space τ → τ ′ to the dependent function space
∀x:τ.τ ′. Consider the parameterised term λx:τ.e. Observe that, because
types may contain terms, the actual type τ ′ of the body e may depend on
the term parameter x. Universally quantifying over x in the type ∀x:τ.τ ′

of λx:τ.e captures this dependency. Intuitively, the type ∀x:τ.τ ′ describes a
collection of functions f that, when applied to an argument a in the collection
τ , return a term in the collection [a/x] (τ ′). Correspondingly, the type of an
application is obtained by substituting the actual argument in the body of
the function’s type. Of course, the choice of the notation is not accidental:
a function f of type ∀x:α.Φ x corresponds to a proof of the proposition
∀x:α.Φ x. Whenever we apply f to a term a of type α, it returns a proof
of the proposition Φ a. We can view the non-dependent function space
τ → τ ′ as a degenerate case of universal quantification if we adopt the
notational abbreviation τ → τ ′ for ∀x:τ.τ ′ whenever x does not occur free
in τ ′, i.e. whenever the dependency is vacuous. In this sense, the rules for
classifying a function λx:τ.e and an application e e′ of Figure 2.17 generalise
the corresponding rules of Figure 2.13, which may now be removed.

We can also add the first-order existential quantifier ∃x:τ.τ ′. It helps to
consider the special case where the proposition τ ′ is an applied predicate
Φ x. Intuitively, a (constructive) proof of the proposition ∃x:τ.Φ x is a
dependent pair 〈a, e〉 as ∃x:τ.Φ x, consisting of a witnessing term a of type
τ , together with a proof e of the proposition Φ a. The template ∃x:τ.Φ x is
needed to indicate which occurrences of a in the type of e (i.e. those marked
by x) are to be quantified. Access to the components of a pair is provided
by the two term projections fst e and snd e. In the classification rule for
snd e, the dependency of the second component’s type on the quantified
variable x is eliminated by substituting the first projection fst e for x. We
can view the non-dependent cross product τ × τ ′ as a degenerate case of
existential quantification if we adopt the notational abbreviation τ × τ ′ for
∃x:τ.τ ′, whenever x does not occur free in τ ′, i.e. whenever the dependency
is vacuous.

Example 2.2.9 (from Logic). Consider the judgement:

α : ?,Φ : α→ ?, x : α ` λf:∀y:τ.Φ y.〈x, f x〉 as ∃z:τ.Φ z :
(∀y:τ.Φ y) → ∃z:τ.Φ z

It corresponds to a proof of the proposition “if, for every y in α, Φ y is
provable, then, for some z in α, Φ z is provable — provided α is a set, Φ is
a predicate on α, and α is inhabited by x.”
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From a programming perspective, an intuitive example of a type depend-
ing on terms is the type of lists of length n, where n is a natural number.
We could try to axiomatise such a type by adding constants listτ : nat → ?,
nilτ : listτ zero and consτ : ∀n:nat.τ → listτ n → listτ (succ n), for some
fixed type of list elements τ . However, we will not bother to do this because
it is easy to see that adding dependent types to a general-purpose program-
ming language means that we have to abandon the compile-time/run-time
phase distinction [Car88b, HMM90].

Remark 2.2.8 (The Effect on the Phase Distinction). First, observe that
adopting dependent types introduces a syntactic dependency of types on
terms, in the sense that the grammar of type phrases is defined in terms
of the grammar of term phrases. The dependency of types and terms is
deeper than mere syntax, however. From the perspective of logic, we need
to equate propositions that are equal up to the equivalence of their subterms.
In particular, the type equivalence judgement must include the congruence
rule (Rule (=) of Figure 2.18):

C ` τ : τ ′ → κ C ` e = e′ : τ ′

C ` τ e = τ e′ : κ

This rule equates two different applications of the same predicate τ provided
their term arguments are equivalent.

Altering the equivalence on types to remove the dependency on term
equivalence leads to a queer logic. On the one hand, removing the depen-
dency by abandoning Rule (=) altogether means distinguishing between the
intuitively equivalent propositions Even 2̄ and Even (+ 1̄ 1̄). On the other
hand, modifying the Rule (=) to ignore term equivalence, for instance, by
weakening the second premise:

C ` τ : τ ′ → κ C ` e : τ ′ C ` e′ : τ ′

C ` τ e = τ e′ : κ

means that the intuitively distinct propositions Even 2̄ and Even 1̄ are iden-
tified. In a system with true dependent types, the notion of type equivalence
must depend on the notion of term equivalence.

In first-order predicate logic, we typically require that every term de-
notes. In Type Theory, this corresponds to having an equational theory
on terms that is strongly normalising. In strongly normalising theories,
every well-typed term has a unique normal form. This property is impor-
tant because it means that the equivalence of two terms can be decided
by comparing their normal forms. In a theory with dependent types, if we
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abandon strongly normalisation of terms then, because of the dependency of
type equivalence on term equivalence, not only do we sacrifice the decidabil-
ity of term equivalence, but we also lose the decidability of type checking.
This rules out the use of dependent types in any general-purpose, i.e. non-
terminating, programming language, unless we also forego decidable type
checking. In short, dependent types violate the phase distinction.

2.2.6 Strong Higher-Order Existentials

The elimination rule for the higher-order existential quantifier ∃α:κ.τ
of Section 2.2.2 merely allows us to assume the existence of a hypothetical
witness for the quantified type component. By contrast, the first-order ex-
istential quantifier of Section 2.2.5 is equipped with a stronger elimination
form: we can project the actual witness of the existential using the first pro-
jection fst e. It is possible to design a similar construct for the higher-order
case. The idea is to replace the, so-called, weak existential type ∃α:κ.τ by
the strong existential type Σα:κ.τ , supporting the type projection Fst e and
the term projection Snd e.2 Figure 2.19 summarises the additional phrases
and rules. The practical motivation for doing this is that strong existentials
allow us to pair a type with a term depending on this type, without hiding
the identity of the type component. As with weak existentials, the identity
of the witness remains hidden in the type of a pair; however, it can always
be recovered by projecting the pair’s first component.

Example 2.2.10 (A Programming Example). For instance, using the strong
existential we can define:

StrongNat ≡ 〈int, IntNat〉 as Σβ:?.NAT (β)

then, having quantified over all occurrences of int in the type of IntNat , we
obtain:

` StrongNat : Σβ:?.NAT (β).

Notice that the witness to β is not apparent from the type of StrongNat .
However, by projecting the term component of StrongNat we obtain:

` Snd StrongNat : NAT (Fst StrongNat),

which, by reducing the type projection Fst StrongNat , is equivalent to:

` Snd StrongNat : NAT (int).
2Actually, it is perfectly possible to have both the weak and the strong existential type

in the same type theory [Luo90].
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τ ∈ Type ::= . . .
| Σα:κ.τ existential quantification
| Fst e type projection

e ∈ Term ::= . . .
| 〈τ, e′〉 as Σα:κ.τ ′ pairing
| Snd e term projection

Type Classification C ` τ : κ

C, α : κ ` τ : ?
C ` Σα:κ.τ : ?

C ` e : Σα:κ.τ
C ` Fst e : κ

Type Equivalence C ` τ = τ ′ : κ

C ` Fst (〈τ, e〉 as Σα:κ.τ ′) : κ
C ` Fst (〈τ, e〉 as Σα:κ.τ ′) = τ : κ

(rules for congruence, symmetry, reflexivity and transitivity omitted)

Term Classification C ` e : τ

C ` Σα:κ.τ ′ : ? C ` τ : κ C ` e : [τ/α] (τ ′)
C ` 〈τ, e〉 as Σα:κ.τ ′ : Σα:κ.τ ′

C ` e : Σα:κ.τ
C ` Snd e : [Fst e/α] (τ)

C ` e : τ C ` τ = τ ′ : ?
C ` e : τ ′

Term Equivalence C ` e = e′ : τ

C ` Snd (〈τ, e〉 as Σα:κ.τ) : τ ′

C ` Snd (〈τ, e〉 as Σα:κ.τ) = e : τ ′

Figure 2.19: Adding Strong Higher-Order Existentials
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Unlike the definition of AbsNat using the weak existential, the actual
implementation of β in terms of the type int is transparent as soon as we
access the term component of StrongNat . However, in order to establish
that ` NAT (Fst StrongNat) = NAT (int) : ? we have to first equate the
term StrongNat with a pair: only then can we access the type component
int, using the rule for type equivalence in Figure 2.19. In this case, this
involves only trivial equational reasoning on terms since the term StrongNat
is already in the form of a pair; in general, however, the term that we are
projecting from may be arbitrary, requiring non-trivial computation to bring
it into the form of a pair. If the term merely reduces to a variable, then the
first-order dependency of the type on this variable cannot be removed.

Because of its transparency, the strong existential fails to provide the
secure data abstraction associated with weak existentials. What it does
provide is a mechanism for pairing related types and terms.

From a logical perspective, adding strong higher-order existentials re-
quires extreme care. For instance, combining strong existentials with im-
predicative polymorphism leads to an inconsistent theory. Roughly speak-
ing, using the first projection, it is possible to show that the type Σα:?.triv,
where triv is some trivial inhabited type, is isomorphic to the collection
of all types, i.e. the collection ?. Moreover, since our formulation of the
strong existential is impredicative, we also have ` (Σα:?.triv) : ?. Thus
we essentially have a type of all types. Much as admitting a set of all set
leads to an inconsistent set theory, admitting a type of all types leads to
an inconsistent type theory [HH86, HM93]. In this case, the inconsistency
follows from the existence of well-typed, but non-normalising, terms. By
the same token, the term equivalence judgement is undecidable. Because we
have types depending on terms (i.e. the type phrase Fst e), this means that
type checking is undecidable too.

It is possible to formulate a consistent version of strong higher-order
existentials if we adopt a predicative notion of quantification. Recall that,
in set theory, we can avoid the paradoxes resulting from admitting a set of all
sets by introducing a new form of collection called a class, and distinguishing
between small collections, i.e. sets, and large collections, e.g. the class of all
sets. Similarly, in type theory, we can avoid the above inconsistency by
introducing a distinction between the universe of small types, i.e. types of
kind ?, and a second universe of large types, inhabited by strong existentials.
This is the approach adopted, for instance, in Luo’s Extended Calculus of
Constructions [Luo90].

However, from a programming perspective, introducing a universe dis-
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tinction means that dependent pairs may no longer be manipulated as ordi-
nary terms. If we use dependent pairs to model modules with transparent
type components, predicativity rules out the possibility of having first-class
modules. Moreover, adopting a predicative theory does not alter the fact
that strong existentials violate the phase distinction because the dependency
of type equivalence on term term equivalence remains.

2.2.7 Summary

In this section, we introduced a number of type-theoretic constructs that, in
combination, allowed us to emulate many of the examples we used to present
Modules. In this thesis, we shall argue that a structure corresponds to a
record; that functors correspond to polymorphic functions; that abstracting
a structure by a signature corresponds to introducing an existentially quan-
tified type; that the generation of new types corresponds to a weak form of
existential elimination; that signatures correspond to parameterised types;
and finally, that structure enrichment corresponds to a form of record sub-
typing. One of the distinguishing features of our analogy is that we do not
resort to the use of first-order dependent types, nor do we resort to the use of
strong higher-order existentials. This means that we avoid the problems and
limitations both these features pose when integrated with a general-purpose
programming language. Indeed, the only reason for presenting these last
two concepts is that they figure prominently in the existing type-theoretic
accounts of Standard ML Modules and its recent rivals.

2.3 Related Work

Research related to this thesis can be divided naturally into three categories:
type-theoretic approaches to modular programming, type-theoretic accounts
of Standard ML Modules, and type-theoretic alternatives to Standard ML
Modules. We shall discuss each of these in turn and finish with a section on
miscellaneous related work. In Chapter 9 we will revisit some of this work
to compare it with the results of this thesis.

2.3.1 Type-Theoretic Approaches to Modular Programming

Mitchell and Plotkin’s SOL

In their seminal paper [MP88], Mitchell and Plotkin make the original con-
nection between the informal notion of abstract data type and existential
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quantification over types. They recognise that specifications of abstract data
types correspond to existential types, the creation of an abstract data type
to existential introduction, and the use of an abstract data type to existen-
tial elimination. SOL, the type theory they use to illustrate their ideas, is
the simply-typed λ-calculus extended with second-order quantification over
types. (The name SOL is an abbreviation for the second-order logic that re-
sults from the combination of the features we discussed in Sections 2.2.1 and
2.2.2). Mitchell and Plotkin observe that the impredicativity of SOL means
that abstract datatypes are first-class values, allowing the run-time con-
struction and selection of different implementations of the same abstract
datatype. The paper focuses on the issue of data abstraction, and does
not directly address other desirable features of modules languages, notably
mechanisms for name space control and subtyping on module interfaces.

Cardelli’s Quest

Cardelli’s language Quest [Car88a, Car89, CL91, Car91] is an early type-
theoretic programming language designed explicitly for the construction of
modular programs. Quest is equipped with a form of dependent record,
which allows sequences of related type and term definitions to be treated
collectively. Dependent records are essentially a generalisation of SOL’s
existential types with a novel elimination form: type and term components
of named records are accessed by a restricted form of the dot notation rather
than the more unwieldy open phrase. This use of the dot notation to
eliminate existentials is studied further in Cardelli and Leroy’s paper [CL90].

Quest is rather different from Standard ML. Although Quest’s record
terms are similar to structure bodies, type components of Quest records
are invariably abstract. As a result, interpreting a structure as a Quest
record fails to account for the transparency of the structure’s type compo-
nents. Similarly, interpreting a functor as a Quest function on dependent
records does not capture the behaviour that an application of the functor
will propagate the realisation of type components from the functor’s actual
argument to its result. Like SOL, Quest supports first-class modules and
avoids Standard ML’s stratification between Core and Modules.

MacQueen’s DL

In an influential position paper, MacQueen [Mac86] criticises module lan-
guages in which the only facility for grouping related definitions of types
and terms is provided by existential types. MacQueen’s argument is that
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existential types do not give adequate support for modular programming
because the abstraction afforded by existential quantification is too strong:

1. Opening the same existential term twice yields two unrelated hypo-
thetical type witnesses.

2. When building interrelated modules communicating via types of a
common submodule, the submodule must be opened in a scope en-
compassing all of its uses, conflicting with the conceptually hierarchi-
cal structure of the system.

As an alternative, MacQueen advocates the use of dependent types as a
basis for modular programming, drawing inspiration from the novel adop-
tion of dependent types in Burstall and Lampson’s experimental modules
language Pebble [BL84, BL88]. MacQueen sketches the language DL, which
is presented as a “de-sugared” version of the Standard ML Modules lan-
guage originally proposed by him in [HMM86]. DL exploits a combination
of strong higher-order existentials and first-order quantified types and, sim-
ilar to Standard ML, exhibits a stratification between the core and modules
languages. In MacQueen’s interpretation, a signature specifying a type com-
ponent corresponds to a strong higher-order existential type. The definition
of a core type component within a structure is modeled by pairing a type
with a term modeling the remainder of the structure. The ability to project
the actual type component from such a term is intended to reflect Stan-
dard ML’s notion of transparent type definitions in structures. A signature
specifying a value or submodule is captured by a first-order existentially
quantified type. The definition of a core value or module component within
a structure is modeled by pairing a term with a term modeling the remainder
of the structure. A functor mapping structures to structures is modeled as a
dependent function from dependent pairs to dependent pairs. The apparent
dependency of a functor’s result type on its actual argument is captured
by first-order universal quantification of the formal argument over the func-
tion space’s range. The standard elimination rule for dependent functions
roughly accords with Standard ML’s ability to propagate type realisations
from the actual argument to the result of a functor application.

Despite these similarities, DL fails to model most of the other important
features of Modules. It is impossible to specify type definitions in signa-
tures, preventing the expression of shared type components. Components
are accessed not by identifier but by positional notation. DL has no notion
of subtyping (corresponding to signature matching), making it impossible
to treat a structure as if it had a type declaring fewer components, a type
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differing in the order of the structure’s components, or a type differing in
the degree of abstraction. Finally, DL fails to account for generative type
definitions: every type component is transparent and there is no primitive
support for type abstraction.

2.3.2 Type-Theoretic Accounts of Standard ML Modules

Harper and Mitchell’s XML

Harper and Mitchell’s calculus XML [HM93] is an attempt to apply Mac-
Queen’s ideas [Mac86] to provide a type-theoretic semantics of Standard
ML. Surprisingly, they make no effort to relate their calculus to the pub-
lished semantics of Standard ML [MTH90]. As a model of Standard ML
Modules, XML exhibits essentially the same successes and shortcomings of
DL. The use of weak existential types to account for Standard ML’s notion of
type generativity is sketched, but not incorporated in the definition of XML.
Furthermore, the meta-theoretical implications of using strong higher-order
existential types lead Harper and Mitchell to conclude that the stratification
of XML into a modules language and a core language is necessary, unless we
choose to admit (i) divergent terms in the absence of explicit recursion, and
(ii) undecidable type-checking. Transferring the properties of their model to
Standard ML, they conclude that Standard ML’s stratification between Core
and Modules is a theoretical requirement, not an historical accident. They
consequently rule out the possibility of extending Standard ML with first-
class modules. However, the validity of this conclusion depends crucially on
the adequacy of their model.

Harper, Mitchell and Moggi’s HML

Harper, Mitchell and Moggi’s calculus HML [HMM90] is presented as a
further refinement of the calculus XML. A serious failing of DL and XML
(already acknowledged in [HM93]) is the absence of a phase distinction be-
tween compile-time type checking and run-time execution. As explained in
Sections 2.2.5 and 2.2.6, the standard formulation of dependent types and
strong existentials, on which DL and XML are based, implies that type
checking involves the testing of term equivalence. Real programming lan-
guages generally have undecidable theories of term equivalence, rendering
type-checking of realistic extensions of DL and XML undecidable. Standard
ML, on the other hand, does obey a phase distinction.

Harper, Mitchell and Moggi [HMM90] refine their model accordingly:
every dependently typed term of XML is interpreted in HML as a “mixed-
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phase” entity consisting of a compile-time and a run-time part. Thus, a
higher-order dependent pair is interpreted as a pair of a compile-time type
component and a run-time term component, in the usual way. However,
a first-order dependent pair of two subterms is interpreted non-standardly
as a pair of a compile-time type, pairing the subterms’ type components,
and a run-time term, pairing the subterms’ term components. Similarly,
a dependent function is interpreted non-standardly as a pair of a compile-
time type component, consisting of a parameterised type that constructs the
type component of the function’s result as a function of the type component
of the argument; and a run-time term component, consisting of a term
that computes the term component of the function result as a polymorphic
function of both the type and the term component of the argument. This
split interpretation of dependent types yields a natural phase distinction.
However, it is achieved by adopting a non-standard equational theory for
dependent terms and types.

In HML, Standard ML Modules can still be modeled using dependent
types following the ideas of DL and XML, but without sacrificing the phase
distinction. Nevertheless, HML retains the other shortcomings of DL and
XML: there is no account of the ability to specify type sharing in signatures,
the ability to access structure components by name rather than position, the
notion of structure enrichment, and type generativity.

Although elegant and interesting in its own right as the foundation of
a practical modules system, HML is only indirectly related to Standard
ML. Again, no attempt is made to formally relate the existing semantics of
Standard ML to HML .

2.3.3 Type-Theoretic Alternatives to Standard ML Modules

Harper & Lillibridge’s Translucent Sums

Harper and Lillibridge [HL94] present a type-theoretic alternative to Stan-
dard ML. They introduce a new type-theoretic construct called a translucent
sum. Translucent sum terms are similar to the structures of Standard ML
and the dependent records of Cardelli’s Quest. Components of sum terms
are named and are accessed by the dot-notation. For soundness reasons,
type projections may only be applied to a subset of sum terms called values.
Values are canonical, or fully evaluated, sum terms.

Akin to signatures, in a translucent sum type a type component may be
specified in one of two ways: either opaquely, by specifying its name and kind,
or transparently, by specifying its name and concrete definition. The term
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translucent refers to the possibility of having both opaque and transparent
declarations in the same sum type. The benefit of this approach is that it
supports transparency, without sacrificing the phase distinction: provided a
given type component of a sum term is declared transparently in the sum’s
type, then the implementation of that type component can be determined,
not by reduction of the sum, as in DL and XML, but by simple inspection of
the sum’s type. Any type component declared opaquely in the sum’s type is
treated as abstract, yielding the same degree of abstraction as SOL’s weak
existential types. Values of sum type are special, in the sense that a value
may always be given a fully transparent type by a special typing rule. This
rule replaces every opaque declaration in the value’s type by a transparent
declaration that is defined as a projection from the value itself.

The calculus employs a subtyping relation on sum types that, in particu-
lar, treats transparent type components as subtypes of opaque components,
but also incorporates a structural subtyping relation similar to record sub-
typing. In Standard ML terms, the former aspect of this relation allows
one to view any realisation of a signature (modeled as a more transparent
sum type) as a subtype of the original signature (modeled as a more opaque
sum type); the latter allows one to view any enrichment of the signature
(modeled as a wider sum type) as a subtype of that signature (modeled as
a narrower sum type).

Functors are modeled by functions on elements of sum types. In gen-
eral, the type of a function’s body may mention, and thus propagate, type
components projected from the function’s argument. If any of these compo-
nents is opaque, the dependency of the result type on the formal argument
cannot be eliminated, and the type of the function must be expressed using
first-order universal quantification.

However, to avoid substituting terms in types, the usual elimination rule
for dependent functions is abandoned. Instead, a dependently typed func-
tion may only be applied to an actual argument if it can first be given a
non-dependent supertype ( using a covariant subtyping rule). If the argu-
ment is a term of sum type, this is only possible provided the implementation
of every type component, that is defined in the argument and propagated
by the function, is transparent. Unless the actual argument belongs to the
restricted set of values, this may not be the case. As a result, the calculus
has the rather unnatural behaviour that certain function applications fail to
type check, even though the argument is in the function’s domain.

Although the calculus has a phase distinction, because the subtyping
relation is undecidable, type-checking is undecidable too.

The translucent sum calculus supports a natural notion of higher-order
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functor, albeit without the “fully transparent” behaviour desired by Mac-
Queen and Tofte [MT94]. Roughly speaking, a higher-order functor is fully
transparent if it can propagate any incidental argument-result type depen-
dency inherent in an actual argument (itself a functor), even if this depen-
dency is left unspecified (i.e. abstract) in the range of the formal argument.
Forcing the programmer to specify a particular argument-result dependency
to achieve transparency is not satisfactory, since it decreases the generality
of the higher-order functor.

Harper and Lillibridge’s proposal is ambitious in avoiding a distinction
between core and modules. The aim is to obtain a uniform language with
first-class modules. The intention is that the need for a separate core lan-
guage is subsumed by enriching the modules language directly with compu-
tational mechanisms normally associated with the core. This is made more
explicit in follow-on work by Harper and Stone [SH96, HS97], that describes
an interpretation of Standard ML into a variant of the translucent sum cal-
culus, extended directly with state and exceptions. These papers give an
involved syntactic translation, which, in this author’s opinion, do little to
clarify the semantics of Standard ML presented in [MTH90, MTH96]. Fur-
thermore, there is currently no proof3 that this translation is faithful to the
original semantics. The thesis of Lillibridge [Lil97] develops the meta-theory
of a drastically simplified type theory that is presented as a kernel version
of the translucent sum calculi underlying [HL94, SH96, HS97].

Leroy’s Modules

Historically, the goal of designing a simple separate compilation scheme
for Standard ML Modules, akin to Modula-2’s mechanism [Wir88], has re-
mained elusive. In particular, the naive scheme that identifies implementa-
tions of compilation units with curtailed structures, and interfaces of these
units with their curtailing signatures, is unsatisfactory. This approach fails
because a curtailing signature rarely captures its implementation’s full typ-
ing properties. Since type-checking of compilation units is meant to proceed
by relying solely on declared interfaces, the discrepancy between a unit’s
signature and its implementation’s actual typing properties means that it is
possible to give examples of well-formed monolithic programs that no longer
type-check when decomposed into separate compilation units.

As we shall see in Chapter 3, Standard ML distinguishes between syn-
tactic type phrases (e.g. signatures), and the semantic objects, or types,

3Given the size of both the source and target languages, there probably never will be.
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actually used to type-check phrases of the language. In particular, the se-
mantic object assigned to a curtailed structure typically reveals additional
type information, beyond that contained in its curtailing signature.

Arguing that the discrepancy between syntactic and semantic types is
the root obstacle to separate compilation, Leroy proposes an alternative to
the semantics of Modules in [Ler94]. His approach is to eliminate the dis-
crepancy by formulating a type theory that relies solely on syntactic type
information, thus removing the need for semantic objects. Syntactically, his
language is very similar to Modules, apart from three significant departures.
First, to simplify the theory he removes structure sharing constraints, al-
lowing him to ignore the interesting but rarely exploited notion of structure
sharing present in the original version of Standard ML [MTH90]. Second, to
cater for structures with transparent type components, he enriches the syn-
tax of signatures to allow manifest type definitions as well as abstract speci-
fications. These subsume the functionality of Standard ML’s less expressive
type sharing constraints, and enable him to give more precise syntactic de-
scriptions of structure types. Finally, in Leroy’s calculus it is impossible to
merely curtail a structure by a signature: only abstractions are supported.
The separate compilation problem is solved by identifying the implementa-
tion of a compilation unit with an abstracted structure, and the interface of
this unit with its abstracting signature. The typing rules of the calculus en-
sure that the signature fully captures the typing properties of the abstracted
structure.

Leroy independently arrives at a theory that is in many ways similar
to that of Harper and Lillibridge [HL94]. His enriched notion of signature
is analogous to a translucent sum type, since a signature may contain a
mixture of abstract (cf. opaque), and manifest (cf. transparent) type com-
ponents. Signatures are used directly as the types of structures. Standard
ML’s notions of realisation and enrichment are combined in a single sub-
typing relation on signatures. Structure components are accessed by the
dot-notation. However, the dot-notation is restricted and only applies to
structures that are named by paths: a path is either a module identifier or
the projection of a module identifier from a path. (The restriction to pro-
jections from paths is similar to, but stronger than, Harper and Lillibridge’s
restriction to projection from values.) The notion of path is significant,
because a path can always be given a fully transparent signature by an op-
eration called strengthening. Strengthening a path’s signature redeclares any
abstract type component in the signature as a manifest definition, expressed
as a projection from the path itself.

Functors are modeled as functions taking structures to structures. As in
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[HL94], first-order universal quantification must be used to describe the type
of a functor whose result type mentions an abstract type component of its
argument. Similarly, the calculus employs a non-standard elimination rule
for dependent functions. The formulation of this rule varies slightly from
one presentation of Leroy’s calculus to another. To preserve the syntactic
invariant of restricting projections to paths, in both [Ler94] and [Ler95], a
dependent functor may only be applied if its argument is a path; if its argu-
ment is not a path, the functor must first be given a suitable non-dependent
supertype (by using a covariant subtyping rule). Similar to Harper and Lil-
libridge’s calculus [HL94], the calculi of both these papers have the rather
unnatural behaviour that certain functor applications fail to type check,
even though the type of the actual argument matches the signature of the
functor’s domain. Moreover, there appears to be no principled way of choos-
ing between different non-dependent subtypes of a functor: as a result, these
calculi fail to enjoy the principal (i.e. minimal) typing property. Another
variant of these calculi, presented in [Ler96b], adopts a restricted grammar
that only allows applications of functors to paths. Although this restriction
seems to avoid the problem with principal types, it fails to capture Standard
ML’s ability to apply functors to anonymous arguments.

In [Ler96b], Leroy proves an equivalence between his notion of type ab-
straction, relying on syntactic signatures, and Standard ML’s notion of type
generativity. The equivalence result only holds for a restricted grammar of
Standard ML programs. To circumvent this restriction, Leroy specifies a
rewriting relation that transforms arbitrary well-typed Standard ML pro-
grams into well-typed programs belonging to this reduced grammar. How-
ever, the cost of this translation is to provide access to structures (though
not type identities) that were anonymous, and thus inaccessible, in the orig-
inal Standard ML source. In the same paper, Leroy gives a proof showing
that his modified syntax for signatures elegantly subsumes the functional-
ity of the type sharing constraints used in the original version of Standard
ML [MTH90]. This is a significant result, since Leroy’s syntax dispenses
with the complicated, unification based mechanism needed to resolve shar-
ing constraints. The syntax is compatible with Standard ML’s elaboration to
semantic objects, and has essentially been adopted in the revised definition
of Standard ML [MTH96]. We also adopt it in this thesis.

Although Leroy’s calculi in [Ler94, Ler96b] support a natural notion of
higher-order functor, like Harper and Lillibridge’s system, they fail to have
the “fully transparent” behaviour of higher-order functors desired by Mac-
Queen and Tofte [MT94]. Building on his previous work, Leroy [Ler95] offers
a partial solution to the full transparency problem. It relies on extending
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the syntax of paths to include the application of a (functor) path to an
(argument) path, allowing type components to be projected directly from
functor applications, not merely from named structures. In this way, the
type component resulting from the application of a functor to an argument
can be expressed syntactically, provided both the functor and the argument
are paths. The extension of paths is significant, because it allows a functor
path to be given a fully transparent type by an extension of the strengthen-
ing operation. Strengthening a functor path’s type redeclares any abstract
type component in the functor’s range as a manifest definition, expressed
in terms of an application of the functor path to the bound argument of
the functor’s type. In combination, these extensions enable Leroy to ap-
proximate the fully transparent behaviour, provided programs adhere to the
convention of only expressing functor applications involving paths. These
extensions also yield a slightly different behaviour for functor application.
Functor application is no longer generative but applicative, in the sense that
two distinct applications of the same functor path to the same argument
path result not in different, but equivalent, abstract types. The applica-
tive behaviour actually provides better support for higher-order functors.
In particular, it allows the programmer to specify sharing between abstract
types returned by distinct occurrences of conceptually equivalent functor
applications.

All of Leroy’s calculi are defined with respect to an arbitrary core lan-
guage. Like Standard ML, but unlike Harper and Lillibridge’s system,
Leroy’s calculi maintain the rigid stratification between the core and mod-
ules. He only briefly mentions the possibility of first-class modules, and
observes that removing the distinction between the core and modules is in-
compatible with applicative functors. Similar observations apply to Harper,
Lillibridge and Stone’s [HL94, Lil97, SH96, HS97] proposals: in these sys-
tems, the amalgamation of the core and modules languages means that the
invariants needed to support applicative functors are violated. Leroy’s strat-
ification between core and modules ensures that both the subtyping relation
on module types and typing relation on modules is decidable. Leroy’s sys-
tems obey a phase distinction, and give a largely satisfactory, if somewhat
restricted, treatment of most of Standard ML’s features, bar one: in keep-
ing with the syntactic treatment of module types, Leroy cannot account
for the effect of merely curtailing, rather than abstracting, a structure by a
signature.

Leroy’s proposals have been implemented in a popular and robust com-
piler for a language very similar to Standard ML, Objective Caml [Ler97].
An accessible and almost literal implementation of Leroy’s type system may
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be found in his tutorial introduction [Ler96a]. Pottier [Pot95] describes
a prototype, full-scale implementation of Leroy’s earliest calculus [Ler94]
with higher-order, but non-transparent, functors. This work is interesting
because it employs the “stamp-based” techniques of Standard ML, relying
on the distinction between syntactic and semantic objects, to implement
Leroy’s calculus.

Despite their practical success, Leroy’s proposals do have some theoret-
ical weaknesses. The syntactic restrictions on paths, which are not closed
under substitution of module terms for module identifiers, means that it
is difficult to give a substitution-based dynamic semantics for his calculi.
Courant [Cou97b] studies the failure of subject reduction for Leroy’s mod-
ule terms and proposes a variant calculus that admits a simple definition
of module reduction. Courant’s modifications allow him to state and prove
a subject reduction theorem. His proposal, however, introduces a depen-
dency of type checking on an equational theory of module terms. Although
this approach blurs the phase distinction between compile-time and run-
time, Courant carefully avoids using equational reasoning on core terms,
preserving the decidability of type checking. Courant has managed to adapt
his ideas to more general core languages including dependently typed log-
ics[Cou97a]. However, the need to perform even limited compile-time equa-
tional reasoning on module terms is a distinct departure from the rigid
phase-distinction enjoyed by Standard ML.

2.3.4 Miscellaneous Related Work

The second part of Tofte’s thesis [Tof88] investigates a skeletal, first-order
modules language. The language supports signatures, structures and func-
tors but no core types or values. This is a kernel system for a forerunner
of Standard ML’s Modules. Tofte focuses on the meaning of structure iden-
tity and the problem of elaborating signatures containing structure sharing
constraints to principal semantic objects. Aponté [Apo93] suggests a more
modern, alternative treatment of the notion of structure identity and shar-
ing actually adopted in Standard ML. In [Tof92, Tof93], Tofte describes
preliminary work towards a direct extension of Standard ML with higher-
order functors. In particular, he proves the existence of principal semantic
objects for signatures that contain functor specifications. The research of
Tofte and Aponté mainly concerns structure sharing, and is now obsolete
due to the recent revision of Standard ML [MTH96], where this feature has
been removed.

MacQueen and Tofte propose a “fully transparent” static semantics for
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higher-order functors in [MT94]. The behaviour of this static semantics is
reflected in an early implementation of higher-order functors in the Stan-
dard ML of New Jersey compiler [AT 93]. The static semantics is very
complicated and departs radically from the existing first-order semantics of
Standard ML. In particular, it relies on the compile-time execution of a non-
trivial language of identity stamps to account for full transparency. (On the
other hand, the dynamic semantics for this proposal admits a straightfor-
ward formalisation that is studied by Maharaj and Gunter [MG93].)

Taking a different tack, Biswas [Bis95] proposes an alternative static
semantics for higher-order functors that is also fully transparent. This se-
mantics is based on a direct generalisation of a fragment of the existing
Standard ML semantics. His ideas, which we believe have not received the
attention they deserve, will be discussed in detail, reworked and extended
to the full language in Chapter 5.

For a more radical but conceptually simpler approach to modules, based
on interpreting some, but not all, of the features of Standard ML Mod-
ules directly in an extension of the Core language, see Jones [Jon96]. The
companion paper by Nicklish and Peyton Jones [NJ96] offers an informal
comparison of the two approaches.

2.3.5 Summary

One characteristic feature of Standard ML Modules is the ability to define
structures containing both type and term components. Although the second-
order existential types underlying SOL [MP88] and Quest [Car91] provide a
similar facility, they cannot be used to model Standard ML structures: the
realisation of a structure’s type components is transparent, not abstract.

The primary motivation for the work on DL [Mac86] and XML [HM93] is
to account for the transparency of type components by employing a familiar
type-theoretic construct, the strong higher-order existential type. A neces-
sary consequence of this decision, that introduces a dependency of types on
terms, is the adoption of first-order existential types, to account for nested
structures, and first-order universal types, to account for functors. The syn-
tax of these constructs echoes the convenient syntax of Standard ML that
allows type components to be expressed as projections from structure iden-
tifiers, and the type of a functor’s body to refer to the functor’s argument.
DL and XML give an alternative account of structure transparency and the
propagation of realisations across functor boundaries, while incorporating a
natural notion of higher-order functor. Unfortunately, the reliance on strong
existential types means that type equalities are established using term re-
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duction, which runs foul of the phase-distinction. The fact that XML type
checking becomes undecidable in the presence of impredicative strong exis-
tential types leads Harper and Mitchell to conclude that the extension of
Standard ML with first-class modules is incompatible with decidable type
checking. HML [HMM90], a further refinement of XML, is a predicative
theory that preserves the phase distinction by adopting a non-standard for-
mulation of dependent types.

Harper and Lillibridge [HL94] abandon the use of strong higher-order
existentials altogether by proposing a new type-theoretic construct, the
translucent sum, that models structures containing a mixture of opaque
and transparent type components. The resulting modules calculus exploits
first-order dependent types, but adopts non-standard elimination rules that
ensure the phase distinction by propagating type equalities using subtyping
instead of term reduction. The calculus fails to have the principal typing
property because of the novel elimination rule for dependent functions. The
calculus is impredicative, supporting first-class modules by removing the
distinction, and thus the stratification, between core and modules language.
Although equipped with higher-order modules, the identification of core and
modules level computation means that neither applicative nor fully trans-
parent functors can be accommodated without violating soundness. The
decision not to distinguish between core and modules level types renders
the subtyping relation, and thus typechecking, undecidable.

Leroy’s calculi share many of the features of the translucent sum calculus.
They do not enjoy the principal typing property due to a similar failing with
the elimination rule for dependent functions. Leroy’s proposals are more
conservative in preserving the stratification between the core and modules
languages. The stratification prohibits the use of first-class modules but has
the advantage of maintaining a distinction between core and modules. By
distinguishing between core and modules computation, Leroy can soundly
accommodate an applicative and fully transparent semantics for higher-order
functors, but this behaviour only applies to functor applications involving
paths. Leroy’s distinction between core and modules types ensures that the
subtyping relation on module types is decidable.

One of the characteristics of Standard ML is that the static semantics
of the language is defined, not in terms of the type syntax of the language,
but with respect to an intermediate language of static semantic objects.
During classification, type phrases are elaborated to semantic objects, and
the classification of term phrases is done in terms of these semantic objects.
This style of semantics can be criticised for two reasons. From a software
engineering perspective, the classification of terms using semantic objects
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means that the type of a term cannot be reported to the programmer in the
syntax of the language. In particular, this makes it more difficult to relate
type errors to the source text of the program. It also raises the possibility
that some terms have semantic objects that are not expressible in the syntax
of the language, impeding simple approaches to separate compilation. From
a proof engineering perspective, the classification of terms using semantic
objects makes it difficult, and perhaps impossible, to prove the type sound-
ness property of the language in terms of its type syntax. These properties
are at odds with the syntactic nature of types and soundness proofs in type
theory.

There are essentially two approaches to addressing this failing of Stan-
dard ML. The first is to reject the use of semantic objects to focus on the
design of a modules language with a purely syntactic theory of types derived
from the type syntax of Standard ML. Because of the inherent dependency
of ML’s type syntax on its term syntax, this leads naturally to type theories
with dependent types, whose introduction and elimination rules must then
be refined in order to obtain a phase distinction. The work discussed above
is representative of this approach and has been successful in formulating con-
cise, syntactic type systems whose meta-theories can be investigated using
syntactic techniques adapted from type theory. The most recent proposals
not only provide alternative treatments of Standard ML’s features but also
greatly extend them. Unfortunately, the meta-theoretic properties of the
languages are less pleasing: we mention the absence of principal types for
the calculi of Harper, Lillibridge and Leroy, and the need to blur the phase
distinction of Leroy’s calculus in order to prove subject reduction [Cou97b].

The second approach, the one taken in this thesis, is to retain the use
of semantic objects, but to palliate their deficiencies by placing them on
a more type-theoretic footing. This is particularly important because the
current choice of semantic objects in Standard ML appears ad hoc and the
definition of the static semantics too operational. The programmer’s bur-
den of understanding semantic objects can be eased, but not completely
removed, by improving on the presentation of the static semantics, making
type errors easier to report and understand. From the proof engineering
perspective, it is still possible to prove a type soundness property for the
language, but the property and its proof must be formulated with respect
to semantic objects not syntactic types. Although less satisfactory than ob-
taining a purely syntactic description of the static semantics, we believe our
approach to be acceptable because it offers other advantages. As we shall
see, the use of semantic objects removes the necessity of dealing directly with
first-order dependent types, by replacing first-order dependencies of types on
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terms by simpler, second- and higher-order dependencies of types on types.
This makes the phase distinction clear from the outset and also avoids the
syntactic restrictions that appear in the dependently typed systems (the re-
striction to projections from values in Harper and Lillibridges calculus, and
the restriction to projections from paths in Leroy’s). The use of semantic
objects allows us to assign principal types to all terms, including those func-
tor applications that lack principal types in the dependently typed theories
of Harper, Lillibridge and Leroy. The semantics also scales naturally to
higher-order functors that are both fully transparent and applicative in all
cases, not just those involving applications between paths. Moreover, this
semantics can be extended to include first-class modules without compro-
mising the transparent and applicative behaviour of functors or, we believe,
the decidability of modules subtyping. The latter result relies less on the
fact that we employ semantic objects, and more on our decision to maintain
the distinction between Core and Module, but drop the stratification, thus
choosing the middle route between Leroy’s stratified calculi and Harper and
Lillibridge’s amalgamation of the core and modules languages.





Chapter 3

The Static Semantics of
Mini-SML

In this chapter, we set the scene for the remainder of this thesis by pre-
senting the static semantics of a Modules and Core language in the style
of Standard ML [MTH90, MTH96]. The two languages are presented sepa-
rately. In Section 3.1, we present the Modules language. It models the main
features of Standard ML’s Modules language. Modules makes relatively few
assumptions on the structure of the Core: our definition is parameterised
by an arbitrary Core language. For concreteness, Section 3.2 presents a
particular instance of the Core language: Core-ML. Although much sim-
pler than Standard ML’s Core, it nevertheless captures those features of
the language that are relevant to the definition of Modules. In Section 3.3,
we first define Mini-SML as the language obtained by combining the defini-
tions of Modules and Core-ML. We then proceed with an informal analysis
of the type-theoretic underpinnings of Mini-SML. Section 3.4 concludes the
chapter with a brief summary.

3.1 Modules

In this section, we define the Modules language. Given a Core language
supporting a notion of definable types and terms, Modules provides a typed
calculus for manipulating collections of Core type and term definitions. Al-
though the choice of Core language is largely arbitrary, we do need to make
some assumptions on its structure. These are stated as hypotheses. They
are sufficiently weak to accommodate a wide variety of Core languages.

61
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k ∈ DefKind kinds
d ∈ DefTyp definable types
v ∈ ValTyp value types

(a) Type Syntax

e ∈ ValExp value expressions

(b) Term Syntax

Figure 3.1: Core Phrase Classes

3.1.1 Phrase Classes

We can present the syntax of Modules as a collection of phrase classes de-
fined by a grammar. Modules is an explicitly typed language. For this
reason, it is convenient to group the phrase classes of both Modules and the
Core according to whether they belong to the syntax of types or the syntax
of terms. The concrete grammar of Core definable types and terms depends
on the Core language in question:

Hypothesis 3.1 (Core Phrase Classes).
We assume that the Core language defines a grammar for the four Core

phrase classes shown in Figure 3.1.

• Phrases k ∈ DefKind are the kinds used to specify Core definable types.

• Phrases d ∈ DefTyp are the definable types used to define the meaning
of type identifiers.

• Phrase v ∈ ValTyp are the value types used to specify value identifiers.

• Phrases e ∈ ValExp are the value expressions used to define the mean-
ing of value identifiers.

To motivate Hypothesis 3.1 we can take a quick peek at Core-ML to see
how it fits this generic description.
Example 3.1.1 (Core-ML). In Core-ML, a definable type is a parameterised
simple type describing a family of simple types. The kind of a definable type
is the number of type parameters it expects. A value type, on the other
hand, is a universally quantified simple type, reflecting the polymorphism of
Core-ML value expressions. Finally, a value expression is either a function,
a function parameter, a function application, or an occurrence of a Core-ML
value defined within a Module.
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t ∈ TypId type identifiers
x ∈ ValId value identifiers
X ∈ StrId structure identifiers
F ∈ FunId functor identifiers

(a) Identifiers

B ∈ SigBod signature bodies
S ∈ SigExp signature expressions

do ∈ TypOcc type occurrences

(b) Type Syntax

sp ∈ StrPath structure paths
b ∈ StrBod structure bodies
s ∈ StrExp structure expressions

vo ∈ ValOcc value occurrences

(c) Term Syntax

Figure 3.2: Modules Phrase Classes

Remark 3.1.1. We distinguish between DefTyp and ValTyp specifically to
accommodate languages like Core-ML. The two phrase classes may coincide
in less complicated Core languages such as the simply typed λ-calculus.

We can now define the syntax of Modules. Figure 3.2 presents its phrase
classes while Figure 3.3 defines their grammar.

We introduce type identifiers t ∈ TypId to name Core definable types,
and value identifiers x ∈ ValId to name Core values. Identifiers X ∈ StrId
name structures and F ∈ FunId functors. We shall assume TypId, ValId,
StrId and FunId are pair-wise disjoint sets.

The type phrases of Modules are signature bodies and signatures. They
specify the components of a structure by listing its component identifiers
and their specifications.

The term phrases of the Modules language are structure paths, structure
bodies and structure expressions. Structure paths provide access to struc-
ture identifiers and their sub-structures. Structure bodies are sequences of
definitions binding type identifiers to Core definable types, value identifiers
to Core values and structure identifiers to sub-structures. A functor defini-
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TypId def= {t,u,. . . } type identifiers

ValId def= {x,y,. . . } value identifiers

StrId def= {X,Y,. . . } structure identifiers

FunId def= {F,G,. . . } functor identifiers

B ::= type t = d;B type definition
| type t : k; B type specification
| val x : v; B value specification
| structure X : S;B structure specification
| εB empty body

S ::= sig B end structure signature

do ::= t type identifier
| sp.t type path

sp ::= X structure identifier
| sp.X substructure projection

b ::= type t = d; b type definition
| val x = e; b value definition
| structure X = s;b structure definition
| local X = s in b local structure definition
| functor F (X : S) = s in b functor definition
| εb empty body

s ::= sp structure path
| struct b end structure body
| F s functor application
| s � S signature curtailment
| s \ S signature abstraction

vo ::= x value identifier
| sp.x value path

Figure 3.3: Modules Grammar
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tion introduces a named functor taking structures to structures. Structure
expressions are phrases that evaluate to structures. They include paths,
structure bodies, and functor applications as well as expressions that are
curtailed or abstracted by a signature.

Let us examine the grammar of phrases to give an intuition of their
semantics.

Signature expressions S ∈ SigExp are encapsulated signature bodies. A
signature body B ∈ SigBod is a possibly empty sequence of type, value and
structure specifications. Type specifications come in two forms. The phrase
type t : k; B specifies a type component named t of kind k, without placing
any further constraints on its actual realisation (i.e. its implementation).
The phrase type t = d;B, on the other hand, calls for t to be present and
equal to the definable type d. The phrase val x : v; B specifies a value
component named x of value type v. Finally, structure X : S; B specifies
a structure component named X, matching (see below) the signature S.
Subsequent phrases within a signature body may refer to previously specified
identifiers.

A structure path sp ∈ StrPath is a dot-separated, non-empty sequence
of structure identifiers. The trivial path X accesses the structure bound to
X in the current context. The phrase sp.X projects the structure component
X from the enclosing structure sp.

A structure body b ∈ StrBod is a possibly empty sequence of definitions.
Each definition binds an appropriate identifier to a Core definable type,
Core value, Modules structure or Modules functor. Subsequent phrases in
the remainder of the body may refer to previously bound identifiers. Types,
values and substructures introduced by phrases type t = d; b, val x =
e; b, and structure X = s;b become components of the encapsulating
structure expression and can be accessed by the dot-notation. The phrase
local X = s in b, on the other hand, merely defines X for local use
within b. Finally, the phrase functor F (X : S) = s in b defines a
functor F as a function on structures. X is the formal argument structure
of F. The signature S specifies its type. The scope of the argument is the
functor body s. The functor may be applied to any structure that matches
the argument’s signature S. Although the scope of the functor F is the
remaining definitions in b, the functor itself does not become a component
of the enclosing structure.

Structure expressions s ∈ StrExp are phrases that evaluate to struc-
tures. They include structure paths as the means of referring to structures
and substructures declared in the current context. The phrase struct b end
encapsulates a structure body to form a structure. F s is the application
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of the functor F to an actual structure s. The phrase s � S matches the
structure s against the signature S and curtails it accordingly: components
of s not specified in S are no longer accessible from the curtailed structure.
Nevertheless, those type components merely specified in S by type t : k
phrases retain their actual realisation in s. The abstraction s \ S is similar
to the curtailment s � S. However, the actual realisation of type compo-
nents that are merely specified, but not defined, in S is hidden outside the
abstraction, by generating new types for these components.

Informally, a structure expression matches a signature if it implements
all of the components specified in the signature. In particular, the structure
must realise all of the type components that are merely specified but not
defined in the signature. Moreover, the structure must enrich the signature
subject to this realisation: every specified type must be implemented by
an equivalent type; every specified value must be implemented by a value
whose type is at least as general as its specification; finally, every specified
structure must be implemented by a structure that enriches its specifica-
tion. The order in which components of the structure are actually defined
is irrelevant. Furthermore, the structure is free to define more components
than are specified in the signature.

We must, of course, equip the grammar of the Core language with a
means of referring to the definitions of Core definable types and values in-
troduced by Modules. There is little point in defining Modules otherwise.
The phrase classes of type occurrences TypOcc and value occurrences ValOcc
provide the syntactic interface that Modules presents to the Core.

Type occurrences are phrases that denote Core definable types. Concep-
tually, they belong to the syntax of types and are presumed to occur in the
Core’s type syntax. A type occurrence do ∈ TypOcc is either a reference
t to the definition of t in the current context, or the projection sp.t of the
type component t from the structure path sp.

Value occurrences are phrases that evaluate to Core values. They belong
to the syntax of terms, and are assumed to occur in the Core’s term syntax.
A value occurrence vo ∈ ValOcc is either a reference x to the definition of x
in the current context, or the projection sp.x of the value component x from
the structure path sp.

Remark 3.1.2. In Standard ML, the phrase classes StrPath, TypOcc and
ValOcc are called “long identifiers”, since they boil down to dot-separated
sequences of identifiers. In Chapter 5 we will do away with structure paths
and generalise the dot-notation to apply to any Modules expression that
evaluates to a structure. For this reason, we prefer the more neutral termi-
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dk ∈ DefTypk definable types
v ∈ ValTyp value types

C ∈ CoreContext Core contexts

Figure 3.4: Core Semantic Objects

nology of type and value occurrences.

Remark 3.1.3. In Standard ML, functors may only be defined in a separate
phrase class of “top level” definitions. To avoid introducing a further phrase
class, we instead allow strictly local definitions of functors in structure bod-
ies. In this way, outermost structure bodies can play the role of Standard
ML’s top-level. We stress that Modules remains first-order: functors may
neither take functors as arguments nor return them as results.

3.1.2 Semantic Objects

Following Standard ML [MTH90, MTH96], the static semantics of Modules
distinguishes between the type phrases of the language and the semantic
objects they denote. As we shall see in Section 3.1.3, a type phrase is well-
formed provided it denotes some semantic object, according to a denotation
judgement. Similarly, a term phrase is well-typed provided it can be clas-
sified by some semantic object, according to a classification judgement. In
this section, we define the semantic objects of Modules.

Notation. We will often re-use the same names for phrase classes and the
semantic objects they denote. However, they are different. To avoid con-
fusion, we will use roman font for a syntactic object o ∈ Object and math
italic for its semantic counterpart o ∈ Object .

Hypothesis 3.2 (Semantic Objects of the Core).
We assume that the Core language defines the following sets of semantic

objects (summarised in Figure 3.4):

• For each Core kind k ∈ DefKind, a set DefTypk of semantic definable
types of kind k. We let dk range over elements of the set DefTypk. Se-
mantic definable types are the denotations of well-formed type phrases
d ∈ DefTyp.

• A set ValTyp of semantic value types, ranged over by v. Semantic
value types are the denotations of well-formed value type phrases v ∈
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κ ∈ Kind kinds classifying types
ακ ∈ TypVarκ type variables

M , N , P , Q , R∈ TypVarSet variable sets
νκ ∈ TypNamκ type names

τκ ∈ Typκ types

S ∈ Str structures
L ∈ Sig signatures

F ∈ Fun functors

C ∈ Context contexts

Figure 3.5: Semantic Objects of Modules

ValTyp. We also assume that they are the types used to classify value
expressions e ∈ ValExp.

• A set CoreContext of Core contexts recording assumptions on Core-
specific identifiers, as required to determine the denotations and clas-
sifications of Core phrases. We assume that Core contexts are finite
maps whose domains are disjoint from the sets of type, value, structure
and functor identifiers (TypId, ValId, StrId and FunId). The range
of these finite maps is irrelevant to Modules and may vary according
to the choice of Core language.

Figures 3.5 and 3.6 summarise the static semantic objects assigned to
module expressions. They serve the role of types in the type system of
Modules. For convenience, whenever it aids the discussion, or helps to un-
ambiguously abbreviate a number of related properties, we will use generic
meta-variables o and O to range over more than one collection of semantic
objects.

Definition 3.3 (Finite Sets and Maps). For sets A and B, Fin(A) de-
notes the set of finite subsets of A, and A fin→ B denotes the set of finite maps
(partial functions with finite domain) from A to B. A finite map will often be
written explicitly as a set in the form {a1 7→ b1, · · · , ak 7→ bk}, for k ≥ 0. Let
f and g be finite maps. Dom(f) and Rng(f) denote the domain of definition
and range of f . The finite map f+g has domain Dom(f)∪Dom(g) and values
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κ ∈ Kind ::= k Core kind

ακ ∈ TypVarκ def= {ακ, βκ, δκ, γκ, . . .} an infinite,
denumerable set

α ∈ TypVar def=
⊎

κ∈Kind TypVarκ

P ,Q ∈ TypVarSet def= Fin(TypVar )
νκ ∈ TypNamκ ::= ακ type variable
τκ ∈ Typκ ::= νκ type name

| dk definable type
(where κ ≡ k)

τ ∈ Typ def=
⊎

κ∈Kind Typκ

S ∈ Str ::= t = τk,S ′ type component
(provided t 6∈ Dom(S ′))

| x : v ,S ′ value component
(provided x 6∈ Dom(S ′))

| X : S ′,S ′′ structure component
(provided X 6∈ Dom(S ′′))

| εS empty structure

L ∈ Sig ::= (P)S signature

F ∈ Fun ::= (P)(S, (Q)S ′) functor

C ∈ Context def=


C ∪ Ct ∪ Cx∪
CX ∪ CF

∣∣∣∣∣∣∣∣∣∣∣∣

C ∈ CoreContext ,

Ct ∈ TypId fin→ Typ ,

Cx ∈ ValId fin→ ValTyp,

CX ∈ StrId fin→ Str ,

CF ∈ FunId fin→ Fun


Figure 3.6: Semantic Objects of Modules (cont. )
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(f + g)(a) def= if a ∈ Dom(g) then g(a) else f(a). If Rng(g) ⊆ Dom(f) then
f ◦g is the finite map with domain Dom(g) and values (f ◦g)(a) def= f(g(a)).
For A ⊆ Dom(f), the restriction f ↓ A is the finite map with domain A

and values (f ↓ A)(a) def= f(a). Provided Dom(f) ∩Dom(g) = ∅ then the
parallel map f | g is the finite map f | g def= f ∪ g (viewing f and g as sets)
with domain Dom(f) ∪Dom(g).

Notation (Enumerated Sets). We will occasionally need to enumerate the
elements of a finite set. For k a natural number, we define [k] to denote
the finite set of indices [k] def= {i | 0 ≤ i < k}. Then [0] = ∅, the empty
set of indices, and, for k > 0, [k] = {0, 1, . . . , k − 1}. We will often write
{a0, . . . , ak−1} to enumerate the elements of a finite set of k ≥ 0 elements,
and use the notation ai, for i ∈ [k], to index the i-th element of this set.

As we shall see in Section 3.1.3, the effect of the definition type t = d
is to extend the context with a declaration stating that the type identifier
t has the denotation d ∈ DefTyp of the phrase d ∈ DefTyp. A type spec-
ification type t : k, however, merely specifies an arbitrary realisation of
the type identifier. Intuitively, the type denoted by t should represent an
indeterminate definable type of kind k. Following Standard ML, we use type
names ν ∈ TypNam to represent such indeterminates. In this chapter, a
type name is just a kinded, second-order type variable α ∈ TypVar , that
ranges over semantic definable types of the appropriate kind. In order to
record the denotation of a type identifier, allowing both the possibility that
its denotation is a definable type, and the possibility that its denotation is
just a type name, we also introduce an additional set of semantic objects:
a type τ ∈ Typ is either a definable type or a type name. In this way,
the possible denotations of a type identifier can be recorded uniformly as
types. For instance, the declaration type t = d is recorded as t = τ , where
τ ≡ d , while the specification type t : k is recorded as t = τ , where τ ≡ α.
Type variables, type names and types will be distinguished by their kind
κ ∈ Kind , where the set Kind is constructed from the set of Core kinds
DefKind. Formally, we define:

Definition 3.4 (Kinds, Type Variables, Type Names and Types).
Every kind κ ∈ Kind is equivalent to some Core kind k ∈ DefKind used

to specify definable types1.
Kinds are used to index sets of kind-equivalent type variables, type names

and types. For each kind κ ∈ Kind we have:
1The distinction between DefKind and Kind , though vacuous here, will be exploited

in Chapter 5, where we generalise the set Kind , keeping DefKind fixed.
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• An infinite, denumerable set of type variables, TypVarκ. A type vari-
able ακ ∈ TypVarκ ranges over types in Typκ.

• A set of type names, TypNamκ. A type name νκ ∈ TypNamκ is just
a type variable of kind κ.2

• A set of types, Typκ. A type τκ ∈ Typκ is either a type name or a
Core definable type of the appropriate kind.

Hypothesis 3.5 (η-expansion of Type Names).
We assume that the Core provides a kind-preserving, injective function:

η( ) ∈ ∪k∈DefKindTypNamk → DefTypk

allowing any type name ν to be viewed as an equivalent definable type η(ν)
(of the same kind).

Example 3.1.2 (Core-ML’s η). In Core-ML, the type name α2 is a variable
for a definable type expecting two arguments. The Core-ML operation η(α2)
returns its η-expansion Λ(′a, ′b).α2(′a, ′b).

The Core operation η, defined on type names, is extended to types:

Definition 3.6 (η̂-expansion of Types). We define the operation η̂ on
types as follows:

η̂( ) ∈ ∪k∈DefKindTypk → DefTypk

η̂(ν) def= η(ν)

η̂(d ) def= d

The operation η̂ is used to define our notion of type equivalence:

Definition 3.7 (Equivalence of Types). We implicitly identify types
with their η̂-expansions. In particular, a type consisting of a type name
is identified with the type consisting of the η-expansion of that name: we
consider ν = η̂(ν). Moreover, we only consider as valid those equations be-
tween pairs of type variables, type names and definable types that compare
objects of the same kind.

2Again, the distinction between sets TypNamκ and TypVarκ, though vacuous here, will
be exploited in Chapter 5, in which we generalise the sets TypNamκ to include constructs
other than type variables.
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Example 3.1.3 (Core-ML’s Equivalence of Types). Continuing Example 3.1.2,
for Core-ML, we consider that α2 = Λ(′a, ′b).α2(′a, ′b), since the type on
the right is an η̂-expansion of the type on the left.

Definition 3.8 (Structures). A semantic structure S ∈ Str is a nested
association list, associating identifiers with types, value types and semantic
structures. Informally, semantic structures are the types assigned to struc-
ture bodies and structure expressions. They record the denotations of type
components, and the types of value and structure components.

The domain of S, written Dom(S), is the set of its components’ identi-
fiers:

Dom( ) ∈ Str → Fin(TypId ∪ValId ∪ StrId)

Dom(εS) def= ∅

Dom(t = τ ,S) def= {t} ∪Dom(S)

Dom(x : v ,S) def= {x} ∪Dom(S)

Dom(X : S,S ′) def= {X} ∪Dom(S ′)

The provisos on structures in Figure 3.6 ensure that components are
uniquely identified, allowing one to view a semantic structure as a triple of
finite maps with corresponding (partial) retrieval functions:

( ) ∈ (Str × TypId) ⇀ Typ

εS(t) def= undefined

(t′ = τ ,S)(t) def=
{
τ if t = t′

S(t) otherwise.

(x : v ,S)(t) def= S(t)

(X : S,S ′)(t) def= S ′(t)

The retrieval functions for value and structure bindings are defined sim-
ilarly.

Remark 3.1.4 (Relating Semantic Structures to Record Types).
Semantic structures are very similar to record types (cf. Section 2.2.1). Like
record types, they list the types of term components. Unlike record types,
they also list the denotations of type components.



3.1 Modules 73

Notice that component identifiers are not variables, they are neither free
nor bound but serve merely as tags, akin to the field names of record types.
Contrast this with the nature of syntactic signatures that allow dependencies
between successive components.

In fact, in Standard ML [MTH90, MTH96], semantic structures are de-
fined as finite maps on identifiers: we prefer to use an inductive definition
to make it easier to prove properties about them. The difference is not sig-
nificant. In particular, our retrieval functions and the soon to be defined
enrichment relation (Definition 3.17), are immune to the order in which
components appear, as in Standard ML.

Definition 3.9 (Signatures). Signature expressions denote semantic sig-
natures L ∈ Sig . Every signature has the form L ≡ (P)S, where P is a set
of type variables, and S is a semantic structure. Type variables in P are
bound in S, in the usual sense of free and bound variables.

Definition 3.10 (Functors). Semantic functors F ∈ Fun are the types
assigned to functor identifiers. Every semantic functor has the form F ≡
(P)(S, (Q)S ′). Type variables in P are bound simultaneously in the functor
domain S and the functor range (Q)S ′. Type variables in Q are bound in
S ′.

Assume F is a functor of type (P)(S, (Q)S ′). Informally, variables in
P capture the type components of the domain S on which F is parametric;
their possible occurrence in the range (Q)S ′ caters for the propagation of
types from the functor’s actual argument. Q is the set of generative or
“new” type variables returned by an application of F. S ′ is the semantic
structure of the result of the application.

Definition 3.11 (Contexts). A (Modules) context C ∈ Context is a finite
map assigning semantic objects to identifiers. Note that, by our definition
of contexts, every context determines a (possibly empty) Core context from
which Core bindings can be retrieved. Moreover, adding a Core context
binding to a Modules context result in a valid Modules context. In addi-
tion to Core level bindings, type, value, structure and functor identifiers are
mapped to (semantic) types, value types, structures and functors respec-
tively.

Contexts record the type information needed to type-check Modules and
Core phrases and may be regarded as finite sets of assumptions: type iden-
tifiers are related to the types they denote; value, structure and functor
identifiers are related to the types they inhabit. To stress the view of con-
texts as sets of assumptions, we define the following four operations for
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updating the context with either new or revised assumptions on identifiers:

[ = ] ∈ (Context × TypId× Typ) → Context

C[t = τ ] def= C + {t 7→ τ }

[ : ] ∈ (Context ×ValId×ValTyp) → Context

C[x : v ] def= C + {x 7→ v}

[ : ] ∈ (Context × StrId× Str) → Context

C[X : S] def= C + {X 7→ S}

[ : ] ∈ (Context × FunId× Fun) → Context

C[F : F ] def= C + {F 7→ F}

Unlike semantic structures, contexts support re-bindings to identifiers.
The definition of + ensures that subsequent bindings take precedence over
previous ones.

Definition 3.12 (Free and Bound Type Variables). We let FV(O)
denote the set of type variables occurring free in O, where the notions of
free and bound are defined as usual.

We implicitly identify semantic objects (i.e. signatures (P)S and functors
(P)(S, (Q)S ′)) that are equivalent up to capture-avoiding, kind-preserving
changes of bound type variables.

Definition 3.13 (Realisations).
A realisation:

ϕ ∈ Real def= {f ∈ TypVar fin→ Typ | ∀κ.∀ακ ∈ Dom(f).f(ακ) ∈ Typκ},

defines a kind-preserving, finite substitution of types for type variables.
Note that realisations are finite maps and we will often treat them as

such.
For ϕ a realisation, we use the notation Reg(ϕ) to denote its region, i.e.
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the set of type variables occurring free in its range:

Reg( ) ∈ Real → Fin(TypVar )

Reg(ϕ) def=
⋃

τ∈Rng(ϕ)

FV(τ )

=
⋃

α∈Dom(ϕ)

FV(ϕ (α)).

Hypothesis 3.14 (Realisation of Core Definable Types and Value
Types). We assume that the Core language is equipped with the following
operations:

( ) ∈ (Real ×DefTypk) → DefTypk (for each k ∈ DefKind)
( ) ∈ (Real ×ValTyp) → ValTyp

for applying realisations of type variables to definable types and value types.

Definition 3.15 (Realisation of Type Names and Types).
Realisation of type names and types is defined as follows:

( ) ∈ (Real × TypNamκ) → Typκ (for each κ ∈ Kind)

ϕ (α) def=
{
ϕ(α) if α ∈ Dom(ϕ)
α otherwise

and:3

( ) ∈ (Real × Typκ) → Typκ (for each κ ∈ Kind)

ϕ (d ) def= ϕ (d )

ϕ (ν) def= ϕ (ν)

We extend realisations to structures, signatures and functors, avoiding
capture of free variables by binding constructs (signatures (P)S and functors
(P)(S, (Q)S ′)) in the usual way.

Modules defines a subtyping relation on semantic structures. If S is a
subtype of S ′ then every phrase of type S may be used as a phrase of type
S ′. Following Standard ML, the subtype relation is actually expressed as a
subsumption relation, called enrichment. Thus S is a subtype of S ′ if, and

3The following definition looks circular, but it’s not: the key is to read the left-hand
side as a case analysis on the outer form of the semantic type, and to read the right-hand
side as applying the realisation to the uncovered subterm.
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Structure Enrichment S � S ′

Dom(S) ⊇ Dom(S ′)
∀t ∈ Dom(S ′).S(t) = S ′(t)
∀x ∈ Dom(S ′).S(x) � S ′(x)
∀X ∈ Dom(S ′).S(X) � S ′(X)

S � S ′

Figure 3.7: Enrichment

only if, S enriches S ′. It is the presence of subtyping that, on the one hand,
allow us to apply a functor to an argument with a type that is richer than
required; and, on the other hand, allows us to coerce the actual type of a
structure expression to one that is less rich.

The definition of enrichment between structures extends a Core-dependent
subtyping relation on value types:

Hypothesis 3.16 (Enrichment between Value Types).
We assume that the Core language is equipped with an enrichment rela-

tion on value types:
� ∈ ValTyp ×ValTyp.

The relation is intended to capture a subtyping relation: provided v � v ′,
read v enriches v ′, then any Core value of type v may also be regarded as a
value of type v ′.

We require that � is a pre-order, i.e. that it is a reflexive and tran-
sitive relation.

We also require that � is closed under realisation: that is, whenever
v � v ′ then, for any realisation ϕ, we also have ϕ (v) � ϕ (v ′).

We can now introduce the enrichment relation on structures. Informally,
S enriches S ′, written S � S ′, if and only if:

• S has at least the components of S ′;

• the type components common to both structures are equivalent;

• the type of every term component of S is at least as rich as the type
of any corresponding component of S ′.

Formally, we define:
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C ` d . d
In context C, definable type d denotes definable type d .

C ` v . v
In context C, value type v denotes value type v .

(a) Denotation Judgements

C ` e : v
In context C, value expression e has value type v .

(b) Classification Judgements

Figure 3.8: Core Judgements

Definition 3.17 (Enrichment between Structures). The enrichment
relation between structures is defined as the least relation:

� ∈ Str × Str

closed under the rule in Figure 3.7.
Note that the equalities in the second premise of this rule implicitly

require that common type components have the same kind (recall Definition
3.7). Also, observe that the order in which components appear within S and
S ′ is irrelevant to the definition of S � S ′.

Given Hypothesis 3.16, it is easy to show that � is a pre-order that
is closed under realisation.

Finally, matching a structure against a signature is a combination of
realisation and enrichment:

Definition 3.18 (Signature Matching). A structure S matches a signa-
ture L ≡ (P)S ′ if, and only if, there exists a realisation ϕ with Dom(ϕ) = P
such that S � ϕ (S ′).

3.1.3 Static Semantics

In this section we define the judgements of the static (or type-checking)
semantics of Modules. There are essentially two kinds of judgement. A
denotation judgement has the form C ` p . p. It relates a type phrase p
to the semantic object p that it denotes in the context C. A classification
judgement has the form C ` p : o. It relates a term phrase p to the
semantic object o that it inhabits in the context C. We can think of o as
the type of p.
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C ` B . L
In context C, signature body B denotes signature L.

C ` S . L
In context C, signature expression S denotes signature L.

C ` do . d
In context C, type occurrence do denotes definable type d .

(a) Denotation Judgements

C ` sp : S
In context C, path sp has structure S.

C ` vo : v
In context C, value occurrence vo has value type v .

(b) Classification Judgements

C,N ` b : S ⇒ M
In context C and state N , structure body b has structure S,

generating fresh types M .
C,N ` s : S ⇒ M

In context C and state N , structure expression s has structure S,
generating fresh types M .

(c) Generative Classification Judgements

Figure 3.9: Modules Judgements
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Hypothesis 3.19 (Core Judgements).
We assume the static semantic of the Core provides inference rules defin-

ing the judgements in Figure 3.8. Each judgement is accompanied by its
English reading.

Remark 3.1.5. For Modules to be useful, we must allow Core type phrases
to contain type occurrences do ∈ TypOcc accessing type components of
structures. Similarly, we must permit Core term phrases to contain value
occurrences vo ∈ ValOcc accessing value components. In particular, we shall
allow the rules defining Core judgements to refer to the Modules judgements
C ` do . d and C ` vo : v defined below. Since the denotations and types
of these phrases must be determined in a Modules context C ∈ Context ,
the Core judgements must also be defined with respect to Modules con-
texts. Recall that Context generalises the set CoreContext of Core-specific
contexts.

The static semantics of Modules is defined by the judgements in Figure
3.9. Each judgement is accompanied by its English reading. In Figure
3.9, we encounter a third form of judgement: the generative classification
judgement C,N ` p : o ⇒ M . Like an ordinary classification judgement, it
relates a term phrase p to the semantic object o that it inhabits. However,
the classification of the phrase is allowed to generate new type variables.
N records the set of type variables existing prior to the classification of
the phrase. M records the set of new type variables generated during the
classification of the phrase.

The judgements of Modules are defined by the following inference rules.

Denotation Rules

Signature Bodies C ` B . L

A signature body B denotes a semantic signature L ≡ (P)S. The bound
variables of the signature arise from type specifications type t : k appearing
within the body and its sub-signatures (see Rule E-2 below). P is the set
of types specified by B. Essentially, each component of B gives rise to a
component of the structure S, by replacing the components’ specification
by its denotation in the current context. The specification of a component
is added to the context before determining the denotations of subsequent
specifications. The side-conditions on bound type variables merely prevent
capture of free variables. They can always be satisfied by suitable renam-
ings. The remaining side-conditions ensure that components are uniquely
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identified.
C ` d . d P ∩ FV(d ) = ∅
C[t = d ] ` B . (P)S t 6∈ Dom(S)

C ` type t = d;B . (P)t = d ,S (E-1)

C[t = αk] ` B . (P)S αk 6∈ FV(C) ∪ P t 6∈ Dom(S)
C ` type t : k; B . ({αk} ∪ P)t = αk,S (E-2)

C ` v . v P ∩ FV(v) = ∅
C[x : v ] ` B . (P)S x 6∈ Dom(S)

C ` val x : v; B . (P)x : v ,S (E-3)

C ` S . (P)S
C[X : S] ` B . (Q)S ′ P ∩ FV(C) = ∅
Q ∩ (P ∪ FV(S)) = ∅ X 6∈ Dom(S ′)
C ` structure X : S;B . (P ∪Q)X : S,S ′ (E-4)

C ` εB . (∅)εS (E-5)

(E-1) The signature body specifies a type named t with the same denotation
as the given definable type d.

(E-2) The signature body specifies a type component t of kind k with an
indeterminate realisation. The variable αk, which is chosen to be fresh
with respect to the current context, is used to represent the indeter-
minate. Provided B denotes in the extended context, the variable αk

is discharged, added to the set P of types specified by B, and bound
in the compound signature ({αk} ∪ P)t = αk,S ′.

(E-4) The signature body specifies an arbitrary structure X matching the
signature S. Provided S denotes the semantic signature (P)S, the
denotation of B is determined in the context extended with the as-
sumption [X : S]. The side condition on P ensures that the vari-
ables are treated as indeterminate types. These variables are sub-
sequently discharged and become bound in the compound signature
(P ∪Q)X : S,S ′.
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Signature Expressions C ` S . L

Signature expressions denote semantic signatures.

C ` B . L
C ` sig B end . L (E-6)

Type Occurrences C ` do . d

Type occurrences denote definable types.

t ∈ Dom(C) C(t) = τ

C ` t . η̂(τ ) (E-7)

C ` sp : S t ∈ Dom(S) S(t) = τ

C ` sp.t . η̂(τ ) (E-8)

(E-7) We assume that the Core judgements expect type occurrences to de-
note definable types. However, type identifiers denote types, not defin-
able types. By applying the operation η̂ we convert the type τ denoted
by t into the equivalent definable type η̂(τ ). A similar comment ap-
plies to Rule (E-8).

(E-8) Observe how the denotation of the type projection sp.t is determined
statically by inspecting the type S of the structure path sp. In particu-
lar, we do not need to evaluate the term sp to determine the denotation
of its type component.

Classification Rules

Structure Paths C ` sp : S

Structure paths are classified by semantic structures.

X ∈ Dom(C) C(X) = S
C ` X : S (E-9)

C ` sp : S ′ X ∈ Dom(S ′) S ′(X) = S
C ` sp.X : S (E-10)



82 The Static Semantics of Mini-SML

Value Occurrences C ` vo : v

Value occurrences are classified by value types.

x ∈ Dom(C) C(x) = v
C ` x : v (E-11)

C ` sp : S x ∈ Dom(S) S(x) = v
C ` sp.x : v (E-12)

Generative Classification Rules

The generative classification judgements C,N ` b : S ⇒ M and C,N ` s :
S ⇒ M are special. In each, the phrase is classified with respect to both a
context C and a set of type variables N . N is a state capturing the set of
variables generated so far. It should be a superset of FV(C). The phrase
is related to a semantic structure S and a set of variables M . M is the
set of “new” type variables generated during the classification of the phrase.
Inspecting the rules, we can see that these variable sets are threaded through
the classification tree in a global, state-like manner. Generated variables
are accumulated in the state as classification traverses the structure of the
phrase. The rules ensure that M is distinct from N . It is in this sense that
the variables of M are new.

Structure Bodies C,N ` b : S ⇒ M

Structure bodies are classified by semantic structures.

C ` d . d C[t = d ],N ` b : S ⇒ M t 6∈ Dom(S)
C,N ` type t = d; b : t = d ,S ⇒ M (E-13)

C ` e : v C[x : v ],N ` b : S ⇒ M x 6∈ Dom(S)
C,N ` val x = e; b : x : v ,S ⇒ M (E-14)

C,N ` s : S ⇒ P C[X : S],N ∪ P ` b : S ′ ⇒ Q X 6∈ Dom(S ′)
C,N ` structure X = s;b : X : S,S ′ ⇒ P ∪Q (E-15)

C,N ` s : S ′ ⇒ P C[X : S ′],N ∪ P ` b : S ⇒ Q
C,N ` local X = s in b : S ⇒ P ∪Q (E-16)
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C ` S . (P)S ′ P ∩N = ∅
C[X : S ′],N ∪ P ` s : S ′′ ⇒ Q C[F : (P)(S ′, (Q)S ′′)],N ` b : S ⇒ M

C,N ` functor F (X : S) = s in b : S ⇒ M
(E-17)

C,N ` εb : εS ⇒ ∅ (E-18)

(E-13) The structure body defines t as the denotation of d: the remainder
of the body b is classified in the context extended with the assumption
[t = d ]. The types generated by the entire phrase are just the types
generated by classifying b. The component is added to the resulting
structure.

(E-14) The structure body defines x as the value expression e. Provided
e has value type v , the remainder of the body b is classified in the
context extended with the assumption [x : v ]. The types generated
by the entire phrase are just the type generated by classifying b. The
type of x is recorded in the resulting structure.

(E-15) The structure body defines X as the structure expression s. Provided
s has structure S, generating new types P , the remainder of the body b
is classified in the context extended by the typing assumption [X : S],
and the new state recording the additional types P . The set of types
generated by the entire phrase is just the union of the sets returned by
the classification of s and b. The type of X is recorded in the resulting
structure.

(E-16) The rule is similar to Rule (E-15). The difference is that the defini-
tion of X is local b, and does not become a component of the resulting
structure. Note that the type variables generated locally by s are still
recorded in the output set.

(E-17) The functor argument’s signature S denotes a semantic signature
(P)S ′. The functor F should be applicable to any actual argument
whose structure matches (P)S ′. To this end, the functor body s is
classified in the context extended with the assumption [X : S ′], and the
state recording the additional types P . The side condition P ∩N = ∅
means that variables in P are treated as fresh parameters during the
classification of s. Adding P to the state ensures that the new types
in Q , generated by the body, are distinct from P . F is bound to
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the semantic functor (P)(S ′, (Q)S ′′) before classifying the remaining
definitions in b. We stress that the functor F is only defined locally for
the classification of b: it does not become a component of the resulting
structure.

Structure Expressions C,N ` s : S ⇒ M

Structure expressions are classified by semantic structures.

C ` sp : S
C,N ` sp : S ⇒ ∅ (E-19)

C,N ` b : S ⇒ M
C,N ` struct b end : S ⇒ M (E-20)

C,N ` s : S ′ ⇒ P
C(F) = (Q)(S ′′, (Q ′)S ′′′)
S ′ � ϕ (S ′′)
Dom(ϕ) = Q
ϕ ((Q ′)S ′′′) = (P ′)S
P ′ ∩ (N ∪ P) = ∅
C,N ` F s : S ⇒ P ∪ P ′ (E-21)

C,N ` s : S ⇒ P C ` S . ΛP ′.S ′
S � ϕ (S ′) Dom(ϕ) = P ′

C,N ` s � S : ϕ (S ′) ⇒ P (E-22)

C,N ` s : S ⇒ P
C ` S . ΛP ′.S ′ N ∩ P ′ = ∅
S � ϕ (S ′) Dom(ϕ) = P ′

C,N ` s \ S : S ′ ⇒ P ′ (E-23)

(E-19) Classifying a structure path does not generate any new types.

(E-21) To classify a functor application, we first classify the actual argu-
ment s to obtain its structure S ′, generating the new types P . The
application is well-typed, provided there is some realisation ϕ of the
functor’s type parameters Q such that S ′ enriches the realised struc-
ture ϕ (S ′′). In other words, we require that S matches the functor’s
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argument signature (Q)S ′′. Moreover, the structure S of the applica-
tion is obtained by applying the same realisation to the functor result
(Q ′)S ′′′, yielding the signature (P ′)S. This application of ϕ propa-
gates the realisation from the functor’s actual argument to its result.
Variables in P ′ are the new types generated by the functor: they must
be chosen so that they are distinct from N and P . The application
itself generates new types P ∪ P ′. Intuitively, this is the sum of the
types obtained by evaluating both the actual argument and the body
of the functor.

(E-22) The curtailment s � S can be classified provided: s has structure
S, generating new types P ; S denotes some signature (P ′)S ′; and S
matches this signature (via ϕ). Since we merely require that S enriches
ϕ (S ′), the structure ϕ (S ′) resulting from the curtailment may have
fewer and less general components than S. However, by the definition
of enrichment, those type components that remain will denote the
same types as in S. The phrase generates the types generated by s.

(E-23) The abstraction s \ S can be classified provided: s has structure
S, generating new types P ; S denotes some signature (P ′)S ′; and S
matches this signature (via ϕ). Since we merely require that S enriches
ϕ (S ′), the structure S ′ resulting from the abstraction may have fewer
and less general components than S. Moreover, since the result of the
abstraction is S ′ and not its realisation ϕ (S ′), the actual realisation of
types in P ′ is effectively forgotten. Intuitively, these types are made
abstract by replacing them with the newly generated variables P ′.
Their freshness is expressed by the side condition N ∩ P ′ = ∅.

This completes the definition of Modules.

3.2 An Example Core Language: Core-ML

In this section, we describe a particular Core language: Core-ML. We include
the definition of Core-ML to provide a familiar, concrete example.

3.2.1 Phrase Classes

Definition 3.20 (Core-ML Phrase Classes).
(cf. Hypothesis 3.1.)
Core-ML is a typed language providing the phrase classes shown in Fig-

ure 3.10. The phrase classes SimTypVar, CoreId and SimTyp are specific
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′a ∈ SimTypVar simple type variables
i ∈ CoreId λ-bound identifiers

(a) Identifiers

k ∈ DefKind kinds
u ∈ SimTyp simple types
d ∈ DefTyp definable types
v ∈ ValTyp value types

(b) Type Syntax

e ∈ ValExp value

(c) Term Syntax

Figure 3.10: Core-ML Phrase Classes.

CoreId def= {i, j, . . .} λ-bound identifiers

SimTypVar def= {′a, ′b, . . .} simple type variables

DefKind def= {0, 1, 2, 3, . . .} kinds (arities)

u ::= ′a
| u → u′ function space
| do(u0, . . . ,uk−1) type occurrence

d ::= Λ(′a0, . . . ,
′ak−1).u parameterised simple type

v ::= ∀′a0, . . . ,
′an−1.u polymorphic simple type

e ::= i identifier
| λi.e λ-abstraction
| e e′ application
| vo value occurrence

Figure 3.11: Core-ML Grammar
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′a ∈ SimTypVar simple type variables
u ∈ SimTyp simple types

dk ∈ DefTypk definable types
v ∈ ValTyp value types

C ∈ CoreContext Core contexts

Figure 3.12: Core-ML Semantic Objects

to Core-ML, the others are those required by Hypothesis 3.1. Figure 3.11
presents Core-ML’s grammar.

Variables ′a ∈ SimTypVar range over simple types. Identifiers i ∈
CoreId range over simply typed values and are introduced by Core-ML λ-
abstractions.

The kind k ∈ DefKind of a definable type is a natural number describing
its arity, or the number of simple type arguments it expects.

Simple types u ∈ SimTyp are constructed from simple type variables, the
arrow type constructor and applications of type occurrences do ∈ TypOcc,
of the Modules language, to k-tuples of simple type arguments.

Definable types d ∈ DefTyp are parameterised simple types, mapping
k-tuples of simple type arguments to simple types.

Value expressions are specified by value types v ∈ ValTyp. These are
universally quantified simple types, conventionally called type schemes. The
quantification over type variables expresses polymorphism.

Value expressions e ∈ ValExp are constructed from identifiers, abstrac-
tions, function application, and value occurrences vo ∈ ValOcc of the Mod-
ules language.

Notation. For k = 0 we will often write Λ(′a0, . . . ,
′ak−1).u, ∀′a0, . . . ,

′ak−1.u
and do(u0, . . . ,uk−1) in the abbreviated forms u, u and do, respectively,
when no confusion can arise. We shall also omit the parentheses enclosing
a 1-tuple of simple type parameters or simple type arguments.

3.2.2 Semantic Objects

Definition 3.21 (Core-ML Semantic Objects).
(cf. Hypothesis 3.2.)
The semantic objects of Core-ML are defined in Figures 3.12 and 3.13.

The sets SimTypVar and SimTyp are specific to Core-ML, the others are
those required by Hypothesis 3.2.
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dk ∈ DefTypk ::= Λ(′a0, . . . ,
′ak−1).u parameterised simple type

(provided ′a0, . . . ,
′ak−1 distinct)

v ∈ ValTyp ::= ∀′a0, . . . ,
′an−1.u polymorphic simple type

(provided ′a0, . . . ,
′an−1 distinct)

u ∈ SimTyp ::= ′a simple type variable
| u → u ′ function space
| νk(u0, . . . , uk−1) type name occurrence

C ∈ CoreContext def=

{
Ci ∪ C′a

∣∣∣∣∣ Ci ∈ CoreId fin→ SimTyp,

C′a ∈ SimTypVar fin→ SimTyp

}

Figure 3.13: Semantic Objects of Core-ML

Semantic simple type variables ′a ∈ SimTypVar are the denotations of
syntactic type variables ′a ∈ SimTypVar. Definable types dk ∈ DefTypk are
k-ary parameterised simple types. Value types v ∈ ValTyp are universally
quantified simple types. Semantic simple types u ∈ SimTyp are the denota-
tions of syntactic simple types u ∈ SimTyp. Notice that a semantic simple
type can consist of an application of a type name νk ∈ TypNamk, of the
Modules language, to a k-tuple of simple type arguments.

Definable types Λ(′a0, . . . ,
′ak−1).u and value types ∀′a0, . . . ,

′an−1.u are
binding constructs. We identify definable types and value types that are
equivalent up to renamings of bound simple type variables.

Remark 3.2.1 (Relating Type Phrases to their Denotations). Observe that
the structure of corresponding syntactic and semantic objects is almost
isomorphic. The essential difference between them is this: while simple
type phrases may contain applications of type occurrence phrases, semantic
simple types may not; instead, they allow for (well-kinded) applications of
type names. It should come as no surprise that the denotation judgements
merely replace type occurrences by expanding their denotations, preserving
the structure of the original phrase in all other respects.

Notation. For k = 0 we will often write Λ(′a0, . . . ,
′ak−1).u, ∀′a0, . . . ,

′ak−1.u
and ν(u0, . . . , uk−1) in the abbreviated forms u, u and ν respectively, when
no confusion can arise. We shall also omit the parentheses enclosing a 1-
tuple of simple type parameters or simple type arguments.
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Definition 3.22 (Substitutions). A substitution:

σ or {′a0 7→ u0, . . . ,
′ak−1 7→ uk−1} ∈ Subst = SimTypVar fin→ SimTyp

is a finite map mapping simple type variables to simple types.

Definition 3.23 (Core Contexts). Core contexts C ∈ CoreContext map
λ-bound identifiers to semantic simple types, and (syntactic) simple type
variables to (semantic) simple types.

The following operations extend contexts with Core assumptions.

[ = ] ∈ (Context × SimTypVar× SimTyp) → Context

C[′a = u] def= C + {′a 7→ u}

[ : ] ∈ (Context × CoreId× SimTyp) → Context

C[i : u] def= C + {i 7→ u}

Definition 3.24 (Free and Bound Simple Type Variables). For any
semantic object O, we let FTVS(O) denote the set of simple type variables
occurring free in O, where the notions of free and bound are defined as
usual.

Definition 3.25 (η-expansion of Type Names).
(cf. Hypothesis 3.5.)
We define the kind-preserving operation η as follows:

η( ) ∈ ∪k∈DefKindTypNamk → DefTypk

η(νk) def= Λ(′a0, . . . ,
′ak−1).νk(′a0, . . . ,

′ak−1)
(provided ∀i ∈ [k].′ai 6∈ FTVS(νk) ∪ {′a0, . . . ,

′ai−1})

The proviso that ′a0, . . . ,
′ak−1 are distinct and fresh4 ensures that the func-

tion is injective.
The operation allows any type name ν to be viewed as an equivalent

definable type η(ν).

Definition 3.26 (Realisation of Definable and Value Types).
(cf. Hyp. 3.14.)

4In this chapter, a type name νk can never contain free simple type variables. However,
when we generalise type names in Chapter 5, the condition ′ai 6∈ FTVS(νk) will no longer
be vacuous.
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Recall that realisations were defined in Definition 3.13. We now define
the effect of applying a realisation to a Core semantic object as follows:

( ) ∈ (Real ×DefTypk) → DefTypk (for each k ∈ DefKind)

ϕ
(
dk

)
def=


Λ(′a0, . . . ,

′ak−1).ϕ (u) provided
dk = Λ(′a0, . . . ,

′ak−1).u
and ∀i ∈ [k].′ai 6∈ FTVS(ϕ)

( ) ∈ (Real ×ValTyp) → ValTyp

ϕ (v) def=


∀′a0, . . . ,

′an−1.ϕ (u) provided
v = ∀′a0, . . . ,

′an−1.u
and ∀i ∈ [n].′ai 6∈ FTVS(ϕ)

( ) ∈ (Real × SimTyp) → SimTyp

ϕ
(′a) def= ′a

ϕ
(
u → u ′

) def= ϕ (u) → ϕ
(
u ′

)
ϕ (ν(u0, . . . , uk−1))

def=


ν ′(ϕ (u0) , . . . , ϕ (uk−1)) if ϕ (ν) = ν ′

{′ai 7→ ϕ (ui) |i ∈ [k]} (u)
if ϕ(ν) =
Λ(′a0, . . . ,

′ak−1).u

Note the reduction step in the last case defining ϕ (ν(u0, . . . , uk−1)). This
case occurs whenever the type name ν is realised by a definable type. We
need to perform the reduction in order to respect the definition of simple
types that only allows applications of type names, not definable types, to
simple type arguments. Intuitively, simple types are kept in normal form.

We will need a relation that relates value types to their simple type
instances (this relation is specific to Core-ML):

Definition 3.27 (Value Types Generalising Simple Types). We define
the relation:

� ∈ ValTyp × SimTyp

as follows.
A value type v ≡ ∀′a0, . . . ,

′an−1.u generalises a simple type u ′, written
v � u ′ if, and only if, there is a substitution σ with Dom(σ) = {′a0, . . . ,

′an−1}
such that σ(u) = u ′.

The generalisation relation is the basis for defining enrichment on value
types.
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C ` u . u
In context C, simple type u denotes simple type u.

C ` d . d
In context C, definable type d denotes definable type d .

C ` v . v
In context C, value type v denotes value type v .

(a) Denotation Judgements

C ` e : u
In context C, value expression e has simple type u.

C ` e : v
In context C, value expression e has value type v .

(b) Classification Judgements

Figure 3.14: Core Judgements.

Definition 3.28 (Enrichment between Value Types).
(cf. Hypothesis 3.16.)
We define the relation:

� ∈ ValTyp ×ValTyp

as follows.
A value type v enriches another value type v ′, written v � v ′, if and

only if, for every simple type u, v � u whenever v ′ � u.
It is well-known that � is a pre-order [Mil78]. It is easy to show that

it is closed under realisation.

3.2.3 Static Semantics

Definition 3.29 (Core-ML Judgements).
(cf. Hypothesis 3.19.)
The denotation and classification judgements of Core-ML are presented

in Figure 3.14.

The judgements C ` u . u and C ` e : u are specific to Core-ML (the oth-
ers are those required by Hypothesis 3.19). The former, C ` u . u, relates
a simple type expression to its denotation. The latter, C ` e : u, classifies
a value expression by a simple type. In Core-ML, a value expression may
inhabit more than one simple type. This judgement should be clearly dis-
tinguished from the judgement C ` e : v (required by Hypothesis 3.19) that
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classifies an expression by a value type, i.e. a universally quantified simple
type. As for ordinary ML [Mil78, Dam85], it is a property of Core-ML that
every typable value expression has a principal, or most general, value type.

The judgements are defined by the following rules:

Denotation Rules

Simple Types C ` u . u

Simple types denote semantic simple types.

C(′a) = u
C ` ′a . u (C-1)

C ` u . u C ` u′ . u ′

C ` u → u′ . u → u ′ (C-2)

C ` do . Λ(′a0, . . . ,
′ak−1).u ∀i ∈ [k]. C ` ui . ui

C ` do(u0, . . . ,uk−1) . {′ai 7→ ui|i ∈ [k]} (u) (C-3)

(C-1) A simple type variable denotes only if it is bound in the context.

(C-3) The denotation of a type occurrence is immediately applied to its
arguments: simple types are kept in normal form. The application
denotes only if the arity of the definable type matches the number of
its actual arguments. Note that the first premise is an instance of the
Modules judgement C ` do . d .

Definable Types C ` d . d

Definable types denote semantic definable types.

C[′a0 = ′a0] · · ·[′ak−1 = ′ak−1] ` u . u
∀i ∈ [k].′ai 6∈ FTVS(C) ∪ {′a0, . . . ,

′ai−1}
C ` Λ(′a0, · · · , ′ak−1).u . Λ(′a0, · · · , ′ak−1).u (C-4)

(C-4) Syntactic simple type variables are bound to distinct and fresh se-
mantic type variables before determining the denotation of u.
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Value Types C ` v . v

Value types denote semantic value types.

C[′a0 = ′a0] · · ·[′an−1 = ′an−1] ` u . u
∀i ∈ [n].′ai 6∈ FTVS(C) ∪ {′a0, . . . ,

′ai−1}
C ` ∀′a0, · · · , ′an−1.u . ∀′a0, · · · , ′an−1.u (C-5)

(C-5) See the comment to Rule (C-4).

Classification Rules

Monomorphic Values C ` e : u

In the first instance, value expressions are classified by semantic simple
types.

C(i) = u
C ` i : u (C-6)

C[i : u] ` e : u ′

C ` λi.e : u → u ′ (C-7)

C ` e : u ′ → u C ` e′ : u ′

C ` e e′ : u (C-8)

C ` vo : v v � u
C ` vo : u (C-9)

(C-6) Identifiers introduced by λ-abstractions have simple types. See rule
(C-7).

(C-7) In Core-ML, to ensure decidable type inference, identifiers bound by
λ-abstractions range over monomorphic value expressions classified by
simple types.

(C-9) A value occurrence vo has any simple type that is an instance of its
polymorphic value type. Note that the first premise is an instance of
the Modules judgement C ` vo : v .



94 The Static Semantics of Mini-SML

Polymorphic Values C ` e : v

The definition of Modules assumes that value expression are classified by
value types. For Core-ML, a principal value type for an expression can be
specified in terms of its possible simple types.

C ` e : u {′a0, . . . ,
′an−1} = FTVS(u) \ FTVS(C)

∀u ′. C ` e : u ′ ⊃ ∀′a0, . . . ,
′an−1.u � u ′

C ` e : ∀′a0, . . . ,
′an−1.u (C-10)

(C-10) Informally, the rule states that e has value type v provided e has
v ’s generic instance as a type, and every other simple type of e is
an instance of v . The second condition is expressed by an infinitary
premise. The rule specifies that v is a principal value type for e. (The
idea of using an infinitary rule to force principality is similar to the
use of “higher-order inference rules” in Kahrs, Sannella and Tarlecki’s
definition of Extended ML [KST97]).

This completes the definition of Core-ML.

3.3 Discussion of Mini-SML

We define Mini-SML as the language obtained by combining the definitions
of Modules and Core-ML. Without being too pedantic, we define:

Definition 3.30 (Mini-SML). Mini-SML is obtained by:

• Defining the syntactic phrase classes of Mini-SML (Figures 3.2 and
3.10) as the least solutions to the grammar rules in Figures 3.3 and
3.11.

• Defining the semantic objects of Mini-SML (Figures 3.5 and 3.12) as
the least solutions to the defining equations in Figures 3.6 and 3.13.

• Defining the judgements of Mini-SML (Figures 3.9 and 3.14) as the
least relations closed under the rules in Sections 3.1.3 and 3.2.3.

Although Core-ML is much simpler than Core Standard ML, Mini-SML
does model the prominent features of Standard ML Modules. There is one
apparent omission that we should comment on.
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datatype t = Λ(′a1, . . . ,
′ak).u with x, x′; b

def= local structure X =
struct type t = Λ(′a1, . . . ,

′ak).u;
val x = λi.i;
val x′ = λi.i

end \
sig type t : k;

val x : ∀′a1, . . . ,
′ak.u → t(′a1, . . . ,

′ak);
val x′ : ∀′a1, . . . ,

′ak.t(′a1, . . . ,
′ak) → u

end
in type t = Λ(′a1, . . . ,

′ak).X.t(′a1, . . . ,
′ak);

val x = X.x;
val x′ = X.x′;
b

end

Figure 3.15: The datatype definition as an abbreviated structure body.

Remark 3.3.1 (Standard ML’s Datatype Phrases). Readers familiar with
Standard ML may be disconcerted by the omission of datatype definitions
and specifications. In Standard ML, the phrase:

datatype (′a1, . . . ,
′ak)t = C1 of u1| · · · |Cn of un; b (n ≥ 1)

is used to define a “new” (possibly recursive) type t along with constructors
Ci mediating between it and its representation. The relevant point here is
that t is abstract as soon as it is defined , yet our description of Modules
only supports abstraction after encapsulation, by applying a signature to a
structure expression.

Adapting the notion to Core ML (which, for simplicity, has neither recur-
sive types nor pattern-matching on constructors), we might at least expect
an analogous phrase:

datatype t = Λ(′a1, . . . ,
′ak).u with x, x′; b

to introduce t as a new type with “constructor”:

x : ∀′a1, . . . ,
′ak.u → t(′a1, . . . ,

′ak)

and “destructor”:

x′ : ∀′a1, . . . ,
′ak.t(′a1, . . . ,

′ak) → u.
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datatype t = Λ(′a1, . . . ,
′ak).u with x, x′; B

def= type t : k;
val x : ∀′a1, . . . ,

′ak.u → t(′a1, . . . ,
′ak);

val x′ : ∀′a1, . . . ,
′ak.t(′a1, . . . ,

′ak) → u;
B

Figure 3.16: The datatype specification as an abbreviated signature body.

Fortunately, this can be defined as an abbreviation for the structure body in
Figure 3.15, where the identifier X must by chosen to be fresh with respect
to the current context and the identifiers defined in b.

Similarly, we can define the datatype specification

datatype t = Λ(′a1, . . . ,
′ak).u with x, x′; B

as an abbreviation for the signature body in Figure 3.16.
Treating datatype phrases as syntactic sugar means that we can avoid

polluting the generic Modules language and its semantics with constructs
that are incidental to Core-ML.

It is easy to verify that these abbreviations give rise to the following
derived rules:

C ` d . Λ(′a1, . . . ,
′ak).u

αk 6∈ N
v ≡ ∀′a1, . . . ,

′ak.u → αk(′a1, . . . ,
′ak)

v ′ ≡ ∀′a1, . . . ,
′ak.α

k(′a1, . . . ,
′ak) → u

C[t = αk][x : v ][x′ : v ′],N ∪ {αk} ` b : S ′ ⇒ M
x 6= x′ {t, x, x′} ∩Dom(S ′) = ∅ S ≡ t = αk, x : v , x′ : v ′,S ′

C,N ` datatype t = d with x, x′; b : S ⇒ {αk} ∪M (C-11)

C ` d . Λ(′a1, . . . ,
′ak).u

αk 6∈ FV(C)
v ≡ ∀′a1, . . . ,

′ak.u → αk(′a1, . . . ,
′ak)

v ′ ≡ ∀′a1, . . . ,
′ak.α

k(′a1, . . . ,
′ak) → u

C[t = αk][x : v ][x′ : v ′] ` B . (P)S ′
P ∩ ({αk} ∪ FV(v) ∪ FV(v ′)) = ∅
x 6= x′ {t, x, x′} ∩Dom(S ′) = ∅ S ≡ t = αk, x : v , x′ : v ′,S ′

C ` datatype t = d with x, x′; B . ({αk} ∪ P)S (C-12)
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These rules should be familiar to those acquainted with the static se-
mantics of Standard ML [MTH90, MTH96].

3.3.1 Discussion of the Syntax

Like many other statically typed programming languages, the syntax of
Mini-SML describes a language of types and terms. In Figures 3.2 and 3.10
we grouped phrase classes according to whether they belong to the type
or term syntax of the language. However, a fundamental design principle
of Modules is that related type and term definitions should be packaged
together in syntactic units as structures. Access to these components is via
the dot notation. As a result, the syntax of Mini-SML exhibits a curious
feature that is atypical of most statically typed languages: terms may appear
in types. The ultimate source of this dependency is the type projection sp.t.
The phrase belongs to the syntax of types, but sp is a structure path, that,
since it refers to a collection of both types and terms, belongs to the proper
syntax of terms. At first sight, this raises the uncomfortable question of
whether we need to evaluate the term sp in order to determine the type
denoted by sp.t.

This merits further explanation. In typical, statically-typed program-
ming languages, types and terms are kept distinct in the sense that types
cannot contain occurrences of terms. For this simple reason alone, the equiv-
alence of types, used in determining the classification of terms, can usually
be decided without resorting to reasoning about the equivalence of terms
(evaluation). For instance, the type theories we presented in Sections 2.2.1,
2.2.2, 2.2.3, and 2.2.4 were all of this nature.

In languages with dependent types, such as the type theories of Sections
2.2.5 and 2.2.6, this stratification is relaxed: not only can types contain
terms, but more importantly, the notion of type equivalence actually de-
pends on the notion of term equivalence. This dependency is manifest in
the rules defining type equivalence, that refer, at least indirectly, to the
judgement relating equivalent terms. Similarly, in a programming language
with true dependent types, we would expect to see a dependency of the static
semantics of the language on the dynamic semantics of the language, pre-
venting the language from having a phase distinction between compile-time
type-checking and run-time evaluation.

In Mini-SML, the fact that type phrases can contain term phrases is
suggestive of a dependently-typed language. It is this syntactic idiosyncrasy,
shared by Standard ML, that has inspired much of the research on the
type structure of Standard ML to resort to the use of dependent types
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[Mac86, HM93, HMM90]. Indeed, the use of dependent types lingers on
in the more recent type-theoretic alternatives to Standard ML proposed
in [HL94, Ler94, Ler96b, Ler95, Lil97, SH96, HS97]. By contrast, in the
following sections and the next chapter, we shall present evidence to suggest
that dependent types play no discernible role in the semantics of Mini-SML.
Since Mini-SML is merely a cut down version of Standard ML, we will
conclude with the counter-claim that dependent types have no role in the
semantics of Standard ML.

3.3.2 Discussion of the Semantic Objects

As in Standard ML, the definition of Mini-SML distinguishes between syn-
tactic type phrases and the semantic objects they denote. Moreover, it is
the semantic objects of Mini-SML (Figures 3.4, 3.6 and 3.13), not the syn-
tactic type phrases, that serve the role of types in the judgements defining
the static semantics. To see this, observe that contexts relate identifiers to
semantic objects and that the judgements of Mini-SML classify term phrases
by semantic objects. The type phrases of Mini-SML do not play a direct
role in the classification judgements. Instead, the classification judgements
exploit the denotations of type phrases, where the denotation of a type
phrase is obtained by a judgement that essentially translates the phrase to
its meaning as a semantic object.

The fundamental distinction between type phrases and semantic objects
is the following: while type phrases can contain occurrences of terms, seman-
tic objects cannot. It is easy to see this because the definition of semantic
objects is independent of the definition of terms. We noted that the depen-
dency of syntactic types on terms is introduced by type occurrence phrases
do ∈ TypOcc, that allow type projections sp.t from terms sp ∈ StrPath.
Note that structure paths are phrases that evaluate to structures and are,
in a sense, first-order objects like the term phrases of the simply typed λ-
calculus of Section 2.2.1. Contrast this with the semantic counterpart of
TypOcc, the set of semantic definable types DefTyp . Observe that a seman-
tic definable cannot contain occurrences of terms, but may, instead, contain
occurrences of type variables α ∈ TypVar . Type variables range over seman-
tic types, and for this reason, are second-order variables, just like the type
variables we encountered in the simply typed λ-calculus of Section 2.2.1.

To a type theorist, Mini-SML’s distinction between syntactic types and
their semantic counterparts is odd: in most type theories, type phrases are
interpreted syntactically, with more complicated type theories resorting to
an equational theory on type phrases. Adopting this approach in Mini-SML,
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whose type phrases contain occurrences of first-order terms, would mean in-
troducing some form of dependency of type equivalence on term equivalence.
By imposing an additional layer of interpretation on type phrases, which re-
duces type phrases to semantic objects that do not contain first-order terms,
Mini-SML manages to avoid this form of dependency. The denotation judge-
ments of Mini-SML thus serve to eliminate first-order dependencies of type
phrases on terms, replacing them with second-order dependencies of seman-
tic objects on types. The reason Mini-SML distinguishes between syntactic
and semantic types is a pragmatic one: it maintains the facade of a language
with first-order dependent types, convenient for structuring programs. The
facade masks an underlying, purely second-order type theory, formulated in
terms of semantic objects.

3.3.3 Discussion of the Judgements

It should be clear that Mini-SML is a statically typed language. None of
the rules of the static semantics refer to term equivalence judgements of the
dynamic semantics of Mini-SML. In fact, we have not even defined these
judgements.

When presenting the judgements of Mini-SML, we divided them into
three separate, functionally related, groups of judgements: denotation, clas-
sification and generative classification judgements. Examining the roles of
the judgments will help us understand the semantics.

Denotation Judgements

The denotation judgements all have the form C ` p . p. In each, the phrase p
is a phrase from the syntax of types (not terms). Its denotation is determined
with respect to a context of typing assumptions C. The denotation p is an
object in the semantic counterpart of the phrase class of p. The denotation
judgements are used in the semantics to systematically replace type phrases
by their denotations.

The key to understanding the purpose of the denotation judgements lies
in understanding Rule (E-8):

C ` sp : S t ∈ Dom(S) S(t) = τ

C ` sp.t . η̂(τ )

The rule states that the denotation η̂(τ ) of the “dependent” phrase sp.t is de-
termined statically by inspecting the type and not the (run-time) value of sp.
By systematically applying rules (E-7) and (E-8) the denotation judgements
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in Figure 3.9(a) serve to replace occurrences of syntactic term-dependencies
by their non-dependent denotations. The denotation judgements translate
the term-dependent type syntax of Mini-SML into the underlying, term-
independent language of semantic objects.

Classification Judgements

The classification judgements all have the form C ` p : o. In each, the
phrase p is a term phrase that is related to its classification o in the context
C. The judgement states that the term p has type o. We stress that o is a
semantic object, not a syntactic type phrase. The classification judgements
are clearly of a different nature from the denotation judgements discussed in
the previous section: while a denotation judgement merely translates a syn-
tactic type phrase to its semantic representation, a classification judgement
relates a term to its type. Indeed, the denotation of a term phrase would be
defined by the dynamic semantics of terms, which we have not presented.
Classification judgements are thus instances of the familiar typing relations
we encountered in our introduction to Type Theory (Section 2.2).

Generative Classification Judgements

The generative classification judgements also serve to classify terms of the
Modules language by their types. The judgement C,N ` b : S ⇒ P relates
the structure body b to its type S in the context C. The judgement C,N `
s : S ⇒ P relates the structure expression s to its type S in the context C.
These judgements differ from the other classification judgements in that the
classification of functor applications and abstractions appearing within b
and s can generate “new” types. For this reason, the generative judgements
take two additional arguments, the sets of type variables N and P . Both
sets are finite. N records the state of type variables “generated” prior to the
classification of the phrase. For soundness reasons, it should be a superset
of the type variables occurring free in C. Classification produces, besides
the semantic object S, the set of type variables P generated during the
classification of the phrase. These new type variables may occur in S. The
rules defining the judgements enforce the condition that each variable in P
is distinct from those variables in the current state N , and, by implication,
from any types appearing in C. It is in this sense that P captures the set
of “new” types generated by the phrase. This invariant is maintained by
threading the state through the derivation tree, updating it as new variables
are generated by subphrases, functor applications and abstractions. This
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generative behaviour is captured by the following property:

Property 3.31 (Generativity).

• If C,N ` b : S ⇒ P then N ∩ P = ∅.

• If C,N ` s : S ⇒ P then N ∩ P = ∅.

Proof. A simple rule induction.

Since the state is intended to record the variables occurring free in the
context, we define:

Definition 3.32 (Rigidity). A context C is rigid with respect to N , written
C,N rigid if, and only if, FV(C) ⊆ N .

As long as we start with C,N rigid, as a consequence of Property 3.31,
type variables generated during classification will never be confused with
types occurring in the context.

To a type theorist, the generative judgements appear odd. The intrusion
of the state forces a left-to-right dependency on the order of premises in the
typing rules which is a departure from the standard compositional formu-
lation of typing rules in Type Theory. The fact that the type of the term
may contain “new” free type variables, that do not occur free in the context,
is peculiar (conventional type theories enjoy the free variable property: the
type of a term is closed with respect to the variables occurring free in the
context). Perhaps for this reason, generativity has developed its own mys-
tique and its own terminology. In the Definition [MTH90, MTH96], type
variables are called “names”, to stress their persistent, generative nature.
Generativity is presented as an extra-logical device, useful for programming
language type systems, but distinct from the more traditional type-theoretic
constructs, as these can be related to constructive interpretations of logical
connectives. In Chapter 4 we will dispel this mystique, reformulating the
generative classification judgements in terms of familiar type-theoretic con-
structs, obtaining more palatable, state-less classification judgements.

3.3.4 The Different Roles of Bound Type Variables

In defining Modules, we have used the notation of Standard ML for semantic
structures (P)S ∈ Sig and functors (P)(S, (Q)S ′) ∈ Fun. Observe that
Standard ML is decidedly non-committal in its choice of binding operators:
parentheses are used uniformly to bind sets of type variables. The use of
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the same notation obscures the different roles that these binding constructs
play. In this section, we discuss the purpose of these binding constructs, and
propose a more meaningful notation for them. The notation will be adopted
in later chapters.

Signatures as Families of Structures

What exactly are signature expressions and the semantic signatures they
denote? In the Standard ML literature, signatures are vaguely referred to
as the types of structure expressions. However, inspecting the rules we
find that the type of a structure is a semantic structure S, while a semantic
signature has the form (P)S, binding a set of type variables appearing in the
structure S. Let S be a signature expression denoting (P)S, i.e. C ` S.(P)S.
Each type variable αk ∈ P arises from some type specification of the form
type t : k by an application of Rule (E-2). Since such phrases only specify
the kind k of the type component, without determining its definition, it is
clear that signatures merely specify families of structures, indexed by the
realisations of their bound type variables.

In fact, the role of the signature expression S changes according to the
kind of phrase in which it appears. In a functor definition functor F (X :
S) = s , S specifies that the functor should be uniformly applicable to
any argument whose type is in the family (P)S. In a signature curtailment
s � S, S is used to check that the type of s is at least as rich as some type
that is a member of the family (P)S. The type of the complete phrase is
that particular member, which may have less rich components, but by the
definition of enrichment, will agree on its type components with the type
components of s. In a signature abstraction s \ S, S is also used to check
that the type of s is at least as rich as some type that is a member of the
family (P)S. However, the type of the complete phrase is not that particular
member, but a generic member of the family. This is enforced by generating
fresh variables for the variables in P .

Given these observations, it should be clear that the denotation of the
signature expression is never used as the type of a phrase, but merely as
an aid in the construction of a type. The common denominator of all of
these usages is the way in which the signature expression serves to specify a
family of types. To emphasise this role, we will from now on use a different
notation for semantic signatures:

Notation (Semantic Signatures). A semantic signature (P)S ∈ Sig is iden-
tified with its notational variant ΛP .S. Variables in P are bound in S. The
signature ΛP .S specifies a family of semantic structures, whose members are
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obtained by realising type variables in P . The use of Λ as a binder stresses
that the bound variables are parameters indexing a family of semantic struc-
tures.

Since the parameters P of a semantic signature ΛP .S are type variables,
and the structure S is itself a form of type used to classify terms, from
a type-theoretic perspective, the signature corresponds to a parameterised
type, similar to the notion of parameterised type we encountered in Section
2.2.3.

Functors as Polymorphic Functions

Recall the functor introduction rule (Rule E-17):

C ` S . (P)S P ∩N = ∅
C[X : S],N ∪ P ` s : S ′ ⇒ Q C[F : (P)(S, (Q)S ′)],N ` b : S ′′ ⇒ M

C,N ` functor F (X : S) = s in b : S ′′ ⇒ M

From the previous discussion, we can say that the signature expression S
denotes the family of structures ΛP .S. The functor body s is classified in
the context extended with the assumption [X : S]. Assuming C,N rigid, the
second premise ensures that P ∩ FV(C) = ∅, hence variables in P are treated
as arbitrary, formal type parameters. The semantic functor (P)(S, (Q)S ′),
i.e. the type of F, is obtained by discharging first the assumption [X : S]
from the result of classifying the functor body, and then discharging the type
parameters P . In the first step, we obtain a function taking a structure of
type S as an argument. In the second step, we generalise this function on its
free type parameters to obtain a polymorphic function. The functor elim-
ination rule (Rule (E-21)) reflects the polymorphic behaviour of functors.
Before applying the functor, we must first choose a realisation (i.e. an in-
stantiation) of its type parameters. This realisation is used to check that the
type of the actual argument is at least as rich as the realisation of the func-
tor’s domain. The conventional description of a functor as a function taking
structures to structures is clearly inaccurate. A functor is a polymorphic
function on structures that first needs to be applied to a type realisation,
before it can be applied to an actual argument. Functors are thus similar
to the polymorphic functions we encountered in Section 2.2.2. For clarity,
the type of a functor should be written using universal quantification over
its type parameters.

What of the range (Q)S ′ of a semantic functor (P)(S, (Q)S ′)? By adopt-
ing the notation of semantic signatures, Standard ML suggests that applying
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a functor to a structure expression returns a term whose type is the family
of types specified by the signature (Q)S ′. This doesn’t make sense and over-
loading the notation in this way is confusing. When a functor is applied, the
bound variables of the result signature give rise to fresh generative types.
These types are essentially abstract. For a given realisation of its type pa-
rameters, applying the functor to a structure expression therefore returns a
term whose type is some member of the family of types specified by its result
signature. Since the bound variables of the result are replaced by generative
type variables, precisely which member of this family remains unknown. We
emphasise the distinction between functor ranges and semantic signatures
by introducing a new notation for functor ranges:

Notation (Existential Structures). An existential structure X ∈ ExStr is an
existentially quantified structure of the form ∃P .S. Variables in P are bound
in S. Intuitively, ∃P .S is a type used to classify terms. A term belongs to
this type if, and only if, there exists a realisation ϕ of the variables in P
such that the term has type ϕ(S). In other words, a term belongs to this
type if, and only if, its type is some member of the family of types ΛP .S.

We can stress the observations of the preceding discussion by changing
the notation of semantic functors.

Notation (Semantic Functors). A semantic functor (P)(S, (Q)S ′) ∈ Fun is
identified with its notational variant ∀P .S → ∃Q .S ′. ∀P .S → ∃Q .S ′ is a
type classifying a functor. The use of ∀ as the outermost binder stresses that
the bound variables are universally quantified: the functor is polymorphic.
The → stresses that realising the functor’s type parameters yields a function
on terms. The existential quantifier stresses that, for any realisation ϕ of the
functor’s type parameters (i.e. Dom(ϕ) = P), applying the functor returns
a term with existential structure ϕ (∃Q .S ′), in other words, a term whose
type is some member of the family of structures ϕ (ΛQ .S ′).

3.3.5 Is Mini-SML dependently typed?

We can now return to answer the question of whether Mini-SML’s syntactic
dependency of type phrases on term phrases actually induces a semantic
dependency of types on terms. Given the considerable effort that has been
invested in finding dependently typed models of Standard ML, it is surpris-
ing to find that the underlying semantic objects reveal no dependency on
terms. Perhaps the best way to see this is to consider the semantic objects
assigned to phrases exhibiting syntactic dependencies.

Consider the signature expression in Figure 3.17(a). Notice the syntactic
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sig structure X : sig type t:0
end;

structure Y : sig type u:0;
type v = X.t → u

end;
val y: X.t → Y.v

end

(a) The signature suggests a dependency of types
on terms.

Λ{α, β}. (X : (t = α),
Y : (u = β,

v = α → β),
y : α → α → β)

(b) The signature’s non-
dependent denotation.

Figure 3.17: A term-dependent signature expression and its non-dependent
denotation.
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dependency of the specifications of v and y on the structure identifiers X
and Y. In fact, we can be a little more specific, by observing that the
definition of v and the specification of y depend on type components X.t,
u, and Y.v. The phrase denotes the semantic signature in Figure 3.17(b).
Notice how the denotations of t and u are represented by type variables
α and β . In the semantic signature, syntactic dependencies on X.t, u,
and Y.v have been systematically replaced by semantic occurrences of the
second-order variables α and β . In particular, the syntactic dependencies
on the term phrases X and Y have been removed. The simplification is
effected by the denotation judgements, which, by assigning type variables
to type specifications, manage to replace all type occurrence phrases by
their denotations. Observe that the identifiers appearing within semantic
structures are not bound in any way, they are merely tags like the field
names of record types.

As another example, consider the functor in Figure 3.18(a). It returns
a type w whose definition is syntactically dependent on the functor argu-
ment Z. Figure 3.18(b) shows the semantic functor classifying F. Again the
syntactic dependence of the result type w on Z.X.t and Z.Y.v has been sim-
plified by replacing these type occurrence phrases by their denotations. The
syntactic term dependency on Z is completely removed, leaving a residual
second-order dependency on the functor’s type parameters α and β .

In summary, the first-order dependencies of types on terms, apparent in
the syntax of Mini-SML, boil down to second-order dependencies of semantic
objects on type variables.

3.4 Conclusion

In Section 3.1, we defined the Modules language. The definition of this
language is based directly on the definition of Standard ML Modules, cap-
turing its essential features. Our definition of Modules is parameterised by
an arbitrary Core language. For concreteness, in Section 3.2 we presented
a particular instance of the Core language: Core-ML. Core-ML supports
both parameterised type and polymorphic values, capturing the two main
features of Standard ML’s Core language that are relevant to the definition
of Modules. In Section 3.3, we defined Mini-SML as the language obtained
by combining the definitions of Modules and Core-ML and proceeded with
an informal analysis of the type-theoretic underpinnings of Mini-SML. We
discussed how the syntactic dependency of types on terms is suggestive of
a dependently-typed language. Indeed, this feature has prompted many
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functor F(Z : sig structure X : sig type t:0
end;

structure Y : sig type u:0;
type v = X.t → u

end;
val y: X.t → Y.v

end ) =
struct type w = Z.X.t → Z.Y.v;

val z = Z.y
end

in . . .

(a) The functor body suggests a dependency of types on terms.

∀{α, β}.(X : (t = α),
Y : (u = β,

v = α → β),
y : α → α → β)
→ ∃∅.(w = α → α → β,

z : α → α → β)

(b) The functor’s non-dependent
type.

Figure 3.18: A dependent functor and its non-dependent type.
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researchers in the area to propose that dependent types underly the type
structure of Standard ML. However, by inspecting the static semantics of
Mini-SML, we have found ample evidence to suggest that Mini-SML can
be understood by relying only on the simpler type-theoretic notions of type
parameterisation, type quantification and subtyping. Since Mini-SML is
merely a cut down version of Standard ML, we can make the counter-claim
that dependent types have no role in the static semantics of Standard ML.

The generative classification judgements, however, do not sit nicely with
our type-theoretic understanding of other aspects of the static semantics. In
Chapter 4, we focus our attention on the generative judgements, and expose
them as a particularly operational incarnation of existential quantification
over types. By the end of that chapter, we hope to have discredited the
claim that dependent types are necessary to explain the type structure of
Standard ML.



Chapter 4

Type Generativity as
Existential Quantification

In this chapter, we present a new static semantics for structure bodies and
expressions. It is intended as a more type-theoretic alternative to the gener-
ative classification judgements we gave in Chapter 3. Our main objective is
to first explain and then eliminate the state of type variables maintained by
the generative classification rules. Considerable effort is devoted to proving
the equivalence of the two systems. We claim that the resulting system is
more type-theoretic in style and easier to understand. In later chapters, we
will substantiate this claim by using the alternative semantics as the basis
for significant extensions to the language.

The chapter is organised as follows. In Section 4.1, we give an informal
account of the role generativity plays in the existing semantics. In Sec-
tion 4.2, we suggest an alternative semantics for generative phrases. We
first introduce the concept of existential structures. We then define judge-
ments classifying structure bodies and expressions by existential structures.
Unlike their generative counterparts, these judgements are state-less and
have the more familiar form of typing judgements. Section 4.3 is devoted
to proving that the generative classification judgements and their state-less
replacements are equivalent. After setting up the necessary machinery, we
first prove an easy completeness result: every generative classification (of
interest) gives rise to a state-less classification. We then prove a technically
more difficult soundness result: every state-less classification (of interest)
gives rise to a generative classification. The proof of soundness factors into
two parts. In the first, we prove a generalised induction principle for state-
less classification judgements. In the second, we use this induction principle

109
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to prove our result. Section 4.4 briefly discusses the implications of our
equivalence result.

The work in this chapter is a slight generalisation of the author’s earlier
work in [Rus96], which presents similar results for a simplified, core-less
Modules language.

Remark 4.0.1. We adopt the notational changes to semantic signatures and
functors motivated in Section 3.3.4. That is, from now on we will abandon
the Standard ML notation and write a semantic signature L ∈ Sig in the
form L ≡ ΛP .S, to stress that it is a parameterised structure, and write a
semantic functor F ∈ Fun in the form F ≡ ∀P .S → X or F ≡ ∀P .S →
∃Q .S ′ to stress that it is the type of a polymorphic function on structures
with an existentially quantified range.

4.1 Generativity: An Informal Account

In Section 3.1.3 we presented the generative classification judgements used
to determine the types of structure bodies and expressions. In Section 3.3.3
we briefly discussed the way in which the rules of these judgements main-
tain a state of generated types during classification. The sense in which
a generative judgement returns new types was captured by Property 3.31
(Generativity). Definition 3.32 (Rigidity) captured a pre-condition on the
initial context and state that is necessary1 to ensure that the generative rules
are sound. This condition is maintained as an invariant during classification.

The following sections provide an informal account of why “generativity”
is needed at all. In a nutshell, generativity is used to avoid the unsafe
identification of types that might otherwise lead to run-time type errors.

4.1.1 The Rationale for Distinguishing Syntactic Type Iden-
tifiers From Semantic Type Variables

In a naive semantics, one might choose to identify syntactic type identifiers
with the semantic type variables they denote. Unfortunately, since Mini-
SML, like Standard ML, allows the redefinition of syntactic type identifiers,
this can lead to the confusion of types that ought to be kept distinct.

Consider the phrase in Figure 4.1(a). In the naive semantics it would
“type-check”. However, this is clearly not safe, since it leads, at run-time, to
the application of 1 to 2. The phrase is not sound. Initially, x is used to co-
erce 1 to a value of type t. Here, the first defining occurrence of t is intended.

1but, as we shall see, not quite sufficient.
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datatype t = int with x,y;
structure X = struct datatype t = int → int with x′,y′;

val z = (y′ (x 1)) 2
end

(a) The phrase is not sound: it attempts to masquerade 1 as a function
and apply it to 2, resulting in a run-time error. The phrase should be
rejected by a sound static semantics.

datatype tt = int with x,y;
structure X = struct datatype tt = int → int with x′,y′;

val z = (y′t→int→int(xint→t 1)t )int→int 2
end

(b) An unsound classification of the same phrase constructed in a naive
semantics that identifies syntactic type identifiers with semantic type vari-
ables.

datatype tα = int with x,y;
structure X = struct datatype tβ = int → int with x′,y′;

val z = (y′β→int→int(xint→α 1)α ) 2
end

(c) The unsuccessful but sound classification of the same phrase according
to the semantics in Chapter 3. The offending subphrase is underlined.

Figure 4.1: An unsound phrase illustrating the purpose of distinguishing
between syntactic type identifiers and semantic type variables.
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Now y′ allows us to coerce any value of type t, where the second defining
occurrence of t is intended, to a value of function type int → int. Unfor-
tunately, by sharing their denotations, the naive semantics identifies both
definitions and fails to catch the type violation in the expression y′ (x 1).
In our semantics, we avoid this pitfall by assigning distinct type variables
α and β to the first and second defining occurrences of t. The situation is
summarised in Figures 4.1(b) and 4.1(c). In each, the defining occurrences
are annotated with their semantic representations and key subphrases are
annotated with their types.

Of course, if we rule out the redefinition of type identifiers already bound
in the context, the need to distinguish them using type variables disappears.
But this is a harsh restriction and goes against one of the main motivations
for Modules: to provide a mechanism of name space control allowing com-
ponent names to be reused within different modules. After all, outside of
the structure body, the definitions are referred to by distinct phrases t and
X.t.

4.1.2 The Rationale for Maintaining a State of Generated
Type Variables

Although the example of Section 4.1.1 illustrates how type variables are
used to distinguish between different definitions of the same type identifier,
it does not explain the need to maintain a state of type variables throughout
classification. In a typical classification, we must, at certain points, choose
suitably “fresh” variables to represent syntactic type identifiers. In our
example, we had to choose β to be fresh for α. One may be tempted
to define “fresh” to simply mean “distinct from the variables free in the
current context”, as this definition correctly deals with our example yet
does away with the overhead of the state. Unfortunately, in the general
case, this condition is too weak to ensure soundness. Indeed, classification
must maintain a state of all variables generated so far, not just those visible
in the current context. The following example shows why.

Consider the phrase in Figure 4.2(a). As in the example of Section 4.1.1,
a sound semantics should reject the phrase since it leads to a run-time error
in the definition of z.

Suppose that, using a putatively simpler, state-less semantics, we were
only to require that the type variables chosen for t and u be distinct from
the variables currently free in the context of their respective definitions.
Figure 4.2(b) shows what can go wrong. We indicate, at the beginning of
each structure body b, the set N of variables free in the local context, using
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structure X = struct datatype t = int with x,y end;
structure Y = struct structure X = struct end;

datatype u = int → int with x′,y′

end;
val z = (Y.y′ (X.x 1)) 2

(a) The phrase is unsound, attempting to apply 1 to 2. It should be
rejected by a sound static semantics.

∅
dstructure X = struct

∅
ddatatype tα = int with x,y end;

{α}
dstructure Y = struct

{α}
dstructure X = struct end;
∅
ddatatype uα = int → int with x′,y′

end;
{α}
dval z = (Y.y′α→int→int(X.xint→α 1)α )int→int 2

(b) An unsound classification of the phrase in Figure 4.2(a) resulting from
a state-less semantics.

∅
↓ structure X = struct

∅
↓ datatype tα = int with x,y

{α}
↑ end;

{α}
↓ structure Y = struct

{α}
↓ structure X = struct end;
{α}
↓ datatype uβ = int → int with x′,y′

{β}
↑

end;
{α,β}
↓ val z = (Y.y′β→int→int(X.xint→α 1)α ) 2

(c) A partial, correctly unsuccessful classification of the phrase in Figure 4.2(a).
The state prevents the offending subphrase from being accepted. The type
violation is underlined.

Figure 4.2: An unsound phrase illustrating the necessity of maintaining a
state of type variables.
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the notation
N

d b. In addition, defining occurrences of t and u are annotated
with their semantic representations and key subphrases with their types.
The problem is that t and u are assigned the same type variable α, even
though they must be distinguished. The problem arises because α, already
set aside for t, no longer occurs free in the context by the time we need
to choose a fresh variable for u: it is eclipsed by the shadow of the second
definition of X. Thus we may again pick α and incorrectly accept the
definition of z.

In Figure 4.2(c) we can see how the use of a state maintains soundness.
We indicate, at the beginning of each structure body b, the state N of
variables generated so far, and, at its end, the variables M generated during

its classification. We use the notation
N
↓ b

M
↑, corresponding to a classification

. . .,N ` b : . . . ⇒ M . Observe that generated variables are accumulated in
the state as we traverse the phrase. At the definition of u, α is recorded in
the state, even though it no longer occurs free in the context, forcing the
choice of a distinct variable β . In turn, this leads to the detection of the
type violation.

4.1.3 The Rationale for Generative Functor Application

Finally, let us examine the relationship between functors and type genera-
tivity. Consider a typical functor definition functor F (X : S) = s in b.
Recall that classifying the body s of F with respect to its formal argument
X may itself generate new types. By way of comparison, in the structure
definition structure X = s;b, these variables would be added to the state
before proceeding with the classification of b. In the case of a functor def-
inition, however, they are not added to the state. Instead, they become
(existentially) bound in the result structure of F. At each application of F
to an actual argument, fresh variables are generated to replace them in the
actual result. In effect, generativity is delayed from the point of definition
to the point of application, each application producing a fresh set of types.

Consider the misleading example in Figure 4.3(a). The phrase does not
type-check. In Figure 4.3(b) we have annotated the phrase with semantic
objects to show why classification fails: the types Y.u and Z.u are incompat-
ible. Each application of F has generated a fresh type, δ and γ respectively,
to replace β .

At first glance, this seems overly restrictive since the example is, in fact,
sound: the evaluation of z does not cause a run-time error. Could we not,
as in Figure 4.3(c), safely generate types once and for all at the functor’s
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functor F (X : sig end) = struct datatype u = int with x,y end
in
structure Y = F (struct end);
structure Z = F (struct end);
val z = Z.y (Y.x 1)

(a) The phrase is sound but fails to type-check.

functor b
∀∅.εS→∃{β}.(u=β,x:int→β,y:β→int)
F (X : sig end) = struct datatype u = int with x,y end

in
structure b

(u=δ,x:int→δ,y:δ→int)
Y = F (struct end);

structure b
(u=γ,x:int→γ,y:γ→int)
Z = F (struct end);

val z = Z.yγ→int (Y.xint→δ 1)δ

(b) The unsuccessful classification of the same phrase. The example illustrates the
generation of fresh types at each and every functor application. The offending sub-
phrase is underlined.

functor b
∀∅.εS→(u=β,x:int→β,y:β→int)
F (X : sig end) = struct datatype u = int with x,y end

in
structure b

(u=β,x:int→β,y:β→int)
Y = F (struct end);

structure b
(u=β,x:int→β,y:β→int)
Z = F (struct end);

val z = Z.yβ→int (Y.xint→β 1)β

(c) A successful and sound classification of the same phrase in a simpler semantics
with non-generative functor application.

Figure 4.3: A sound phrase that nevertheless fails to type-check due to the
generativity of functor application. The example misleadingly suggests that
generative functor application is overly conservative.
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definition? We would add β as a new variable to the state, avoid the over-
head of generativity at each application, and accept the innocent phrase as
it stands. A simpler notion of semantic functor, minus the set of generative
type variables, would do. These modifications yield applicative functors, in
the sense that every application of a given functor yields equivalent abstract
types, instead of generating fresh ones. The idea of an applicative semantics
for functors originates with Leroy [Ler95]. Unfortunately, our approach to
an applicative semantics is too naive and fails to be sound. The following
counter-example illustrates the problem.

Consider the phrase in Figure 4.4. It differs only slightly from the pre-
vious one, by introducing a dependency of u on the formal argument X:
in particular, the definition of u is a function of the type parameter X.t.
Now, with each application of F, the realisation of u may vary according
to F’s actual argument. Indeed, in our example it does: the definition of z
is unsound and should be rejected. Generating fresh types at each applica-
tion of F is a sufficient guard against violations such as this one (see Figure
4.4(b)). Generating variables once-and-for-all at a functor’s definition, as in
our naive applicative semantics, is not (see Figure 4.4(c)).

Remark 4.1.1 (Applicative Functors and Soundness). Leroy’s semantics of
applicative functors [Ler95] is different from the naive semantics considered
here and does maintain soundness. His semantics is sound, because the
abstract types returned by a functor application are expressed as a function
of the functor’s actual argument. This leads to an applicative behaviour in
the sense that two applications of the same functor to the same argument
result in equivalent abstract types, while an application of the same functor
to a different argument yields distinct abstract types. For instance, if F is
the functor in Figure 4.4, and A and B are structure identifiers defined as
the two arguments of F in Figure 4.4, then each application F A returns
the same abstract type (F A).u, but the application F B returns a different
abstract (F B).u: the abstract types (F A).u and (F B).u are distinct,
because their constituent paths (F B) and (F A) are different (recall that
Leroy extends paths to allow applications of functors paths to argument
paths). Note, however, that Leroy’s syntactic restriction to paths means
that this technique can only be applied to applications of functor paths
to argument paths. For instance, this restriction means that the abstract
types returned by two applications of F to the same anonymous structure
(struct type t = int end) will be distinct, even though it is perfectly sound
for them to be equivalent.

In Chapter 5, we will give an applicative semantics for functors that
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functor F(X: sig type t : 0 end) =
struct datatype u = X.t with x,y end

in
structure Y = F (struct type t = int end);
structure Z = F (struct type t = int → int end);
val z = (Z.y (Y.x 1)) 2

(a) The phrase is unsound, attempting to apply 1 to 2. It
should be rejected by a sound static semantics.

functor b
∀{α}.(t=α)→∃{β}.(u=β,x:α→β,y:β→α)
F (X: sig type t : 0 end) =

struct datatype u = X.t with x,y end
in
structure b

(u=δ,x:int→δ,y:δ→int)
Y = F (struct type t = int end);

structure b
(u=γ,x:(int→int)→γ,y:γ→(int→int))
Z = F (struct type t = int → int end);

val z = (Z.yγ→(int→int) (Y.xint→δ 1)δ ) 2

(b) The unsuccessful but sound classification of the same
phrase. The example demonstrates how the generation of fresh
types at each and every functor application preserves sound-
ness. The denotations of Y.u and Z.u are correctly distin-
guished. The offending subphrase is underlined.

functor b
∀{α}.(t=α)→(u=β,x:α→β,y:β→α)
F (X: sig type t : 0 end) =

struct datatype u = X.t with x,y end
in
structure b

(u=β,x:int→β,y:β→int)
Y = F (struct type t = int end);

structure b
(u=β,x:(int→int)→β,y:β→(int→int))
Z = F (struct type t = int → int end);

val z = (Z.yβ→(int→int) (Y.xint→β 1)β )int→int 2

(c) A successful but unsound classification of the same phrase
constructed in a naive semantics with applicative functors. By
sharing the same denotation, Y.u and Z.u are incorrectly iden-
tified.

Figure 4.4: An unsound phrase illustrating the need for generative functor
application.
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is sound and also works for anonymous arguments, but is slightly different
from Leroy’s notion. In our proposal, two applications of the same functor
to equivalent type arguments (i.e. an equivalent realisation) yield equivalent
abstract types, while an application of the same functor to distinct type
arguments yields distinct abstract types. We will compare our semantics
with Leroy’s in Chapter 9.

4.2 A Type-Theoretic Semantics

In this section we present an alternative static semantics for structure bodies
and expressions. The idea is to replace the mysterious reliance on a state
of generated types with a well understood construct from type theory: ex-
istential quantification over types. The intuition arises from a slight shift in
perspective. Instead of treating the classification of structure bodies and ex-
pressions as resulting in a semantic structure S with the possible side-effect
of generating new types P , we shall treat the new types as an integral part
of the classifying object.

We first define:

Definition 4.1 (Existential Structures). An existential structure X ∈
ExStr is an existentially quantified structure of the form ∃P .S. Variables
in P are bound in S. Intuitively, ∃P .S is a type used to classify terms. A
term belongs to this type if, and only if, there exists a realisation ϕ of the
variables in P such that the term has type ϕ(S). In other words, a term
belongs to this type if, and only if, its type is some member of the family of
types ΛP .S.

In the new semantics, structure bodies and expressions are classified by
existential structures X ∈ ExStr . Adopting this view allows us to replace
the state-full judgements:

C,N ` b : S ⇒ P

C,N ` s : S ⇒ P

by the state-less judgements:

C ` b : ∃P .S

C ` s : ∃P .S.

The key idea is to replace global generativity with respect to a state by
the implicit introduction and local elimination of existential quantifiers.
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C ` b : X
In context C, structure body b has existential structure X .

C ` s : X
In context C, structure expression s has existential structure X .

Figure 4.5: State-less Classification Judgements for Structure Bodies and
Expressions

4.2.1 Static Semantics

The new static semantics of structure bodies and expressions is defined by
the judgements in Figure 4.5. We have indicated, below each judgement,
its intended English reading. The judgements are defined by the following
rules. Instead of relying on a global state, the rules employ side conditions
on sets of bound variables. The side conditions prevent the capture of free
variables in the usual way. The identification of existential structures up to
capture-avoiding renamings of bound variables means that we can always
rename bound variables as necessary to satisfy the side conditions.

Structure Bodies C ` b : X

C ` d . d P ∩ FV(d ) = ∅
C[t = d ] ` b : ∃P .S t 6∈ Dom(S)
C ` type t = d; b : ∃P .t = d ,S (T-13)

(T-13) The type definition can be classified provided d denotes definable
type d and b has existential structure ∃P .S in the extended context.
Ensuring free variables in d are not accidentally captured by bound
variables in P , we implicitly eliminate the existential ∃P .S, extend
S to record the denotation of the type component t and then hide
the hypothetical types by existentially quantifying over the resulting
structure.

C ` e : v P ∩ FV(v) = ∅
C[x : v ] ` b : ∃P .S x 6∈ Dom(S)

C ` val x = e; b : ∃P .x : v ,S (T-14)
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(T-14) The value definition can be classified provided e has type v and b
has existential structure ∃P .S in the extended context. Ensuring free
variables in v are not accidentally captured by bound variables in P ,
we implicitly eliminate the existential ∃P .S, extend S to record the
type of the value component x and then hide the hypothetical types
by existentially quantifying over the resulting structure.

C ` s : ∃P .S P ∩ FV(C) = ∅
C[X : S] ` b : ∃P ′.S ′
P ′ ∩ (P ∪ FV(S)) = ∅ X 6∈ Dom(S ′)

C ` structure X = s;b : ∃P ∪ P ′.X : S,S ′ (T-15)

(T-15) Assume s has existential structure ∃P .S. To provide access to the
components of s, we locally eliminate the existential, introducing fresh
hypothetical types P , and type check b in the suitably extended con-
text to obtain a semantic structure ∃P ′.S ′. Now ∃P ′.S ′ may contain
occurrences of the locally eliminated types in P , and these should not
escape their scope: so we eliminate the existential ∃P ′.S ′, extend the
structure S ′ by the component X and existentially quantify over the
types P ∪ P ′, yielding the result type ∃P ∪ P ′.X : S,S ′. The quan-
tification over P in this type means that the variables in P do not
escape their scope. The first side condition of the rule ensures that
the variables in P are treated as hypothetical types and not confused
with any existing types in C. The second side condition prevents the
accidental capture of variables in P and S by bound variables in P ′.

C ` s : ∃P .S C[X : S] ` b : ∃P ′.S ′
P ∩ FV(C) = ∅ P ′ ∩ P = ∅
C ` local X = s in b : ∃P ∪ P ′.S ′ (T-16)

(T-16) Similar to Rule (T-15) except that X does not become a component
of the resulting structure.

C ` S . ΛP .S
P ∩ FV(C) = ∅
C[X : S] ` s : X ′

C[F : ∀P .S → X ′] ` b : X
C ` functor F (X : S) = s in b : X (T-17)
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(T-17) The signature expression S denotes a family of semantic structures,
ΛP .S. We want F to be applicable to any argument whose type
matches the signature ΛP .S. To this end, we classify the body s
of F in the context extended with the assumption that the formal ar-
gument X has type S. Because we ensure that P is a locally fresh set
of variables, the type S is a generic instance of ΛP .S. The classifica-
tion of s is an existentially quantified structure X ′, which may contain
occurrences of our generic variables P . Intuitively, since the functor
can be classified for arbitrary type parameters P , it can be classified
for any realisation of these parameters: F is polymorphic in P . We
discharge the assumption [X : S], universally quantify over the type
parameters, and add the assumption [F : ∀P .S → X ′] to the context.
Classifying the scope b of the functor definition yields the type of the
entire phrase (the functor is only defined locally).

C ` εb : ∃∅.εS (T-18)

(T-18) The empty structure body introduces an empty quantifier.

Structure Expressions C ` s : X

C ` sp : S
C ` sp : ∃∅.S (T-19)

(T-19) The classification of a path is a structure. Existentially quantifying
over the empty set reflects the fact that a path cannot introduce new
types.

C ` b : X
C ` struct b end : X (T-20)

C ` s : ∃P .S ′
C(F) = ∀Q .S ′′ → X P ∩ FV(∀Q .S ′′ → X ) = ∅
S ′ � ϕ (S ′′) Dom(ϕ) = Q
ϕ (X ) = ∃P ′.S P ∩ P ′ = ∅

C ` F s : ∃P ∪ P ′.S (T-21)

(T-21) Assume the argument s has existential structure ∃P .S ′. We locally
eliminate the quantifier to see whether the functor may be applied to
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the structure (a combination of realisation and enrichment), obtaining
the existentially quantified functor result ϕ (X ) = ∃P ′.S. By virtue of
the realisation, the functor may propagate some of the hypothetical
types in P from the actual argument to the result. To prevent them
escaping their scope, we extend the existential quantification over the
actual result S to hide both P and P ′. The side conditions on P
ensure that these hypothetical types are not accidentally confused with
existing types, nor with the types returned by the application. They
can always be satisfied by suitable renamings of P and P ′.

C ` s : ∃P .S
C ` S . ΛP ′.S ′ P ∩ FV(ΛP ′.S ′) = ∅
S � ϕ (S ′) Dom(ϕ) = P ′

C ` s � S : ∃P .ϕ (S ′) (T-22)

(T-22) The signature expression S denotes a family of semantic structures,
ΛP ′.S ′. The curtailment s � S checks whether the type of s is at
least as rich as some member ϕ (S ′) of this family. Since s has exis-
tential type ∃P .S, we must first eliminate the existential before check-
ing enrichment, ensuring that P is not accidentally confused with the
free type variables of ΛP ′.S ′. Since ϕ is applied to S ′ in the result
∃P .ϕ (S ′), the actual identities of type components merely specified in
S is retained: the visibility and generality of some components of s,
however, may be curtailed. The realisation may mention variables in
P . The existential quantification over P in the result prevents these
hypothetical types from escaping their scope.

C ` s : ∃P .S
C ` S . ΛP ′.S ′ P ∩ FV(ΛP ′.S ′) = ∅
S � ϕ (S ′) Dom(ϕ) = P ′

C ` s \ S : ∃P ′.S ′ (T-23)

(T-23) As in Rule (T-22) we require that there be some realisation ϕ such
that S matches the signature ΛP ′.S ′. However, the type of s \ S is
∃P ′.S ′, not ∃P .ϕ (S ′). As a result, types merely specified in S are
made abstract.

4.2.2 An Example

We can now revisit the example in Section 4.1.2, Figure 4.2(a), to see how
classification using existential structures manages to distinguish between
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structure b
(t=α,x:int→α,y:α→int)
X = d

∃{α}.(t=α,x:int→α,y:α→int)

struct datatype tα = int with x,y end;

structure b
(X:(),u=β,x′:(int→int)→β,y′:β→(int→int))
Y = d

∃{α}.(X:(),u=α,x′:(int→int)→α,y′:α→(int→int))

struct structure X = struct end;

datatype uα = int → int with x′,y′

end;
val z = (Y.y′β→int→int(X.xint→α 1)α ) 2

(a) A partial, correctly unsuccessful classification of the phrase in Figure
4.2(a). The state-less classification using existential types manages to pre-
vent the offending subphrase from being accepted. The type violation is
underlined.

structure b
(t=α,x:int→α,y:α→int)
X = d

(t=α,x:int→α,y:α→int)

struct datatype tα = int with x,y end;

structure b
(X:(),u=α,x′:(int→int)→α,y′:α→(int→int))
Y = d

(X:(),u=α,x′:(int→int)→α,y′:α→(int→int))

struct structure X = struct end;

datatype uα = int → int with x′,y′

end;
val z = (Y.y′α→int→int(X.xint→α 1)α )int→int 2

(b) The unsound classification of Figure 4.2(c) annotated with types.

Figure 4.6: The example in Figure 4.2(a) revisited.
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abstract types that need to be kept distinct, without relying on the use of a
global state of generated type variables. In Figure 4.6(a), we have indicated
the semantic existential structures of the two key structure expressions using

the notation d
X
s, and the semantic structures, with which the identifiers X

and Y are declared in the context, using the notation b
S
X. In addition, we’ve

annotated the defining occurrences of t and u with the type variables chosen
to represent them at their point of definition.

Let’s assume the initial context is empty. The existential type of the
structure expression defining X is:

∃{α}.(t = α,x : int → α,y : α → int).

Since α is fresh for the empty context, we can eliminate this existential
quantifier directly so that, after the definition of X, the context of Y is:

[X : (t = α,x : int → α,y : α → int)],

containing a free occurrence of α. Still, as in the state-less classification
of Figure 4.2(b), we are free to re-use α to represent u at the definition of
u, since α no longer occurs in the context after the second definition of X.
However, examining the existential structure,

∃{α}.(X : (),u = α,x′ : (int → int) → α,y′ : α → (int → int)),

of the structure expression defining Y, we can see that this variable is dis-
tinguished from the free occurrence of α in the context by the fact that
it existentially bound. According to Rule (T-15), in order to extend the
context with the definition of Y, we need to first eliminate this existential
quantifier. The first side-condition of Rule (T-15) only permits us to do this
in a way that avoids capturing the free occurrence of α in the context of Y.
To do this, it suffices to choose a renaming,

∃{β}.(X : (),u = β,x′ : (int → int) → β,y′ : β → (int → int)),

of

∃{α}.(X : (),u = α,x′ : (int → int) → α,y′ : α → (int → int)),

for a variable β that is locally fresh for the context of Y, and, in particular,
distinct from α. Then, eliminating the renamed quantifier and extending
the context by the declaration:

[Y : (X : (),u = β,x′ : (int → int) → β,y′ : β → (int → int))],
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ensures that the abstract types X.t and Y.u are correctly distinguished by
distinct variables α and β , resulting in the detection of the type violation
in the definition of z.

The way in which the putatively simpler, state-less semantics used in
Figure 4.2(b) managed to get it wrong is summarised in Figure 4.6(b), that
uses similar annotations to the ones used in Figure 4.6(a). Notice that the
representation α of u is free in the type

(X : (),u = α,x′ : (int → int) → α,y′ : α → (int → int))

of the structure expression defining Y. This means that it cannot be distin-
guished from the free occurrence of α in the context of Y. Even though α
is locally fresh for the context of the definition of u, choosing α to represent
u is unsound, because it eventually escapes into the type Y, without being
fresh for the context of Y.

4.3 The Equivalence of the Generative and State-
less Classification Judgements

In this section, we prove the equivalence of the generative and state-less
classification judgements. Before proceeding to the statement of the main
result, we will need a few more concepts:

Definition 4.2 (Solvable Structures and Signatures). The predicates
∃P ` S Slv and ` L Slv are defined as the least relations closed under the
rules in Figure 4.7.

Intuitively, ` ΛP .S Slv holds if, and only if, every type parameter α ∈
P of the signature first occurs in a type binding t = α within S. The
semantic signatures that arise as the denotations of signature expressions
are invariably solvable:

Lemma 4.3 (Solvability). If C ` S . L then ` L Slv.

Proof. A simple induction on the rules defining C ` B . L and C ` S . L.

Intuitively, the solvability of a signature ensures that whenever a struc-
ture matches the signature, then the corresponding realisation is unique.
Moreover, the region of this realisation will only mention type variables
already free in the structure (the region of a realisation was defined in Defi-
nition 3.13 (Realisations)). The latter is captured by the following Lemma:
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Solvable Structures ∃P ` S Slv

∃∅ ` εS Slv

FV(τ ) ∩ P = ∅ ∃P ` S Slv
∃P ` t = τ ,S Slv

α 6∈ P ∃P ` S Slv
∃{α} ∪ P ` t = α,S Slv

FV(v) ∩ P = ∅ ∃P ` S Slv
∃P ` x : v ,S Slv

∃P ` S Slv ∃P ′ ` S ′ Slv P ∩ P ′ = ∅
∃P ∪ P ′ ` X : S,S ′ Slv

Solvable Signatures ` L Slv

∃P ` S Slv
` ΛP .S Slv

Figure 4.7: The definition of solvable structures and signatures.

Lemma 4.4 (Propagation).
If ∃Dom(ϕ) ` S ′ Slv and S � ϕ (S ′) then Reg(ϕ) ⊆ FV(S).

Remark 4.3.1 (Motivating Solvability). We will not need the property that
solvable signatures gives rise to unique matching realisations. However, it is
worth mentioning that this is the key property one needs to prove that the
classifications of structure bodies and expressions are unique. To see this,
consider the Mini-SML signature L and structure S defined as:

L ≡ Λα.(x : α(int)),
S ≡ (x : int).

Observe that L fails to be solvable ( 6` L Slv) since its parameter α does
not occur as the denotation of a type component within its body. Consider
the two distinct realisations ϕ1 ≡ [Λ(′b).′b/α] and ϕ2 ≡ [Λ(′b).int/α]. It is
easy to check that S matches L by either one, since in each case we have
S � ϕi (x : α(int)).

Definition 4.5 (Ground Functors and Contexts). The predicates `
F Gnd and ` C Gnd are defined as the least relations closed under the
rules in Figure 4.8.
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Ground Functors ` F Gnd

∃P ` S Slv
` ∀P .S → X Gnd

Ground Contexts ` C Gnd

∀F ∈ Dom(C). ` C(F) Gnd
` C Gnd

Figure 4.8: The definition of ground functors and contexts.

Informally, a semantic functor is ground provided the signature of its
argument is solvable; a context is ground provided all the functors in its
domain are ground.

No matter which classification judgements we adopt, as long as a given
semantic functor F is ground, whenever we apply a functor of this type, the
free variables of the result are either propagated from the type of the actual
argument, or were already free in F :

Lemma 4.6 (Functor Propagation). If ` ∀P .S → X Gnd and S ′ �
ϕ (S), where Dom(ϕ) = P, then FV(ϕ (X )) ⊆ FV(S ′) ∪ FV(∀P .S → X ).

Proof. A simple consequence of Lemma 4.4 (Propagation).

Remark 4.3.2 (Motivating Groundedness). Although we will not need this
property, we should also point out that insisting on ground functors ensures
that the type of a functor application is uniquely determined by the type of
the actual argument. As a counter-example, consider the Mini-SML functor
F defined as:

F ≡ ∀α.(x : α(int)) → ∃∅.(y : α(bool))

Let L, S, ϕ1 and ϕ2 be defined as in Remark 4.3.1. Observe that F fails
to be ground since its argument signature is the unsolvable signature L
. Consider the application F s, where F is a functor of type F , and s is
a structure expression of type S. Recall that S matches L via both ϕ1

and ϕ2. Consequently, in either semantics, there are two ways of using
the functor application rule, one for each choice of matching realisation.
Choosing ϕ1 yields the result type ϕ1 (y : α(bool)) ≡ (y : bool), with a
boolean component. Choosing ϕ2, on the other hand, yields the result type
ϕ2 (y : α(bool)) ≡ (y : int), with an integer component. There is no princi-
pled way to select between these very different results. Insisting on ground
functors excludes such examples.
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We will need the following simple lemma:

Lemma 4.7 (Free Variables).

• C ` d . d implies FV(d ) ⊆ FV(C).

• C ` v . v implies FV(v) ⊆ FV(C).

• C ` e : v implies FV(v) ⊆ FV(C).

• C ` sp : S implies FV(S) ⊆ FV(C).

• C ` do . d implies FV(d ) ⊆ FV(C).

• C ` vo : v implies FV(v) ⊆ FV(C).

• C ` S . L implies FV(L) ⊆ FV(C).

• C ` B . L implies FV(L) ⊆ FV(C).

Proof (Sketch). The proof follows easily by simultaneous induction on the
rules defining the judgements. The first three clauses are Core language
dependent, but must be proven together with the remaining statements in
order deal with subphrases containing type and value occurrences.

We will also need a similar lemma for the judgements C ` b : X and
C ` s : X . The lemma holds as long as the functors occurring in derivations
are ground. This is only a technical restriction since we already discussed
how the presence of non-ground functors leads to problems (cf. Remark
4.3.2). Indeed, by Lemma 4.3 (Solvability), we know that all signatures
arising from signature expressions are solvable, so that functor definitions
only introduce ground functors. However, because a context may contain
arbitrary functor bindings, we need to impose a condition to ensure that
any pre-declared functors are ground. This is the motivation for requiring
that contexts are ground in the following lemma:

Lemma 4.8 (Free Variables).

• C ` s : X implies ` C Gnd implies FV(X ) ⊆ FV(C); and

• C ` b : X implies ` C Gnd implies FV(X ) ⊆ FV(C).
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Proof (Sketch). The proof follows easily by rule induction. The idea is to
maintain the groundedness of the context as an invariant of the proof. In
case (T-17) we appeal to Lemma 4.3 (Solvability) to ensure that the context
extended with the functor binding is ground. In case (T-21) we appeal to
Lemma 4.6 (Functor Propagation) to show that applying the matching re-
alisation to the result does not introduce spurious type variables. Similarly,
case T-22 requires an appeal to Lemmas 4.3 (Solvability) and 4.4 (Propaga-
tion). Case (T-23) follows by an appeal to Lemma 4.7 (Free Variables).

In the previous chapter, we informally identified semantic objects that
are equivalent up to capture-avoiding renamings of bound type variables.
For the results in this chapter, we will need to make the identification more
formal (though we will still refrain from spelling out all the details). We
first define the concept of a renaming, which is similar to, but simpler than,
the notion of realisation we already encountered.

Definition 4.9 (Renamings). A renaming is a kind-preserving, finite map
from type variables to type variables. We let

ρ, σ, π ∈ def= {f ∈ TypVar fin→ TypVar | ∀κ.∀ακ ∈ Dom(f).f(ακ) ∈ TypVarκ},

range over renamings.
We will use the more suggestive notation [M /N ] to denote a bijective

renaming with domain N and range M that simply swaps variables. The
effect of applying a renaming ρ to a variable α, written ρ〈α〉, is defined to
be ρ〈α〉 def= if α ∈ Dom(ρ) then ρ(α) else α. We extend the operation
of renaming free variables compositionally to all semantic objects in such a
way that bound variables are renamed only when necessary to avoid capture
(in the obvious way).

Let Inv(ρ) def= Dom(ρ) ∪ Rng(ρ) describe the set of variables involved in
the renaming ρ.

We can now formally define the sense in which semantic objects are
identified “up to renamings of bound variables”:

Definition 4.10 (α-Equivalence).

• Two signatures L ≡ ΛP .S, L′ ≡ ΛP ′.S ′, are α-equivalent, written
L α≡ L′, if, and only if, there is a bijective renaming [P ′/P ] such that
[P ′/P ]〈S〉 ≡ S ′ and FV(L) = FV(L′).
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• Two existential structures X ≡ ∃P .S, X ′ ≡ ∃P ′.S ′, are α-equivalent,
written X α≡ X ′, if, and only if, there is a bijective renaming [P ′/P ]
such that [P ′/P ]〈S〉 ≡ S ′ and FV(X ) = FV(X ′).

• Two functors F ≡ ∀P .S → X , F ′ ≡ ∀P ′.S ′ → X ′, are α-equivalent,
written F α≡ F ′, if, and only if, there is a bijective renaming [P ′/P ]
such that [P ′/P ]〈S〉 ≡ S ′, [P ′/P ]〈X 〉 α≡ X ′ and FV(F) = FV(F ′).

We identify all semantic objects that are α-equivalent.

Renamings enjoy the following properties:

Properties 4.11 (Renaming).

• If Dom(ρ) ∩ FV(O) = ∅ then ρ〈O〉 ≡ O.

• If Dom(ρ′) ∩ FV(O) = ∅ then (ρ+ ρ′)〈O〉 ≡ ρ〈O〉.

• If Dom(ρ) ∩ Rng(ρ′) = ∅ then (ρ+ ρ′)〈O〉 ≡ ρ〈ρ′〈O〉〉.

• If (ρ ↓ FV(O)) = (ρ′ ↓ FV(O)) then ρ〈O〉 ≡ ρ′〈O〉.

• If Inv(ρ) ∩ P = ∅ then

– ρ〈ΛP .S〉 ≡ ΛP .ρ〈S〉,
– ρ〈∃P .S〉 ≡ ∃P .ρ〈S〉, and

– ρ〈∀P .S → X〉 ≡ ∀P .ρ〈S〉 → ρ〈X 〉.

In our proofs, we shall frequently make implicit appeals to these prop-
erties.

We are now in a position to state the main result of this chapter:

Theorem 4.12 (Equivalence). Provided ` C Gnd and C,N rigid:

(Completeness)

• If C,N ` b : S ⇒ P then C ` b : ∃P .S.

• If C,N ` s : S ⇒ P then C ` s : ∃P .S.

(Soundness)

• If C ` b : X then, for some P and S, C,N ` b : S ⇒ P with
X α≡ ∃P .S.
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• If C ` s : X then, for some P and S, C,N ` s : S ⇒ P with
X α≡ ∃P .S.

It might help to explain the provisos on Theorem 4.12. We already
motivated the restriction to ground contexts, so let us consider the rigidity
requirement. Informally, with the generative classification judgements, it is
only if we start with a rigid context that the set of variables returned by
the classification of a phrase will be distinct from the variables occurring
free in the context. Violating this condition leads to unsound judgements.
For this reason, the only generative judgements of actual interest to us are
those that mention rigid contexts. Because it covers the cases that we are
interested in, the fact that Theorem 4.12 only holds for judgements with
respect to ground and rigid contexts is merely a technical restriction.

The next two sections are devoted to the proof of Theorem 4.12.

4.3.1 Completeness

An operational view of the state-less classification judgements is that we
have replaced the notion of global generativity by local freshness, using the
ability to rename existentially bound variables whenever necessary to avoid
capture of free variables. The proof of completeness is easy because any
variable that is globally generative with respect to both the state and the
context, will also be locally fresh with respect to the context, enabling a
straightforward construction of a corresponding state-less derivation.

Proof (Completeness). We use strong rule induction on the generative
classification judgements to prove the theorems:

C,N ` b : S ⇒ P ⊃ ` C Gnd ⊃ C,N rigid ⊃ C ` b : ∃P .S

C,N ` s : S ⇒ P ⊃ ` C Gnd ⊃ C,N rigid ⊃ C ` s : ∃P .S

We will only consider the case for structure definitions, the other cases
are similar:

E-15 By strong induction we may assume the premises:

C,N ` s : S ⇒ P , (1)

C[X : S],N ∪ P ` b : S ′ ⇒ P ′, (2)
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X 6∈ Dom(S ′). (3)

and the induction hypotheses:

` C Gnd ⊃ C,N rigid ⊃ C ` s : ∃P .S, (4)

` C[X : S] Gnd ⊃ C[X : S],N ∪ P rigid ⊃ C[X : S] ` b : ∃P ′.S ′. (5)

We need to show:

` C Gnd ⊃ C,N rigid ⊃ C ` structure X = s;b : ∃P ∪ P ′.X : S,S ′.
(6)

Assume:
` C Gnd, (7)

C,N rigid. (8)

By induction hypothesis (4) on (7) and (8) we obtain:

C ` s : ∃P .S. (9)

Property 3.31 (Generativity) of (1), together with (8), ensures that:

P ∩ FV(C) = ∅. (10)

Since we are only declaring a structure (not a functor), (7) extends to:

` C[X : S] Gnd. (11)

Lemma 4.8 (Free Variables) on (7) and (9) guarantees FV(∃P .S) ⊆
FV(C). It follows from (8) that:

FV(S) ⊆ N ∪ P (12)

and consequently:
C[X : S],N ∪ P rigid. (13)



4.3 The Equivalence of the Generative and State-less Classification Judgements133

Induction hypothesis (5) applied to (11) and (13) yields:

C[X : S] ` b : ∃P ′.S ′. (14)

Property 3.31 (Generativity) of (2) ensures P ′ ∩ (N ∪ P) = ∅, which,
together with (12), entails:

P ′ ∩ (P ∪ FV(S)) = ∅. (15)

Rule (T-15) on (9), (10), (14) (15) and (3) derives:

C ` structure X = s;b : ∃P ∪ P ′.X : S,S ′

as desired.

In the complete proof, Property 3.31 (Generativity) and Lemma 4.8 (Free
Variables) conspire to ensure that the side conditions on bound variables,
that are imposed by Rules (T-13) through (T-23) to prevent the capture
of free variables, are immediately satisfied by the semantic objects classi-
fying phrases in subderivations: implicit appeals to α-conversion are never
required.

4.3.2 Soundness

Soundness is more difficult to prove, because the state-less classification
judgements merely require subderivations to hold for particular choices of
locally fresh variables. A variable may be locally fresh without being globally
generative with respect to a given state. This foils naive attempts to directly
construct a generative derivation from a state-less derivation.

To address this problem, we introduce a modified formulation of the
classification judgements with the judgement forms C `′ b : X and C `′ s : X
(note the prime on the `). The modified rules appear in Figure 4.9. The
rules for the other constructs remain the same (modulo replacing occurrences
of judgements C ` b : X and C ` s : X by C `′ b : X and C `′ s :
X , respectively). Instead of requiring subderivations to hold for particular
choices of fresh variables, the modified rules require them to hold for every
renaming of these variables. This makes it easy to construct a generative
derivation from the derivation of a generalised judgement. Note that the
inference rules are no longer finitely branching, but the relations remain well-
founded, admitting inductive arguments. This technique of introducing a
generalised judgement is adapted from McKinna and Pollack’s formalisation
of α-conversion [MP93].
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Structure Bodies C `′ b : X

C `′ s : ∃P .S Q ∩ (P ∪ FV(S)) = ∅
∀π.Dom(π) = P ⊃ C[X : π〈S〉] `′ b : π〈∃Q .S ′〉 X 6∈ Dom(S ′)

C `′ structure X = s;b : ∃P ∪Q .X : S,S ′
(T’-15)

C `′ s : ∃P .S Q ∩ P = ∅
∀π.Dom(π) = P ⊃ C[X : π〈S〉] `′ b : π〈∃Q .S ′〉

C `′ local X = s in b : ∃P ∪Q .S ′ (T’-16)

C ` S . ΛP .S
∀π.Dom(π) = P ⊃ C[X : π〈S〉] `′ s : π〈X ′〉
C[F : ∀P .S → X ′] `′ b : X
C `′ functor F (X : S) = s in b : X (T’-17)

Figure 4.9: State-less Classification Judgements with Generalised Premises
(modified rules only)

Our strategy for proving soundness is to first show that any derivation in
the original system gives rise to a corresponding derivation in the generalised
system:

Lemma 4.13 (Soundness — Part I).

• If C ` b : X then C `′ b : X .

• If C ` s : X then C `′ s : X .

This corresponds to proving a stronger induction principle for our clas-
sification judgements. We then prove that any derivation in the generalised
system gives rise to a corresponding generative classification.

Lemma 4.14 (Soundness — Part II).
Provided ` C Gnd and C,N rigid,

• if C `′ b : X then we can find an M and S such that C,N ` b : S ⇒ M,
with X α≡ ∃M .S.

• if C `′ s : X we can find an M and S such that C,N ` s : S ⇒ M,
with X α≡ ∃M .S.
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Proof (Soundness). Follows easily from Lemmas 4.13 and 4.14.

Proof (Lemma 4.13). We use rule induction on the classification rules to
prove the stronger statements:

C ` b : X ⊃ ∀ρ.ρ〈C〉 `′ b : ρ〈X 〉

C ` s : X ⊃ ∀ρ.ρ〈C〉 `′ s : ρ〈X 〉

Lemma 4.13 follows immediately by choosing ρ to be the empty (identity)
renaming.

We will only consider the case of a structure definition. The other cases
are similar.

T-15 By induction we may assume:

∀ρ.ρ〈C〉 `′ s : ρ〈∃P .S〉, (1)

P ∩ FV(C) = ∅, (2)

∀ρ.ρ〈C[X : S]〉 `′ b : ρ〈∃Q .S ′〉, (3)

Q ∩ (P ∪ FV(S)) = ∅, (4)

X 6∈ Dom(S ′). (5)

We need to show:

∀ρ.ρ〈C〉 `′ structure X = s;b : ρ〈∃P ∪Q .X : S,S ′〉.

Consider an arbitrary renaming ρ.

We first choose a bijective renaming [P̄/P ] such that:

P̄ ∩ (Inv(ρ) ∪ FV(∃P ∪Q .X : S,S ′)) = ∅. (6)

Then it is easy to verify that:

∃P .S α≡ ∃P̄ .[P̄/P ]〈S〉. (7)
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Moreover, from (7) and our choice of P̄ , we can show:

ρ〈∃P .S〉 α≡ ∃P̄ .ρ〈[P̄/P ]〈S〉〉. (8)

By induction hypothesis (1) applied to ρ we have:

ρ〈C〉 `′ s : ρ〈∃P .S〉,

which by α-equivalence (8) is also a derivation of:

ρ〈C〉 `′ s : ∃P̄ .ρ〈[P̄/P ]〈S〉〉. (9)

We now choose a bijective renaming [Q̄/Q ] such that:

Q̄ ∩ (Inv(ρ) ∪ P ∪ P̄ ∪ FV(∃P ∪Q .X : S,S ′)) = ∅. (10)

Then it is easy to verify that:

∃Q .S ′ α≡ ∃Q̄ .[Q̄/Q ]〈S ′〉. (11)

Moreover, from (11) and our choice of Q̄, it follows that:

ρ〈[P̄/P ]〈∃Q .S ′〉〉 α≡ ∃Q̄ .ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉. (12)

Our choice of Q̄ also ensures:

Q̄ ∩ (P̄ ∪ FV(ρ〈[P̄/P ]〈S〉〉)) = ∅. (13)

We will now show:

∀π.Dom(π) = P̄ ⊃
ρ〈C〉[X : π〈ρ〈[P̄/P ]〈S〉〉〉] `′ b : π〈∃Q̄ .ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉〉.

(14)

Consider an arbitrary renaming π with Dom(π) = P̄ .
Define σ to be the renaming σ def= ρ+ (π ◦ [P̄/P ]).

By induction hypothesis (3) on the renaming σ we obtain:

σ〈C[X : S]〉 `′ b : σ〈∃Q .S ′〉. (15)

By reasoning about renamings we can prove equivalences (16), (17)
and (18) below:
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σ〈C〉 = (ρ+ (π ◦ [P̄/P ]))〈C〉 by the definition of σ
= ρ〈C〉 since P ∩ FV(C) = ∅ (16)

σ〈S〉 = (ρ+ (π ◦ [P̄/P ]))〈S〉 by the definition of σ
= π〈ρ+ [P̄/P ]〈S〉〉

since Dom(π) ∩ (Rng(ρ) ∪ (FV(S) \ P)) = ∅

= π〈ρ〈[P̄/P ]〈S〉〉〉 since P̄ ∩Dom(ρ) = ∅ (17)

σ〈∃Q .S ′〉 = (ρ+ (π ◦ [P̄/P ]))〈∃Q .S ′〉 by the definition of σ
= π〈ρ+ [P̄/P ]〈∃Q .S ′〉〉

since Dom(π) ∩ (Rng(ρ) ∪ (FV(∃Q .S ′) \ P)) = ∅

= π〈ρ〈[P̄/P ]〈∃Q .S ′〉〉〉 since P̄ ∩Dom(ρ) = ∅
α≡ π〈∃Q̄ .ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉〉 by (12) (18)

Using equations (16), (17), and α-equivalence (18) we can re-express
(15) as:

ρ〈C〉[X : π〈ρ〈[P̄/P ]〈S〉〉〉] `′ b : π〈∃Q̄ .ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉〉. (19)

Since π was arbitrary we have established (14).

Clearly
X 6∈ Dom(ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉) (20)

follows from (5) since renaming the structure S ′ does not affect its
domain.

Rule (T’-15) applied to (9), (13), (14) and (20) derives:

ρ〈C〉 `′ structure X = s;b :
∃P̄ ∪ Q̄ .X : ρ〈[P̄/P ]〈S〉〉, ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉. (21)
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From our choice of P̄ and Q̄ in (6) and (10) it is easy to verify that:

∃P ∪Q .X : S,S ′ α≡ ∃P̄ ∪ Q̄ .X : [P̄/P ]〈S〉, [P̄/P ]〈[Q̄/Q ]〈S ′〉〉. (22)

Moreover, we have:

∃P̄ ∪ Q̄ .X : ρ〈[P̄/P ]〈S〉〉, ρ〈[P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉
= ρ〈∃P̄ ∪ Q̄ .X : [P̄/P ]〈S〉, [P̄/P ]〈[Q̄/Q ]〈S ′〉〉〉 (23)

since (P̄ ∪ Q̄) ∩ Inv(ρ) = ∅ by (6) and (10)

α≡ ρ〈∃P ∪Q .X : S,S ′〉 by (22) (24)

Using α-equivalence (24) on judgement (21) yields:

ρ〈C〉 `′ structure X = s;b : ρ〈∃P ∪Q .X : S,S ′〉,

as desired.

Before proceeding with the proof of Lemma 4.14 we will require the
counterpart to Lemma 4.8 (proof omitted but easy):

Lemma 4.15 (Free Variables).

• If ` C Gnd and C `′ b : X then FV(X ) ⊆ FV(C).

• If ` C Gnd and C `′ s : X then FV(X ) ⊆ FV(C).

Proof (Lemma 4.14). We use strong rule induction on the generalised
classification rules to prove the statements:

C `′ b : X ⊃
` C Gnd ⊃
∀N .C,N rigid ⊃

∃P ,S. C,N ` b : S ⇒ P
∧ X α≡ ∃P .S

C `′ s : X ⊃
` C Gnd ⊃
∀N .C,N rigid ⊃

∃P ,S. C,N ` s : S ⇒ P
∧ X α≡ ∃P .S

We will only consider the case of a structure definition. The other cases
are similar.
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T’-15 By strong induction we may assume the premises:

C `′ s : ∃P .S, (1)

Q ∩ (P ∪ FV(S)) = ∅, (2)

∀π.Dom(π) = P ⊃ C[X : π〈S〉] `′ b : π〈∃Q .S ′〉, (3)

X 6∈ Dom(S ′), (4)

and induction hypotheses:

` C Gnd ⊃
∀N .C,N rigid ⊃

∃P̄ , S̄. C,N ` s : S̄ ⇒ P̄
∧ ∃P .S α≡ ∃P̄ .S̄

(5)

∀π.Dom(π) = P ⊃

` C[X : π〈S〉] Gnd ⊃
∀N .C[X : π〈S〉],N rigid ⊃

∃Q̄ , S̄ ′. C[X : π〈S〉],N ` b : S̄ ′ ⇒ Q̄
∧ π〈∃Q .S ′〉 α≡ ∃Q̄ .S̄ ′

(6)

We need to show:

` C Gnd ⊃
∀N .C,N rigid ⊃

∃P̂ , Ŝ. C,N ` structure X = s;b : Ŝ ⇒ P̂
∧ ∃P ∪Q .X : S,S ′ α≡ ∃P̂ .Ŝ

Assume:
` C Gnd. (7)

Consider an arbitrary N such that:

C,N rigid. (8)

By induction hypothesis (5) applied to (7) and (8) we obtain:

C,N ` s : S̄ ⇒ P̄ . (9)
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for some P̄, S̄ satisfying:

∃P .S α≡ ∃P̄ .S̄. (10)

By (10) we must have some bijective renaming [P̄/P ] such that:

[P̄/P ]〈S〉 = S̄. (11)

Since we are only declaring a structure (not a functor), (7) extends to:

` C[X : [P̄/P ]〈S〉] Gnd. (12)

Lemma 4.15 (Free Variables) on (1) and (7) ensures:

FV(∃P .S) ⊆ FV(C). (13)

Combining (13) with (8), (10) and (11) we can establish:

FV([P̄/P ]〈S〉) ⊆ N ∪ P̄ . (14)

Hence we can extend (8) to:

C[X : [P̄/P ]〈S〉],N ∪ P̄ rigid. (15)

Applying induction hypothesis (6) to the renaming [P̄/P ], using (12),
N ∪ P̄ , (15) and equation (11) we obtain:

C[X : S̄],N ∪ P̄ ` b : S̄ ′ ⇒ Q̄ (16)

for some Q̄, S̄ ′ satisfying:

[P̄/P ]〈∃Q .S ′〉 α≡ ∃Q̄ .S̄ ′. (17)

Furthermore, as a consequence of (4) and (17) we must also have:

X 6∈ Dom(S̄ ′). (18)

Rule (E-15) applied to (9), (16) and (18) derives:

C,N ` structure X = s;b : X : S̄, S̄ ′ ⇒ P̄ ∪ Q̄ . (19)

It remains to show:

∃P ∪Q .X : S,S ′ α≡ ∃P̄ ∪ Q̄ .X : S̄, S̄ ′.
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Assembling the premises (1), (2), (3) and (4) and applying Rule (T’-15)
we obtain the original derivation of:

C `′ structure X = s;b : ∃P ∪Q .X : S,S ′. (20)

Lemma 4.15 (Free Variables) on (20) using (7) ensures:

FV(∃P ∪Q .X : S,S ′) ⊆ FV(C). (21)

First, observe that, as a consequence of Property 3.31 (Generativity)
applied to both (9) and (16), we have:

N ∩ P̄ = ∅, (22)

and
(N ∪ P̄) ∩ Q̄ = ∅. (23)

By Definition 3.32 (Rigidity) on (8), combined with (21), (22) and
(23) we have:

P̄ ∩ FV(∃P ∪Q .X : S,S ′) = ∅, (24)

Q̄ ∩ FV(∃P ∪Q .X : S,S ′) = ∅, (25)

and:
P̄ ∩ Q̄ = ∅. (26)

Now choose a bijective renaming [Q̂/Q ] such that:

Q̂ ∩ (P ∪ P̄ ∪Q ∪ Q̄ ∪ FV(∃P ∪Q .X : S,S ′)) = ∅. (27)

By our choice of [Q̂/Q ] we also have:

Q̂ ∩ FV(∃Q .S ′) = ∅. (28)

Hence it is easy to verify that:

∃Q .S ′ α≡ ∃Q̂ .[Q̂/Q ]〈S ′〉. (29)

We can now show:

∃Q̄ .S̄ ′
α≡ [P̄/P ]〈∃Q .S ′〉 (by (17))
α≡ [P̄/P ]〈∃Q̂ .[Q̂/Q ]〈S ′〉〉 (by (29))

= ∃Q̂ .[P̄/P ]〈[Q̂/Q ]〈S ′〉〉 (since Q̂ ∩ Inv([P̄/P ]) = ∅ by (27)) (30)
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Hence there is some bijection [Q̄/Q̂ ] such that:

S̄ ′ = [Q̄/Q̂ ]〈[P̄/P ]〈[Q̂/Q ]〈S ′〉〉〉 (31)

With these observations it is easy to show:

∃P ∪Q .X : S,S ′
α≡ ∃P ∪ Q̂ .X : [Q̂/Q ]〈S〉, [Q̂/Q ]〈S ′〉

(since [Q̂/Q ] bijective, and

Q̂ ∩ (P ∪ FV(∃P ∪Q .X : S,S ′)) = ∅
follows from (27))

α≡ ∃P ∪ Q̂ .X : S, [Q̂/Q ]〈S ′〉 (32)
(since Q ∩ FV(S) = ∅ by (2))

α≡ ∃P̄ ∪ Q̂ .X : [P̄/P ]〈S〉, [P̄/P ]〈[Q̂/Q ]〈S ′〉〉 (33)
(since [P̄/P ] bijective, and

P̄ ∩ (Q̂ ∪ FV(∃P ∪ Q̂ .X : S, [Q̂/Q ]〈S ′〉)) = ∅
follows from (27), (24) and (32))

α≡ ∃P̄ ∪ Q̄ .X : [Q̄/Q̂ ]〈[P̄/P ]〈S〉〉, [Q̄/Q̂ ]〈[P̄/P ]〈[Q̄/Q̂ ]〈S ′〉〉〉
(since [Q̄/Q̂ ] bijective, and

Q̄ ∩ (P̄ ∪ FV(∃P̄ ∪ Q̂ .X : [P̄/P ]〈S〉, [P̄/P ]〈[Q̂/Q ]〈S ′〉〉)) = ∅
follows from (26), (25) and (33))

α≡ ∃P̄ ∪ Q̄ .X : S̄, S̄ ′ (34)
(by (31) and since

[Q̄/Q̂ ]〈[P̄/P ]〈S〉〉 = [P̄/P ]〈S〉 = S̄
follows from (27) and (11) )

Choosing P̂ ≡ P̄ ∪ Q̄, Ŝ ≡ X : S̄, S̄ ′ and combining (19) with (34)
gives the desired result.

4.4 Conclusion

By adopting the notational changes to semantic structures and functors
suggested in Section 3.3.4, and replacing the generative classification judge-
ments by their state-less counterparts, we obtain a semantics of Mini-SML
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which is easily understood in terms of well-known concepts from Type The-
ory. Without being too precise, we will sketch the analogy between Mini-
SML’s semantic objects and type-theoretic constructs.

Putting aside Mini-SML’s idiosyncratic denotation judgements, we find
that the type theory underlying Mini-SML, embodied in its semantic objects
and classification judgements, is based entirely on second-order type param-
eterisation and quantification, with no evidence whatsoever of first-order
dependent types.

Semantic structures are related to record types: they list the types of
their components. As in record types, the names of components are merely
tags: they are neither free nor bound within subsequent components of the
structure and there is no dependency between fields. Structures differ from
record types in also recording the denotation of type components. This ad-
ditional information is needed to determine the realisation of type variables
when matching a structure against a signature. The enrichment relation
can be seen as a combination of record subtyping and the Core subtyping
relation on value types.

In Section 3.3.4, we introduced the interpretation of functors as poly-
morphic functions on structures returning existential structures. This inter-
pretation is merely reinforced by the alternative presentations of the functor
introduction and elimination rules (Rules (T-17) and (T-21)).

In Section 3.3.4, we also introduced the interpretation of signatures as
type indexed families of structures, that is, as types parameterised by types.
The alternative rules emphasise the distinct roles that signatures play in the
semantics. In the functor introduction rule (Rule (T-17)), the signature is
used to enforce polymorphism: the functor may be applied to any argument
whose type is in the family of structures described by the signature. In the
structure curtailment rule (Rule (T-22)), the signature is used to restrict the
visibility and generality of the structure expression’s components, by coerc-
ing its type to a particular member of the family of structures described by
the signature. In the structure abstraction rule (Rule (T-23)), the signature
is used to introduce existential quantification over types, by coercing the
type of the structure expression to that of a generic member of the family
of structures described by the signature.

Finally, in this chapter we have shown how the generative classification
judgements may be regarded as a particularly operational presentation of a
system based on existential quantification over types.

Although we have not gone so far as to translate Mini-SML and its
semantics into an accepted type theory, we hope that the observations of the
previous paragraph, together with the “type-theoretic” presentation of the
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judgements, give some indication of how such a translation may be achieved.
Our primary motivation for the results in this chapter is to provide the
necessary insight required to facilitate the extensions in subsequent chapters.



Chapter 5

Higher-Order Modules

In this chapter, we extend the Modules language of Chapter 4 to higher-
order. Functors are given the same status that structures enjoy in Modules:
they may be bound as components of structures, specified as functor ar-
guments and returned as functor results. We will continue to refer to the
first-order language collectively as Modules. Its generalisation will be called
Higher-Order Modules. The Core language remains the same.

The chapter is organised as follows. Section 5.1 motivates the exten-
sion to higher-order with the help of an example. Section 5.2 informally
explains the key ideas used to generalise the first-order static semantics
we gave in Chapter 4. Section 5.3 briefly presents the phrase classes and
grammar of Higher-Order Modules. In Section 5.4 we extend the definition
of semantic objects to the new setting. The main difficulty is in defining
a notion of enrichment between modules which is both easily understood
by a programmer and a suitable basis for subtyping. We first give an in-
tuitive, but non-definitional specification of enrichment. We then define
enrichment as an inductive relation, show that is a pre-order and that it
satisfies its specification. In Section 5.5 we present a static semantics for
Modules. The semantics yields a type checking algorithm, provided we can
give an algorithm for computing the higher-order realisations required by
those rules that match semantic modules against semantic signatures. Sec-
tion 5.6 presents an algorithm for computing such realisations. We prove
that it is sound and complete for a restricted set of matching problems. Sec-
tion 5.7 gives a brief justification of why the restricted matching algorithm
may still be used to turn the static semantics into a sound and complete
type checking algorithm. The work in this chapter is based, in part, on a ra-
tional reconstruction and subsequent extension of earlier research by Biswas
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sig module Nat:sig type nat:0;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end;
val eval:Nat.nat→(list Nat.nat)→Nat.nat

end

Figure 5.1: The specification of a module evaluating polynomials.

[Bis95]. Section 5.8 is a summary of our contribution and the relation to his
results.

5.1 Motivation

This section presents an example program illustrating the utility of Higher-
Order Modules and introducing some of the key concepts. Many more ex-
amples may be found in the literature [Tof92, Tof93, MT94, Bis95, Ler95,
Ler96b, Lil97].

To help understand the example, here’s a brief preview of the syntax of
Higher-Order Modules. In Higher-Order Modules, the grammar of structure
expressions is generalised to a syntax of module expressions that includes
anonymous functors functor(X : s)m, for m a module expression, and mod-
ule applications m m′. The structure definition structure X = s is
generalised to the module definition module X = m, that can define a com-
ponent that is either a structure or a functor. The structure specification
structure X : S is generalised to the module specification module X : S
that can specify a component that is either a structure or a functor. Finally,
the grammar of signature expressions is extended to include functor signa-
tures: informally, the functor signature funsig(X:S)S′ specifies the type of
a functor that maps any argument matching S to some result matching S′.
The meaning of these phrases will be made precise later in this chapter.

5.1.1 Programming with Higher-Order Functors

Suppose we are given the task of producing a package for evaluating polyno-
mials over the natural numbers, where a polynomial a0x

0 + · · ·+ an−1x
n−1

is specified by the list [a0, . . . , an−1] of its (natural) coefficients . More
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N : sig type nat:0;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end

Figure 5.2: The specification of N.

A : funsig(X:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
sig val add:X.nat→X.nat→X.nat end

Figure 5.3: The specification of A.

specifically, the requirement is to produce a module matching the signature
in Figure 5.1. Here nat is the type representing naturals, z is zero, s is
the successor function on naturals, i implements polymorphic iteration and
eval x l evaluates the polynomial l at x.

Let us assume we are carrying out a top-down design. We first observe
that we can avoid using exponentiation in the implementation of eval by
using Horner’s rule:

a0x
0 + · · ·+ an−1x

n−1 = a0 + x(a1 + x(· · ·+ x(an−1 + 0) · · · ))

This leaves just the implementation of the naturals, addition and multi-
plication to be worked out. We suspect that, given an implementation of
naturals, addition should be easily defined in terms of iteration. In turn,
given a means of constructing addition, multiplication should be easily ob-
tained from iterated addition. We decide to decompose the problem into
the simpler problems of implementing:

1. A structure N of natural numbers matching the signature in Figure
5.2.

2. A functor A which from N constructs an implementation of addition.
We require that A matches the functor signature in Figure 5.3.
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M : funsig(X:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
funsig(A:funsig(Y:sig type nat = X.nat;

val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
sig val add:Y.nat→Y.nat→Y.nat end)

sig val mult:X.nat→X.nat→X.nat
end

Figure 5.4: The specification of M.

3. A higher-order functor M which from N and A constructs an implemen-
tation of multiplication. We require that M matches the higher-order
functor signature in Figure 5.4.

With higher-order functors we can delegate these subtasks to a separate
team of programmers, assume implementations of N, A and M and implement
the original specification using the higher-order functor MkPoly (Figure 5.5).
Here, fix f takes the fix-point of a function f, implementing recursion;
listcase l b f performs case analysis on the value of the list l: if this
value is the empty list, b is evaluated, otherwise the function f is evaluated
and applied to the head and tail of the list. Note that we can proceed with
the design of MkPoly before modules N, A and M have been written.

Meanwhile, our team of programmers is busy producing prototype imple-
mentations of N, A and M. Fortunately, an implementation of N already exists
as an abstract module Nat from which they can construct implementations
of A and M (Figure 5.6).

Applying the functor MkPoly to N, A and M produces a module matching
the original specification in Figure 5.1.

5.1.2 Functor Generalisation as Enrichment

During coding, the author of functor A realises that its body requires less
structure from its argument than initially assumed. In particular, the con-
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module MkPoly =
functor(N:sig type nat:0;

val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
functor(A:funsig(X:sig type nat = N.nat;

val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
sig val add:X.nat→X.nat→X.nat end)

functor(M:funsig(X:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
funsig(A:funsig(Y:sig type nat = X.nat;

val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
sig val add:Y.nat→Y.nat→Y.nat end)

sig val mult:X.nat→X.nat→X.nat end)
struct

module Nat = N;
module Add = A N;
module Mult = M N A;
val eval = λx.fix λevalx.λl.

listcase l
(Nat.z)
(λh.λl. Add.add h (Mult.mult x (evalx l)))

end

Figure 5.5: The implementation of MkPoly.
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module N = Nat;

module A = functor(X:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
struct val add = λn.λm. X.i n X.s m end;

module M = functor(X:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end)
functor(A:funsig(Y:sig type nat = X.nat;

val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→

nat→’a
end)

sig val add:Y.nat→Y.nat→Y.nat end)
struct module Add = A X;

val mult = λn.λm. X.i X.z (Add.add n) m
end

Figure 5.6: The implementations of N, A, M.

module A’ = functor(X:sig type nat:0;
val s:nat→nat;
val i: nat→(nat→nat)→nat→nat

end)
struct val add = λn.λm. X.i n X.s m;

val sum = λb.fix λsum.λl.
listcase l b (λh.λl.add h (sum l))

end

Figure 5.7: The functor A’ is a more general version of A.
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module N = struct type nat = int;
val z=0;
val s=λi.+ i 1;
val i=λb.λf.fix λibf.

λj.ifzero j b (f (ibf (+ j (-1))))
end;

module A = functor(X:sig end)
struct val add = λi.λj.+ i j
end;

module M = functor(X:sig end)
functor(A:funsig(Y:sig type nat = int;

val z: nat;
val s: nat→nat;
val i:∀’a.’a→(’a→’a)→

nat→’a
end)

sig end)
struct val mult = λi.λj.* i j
end

Figure 5.8: Efficient implementations of N, A and M.

crete representation of X.nat is irrelevant, no use is made of the zero com-
ponent X.z and only a particular type instance of the iterator X.i is re-
quired. In the interest of writing general-purpose code (say, for inclusion
in a library), he rewrites the functor as in Figure 5.7, adding, for future
convenience, a function sum for summing over lists of naturals. From our
understanding of first-order Modules, it should be clear that A’ is more gen-
eral than A: any argument to which A may be applied is also a valid argument
of A’ (but not vice-versa). Moreover, in each case, the result of applying A’
is at least as rich as the result of applying A (add is defined and the presence
of sum is irrelevant). Consequently, in Higher-Order Modules we will allow
the application MkPoly N A’ since the type of A’ is at least as general as
the type expected by MkPoly N.

5.1.3 Decomposition Need Not Compromise Efficiency

A possible objection to our choice of problem decomposition is that it sacri-
fices the efficiency of addition and multiplication by forcing the programmer
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module FastNat =
struct

module N = ...
module A = ...
module M = ...

end \
sig

module N: sig type nat:0;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→nat→’a

end;
module A:funsig(X:sig end)

sig val add: N.nat→N.nat→N.nat end;
module M:funsig(X:sig end)

funsig(A:funsig(Y:sig type nat = N.nat;
val z:nat;
val s:nat→nat;
val i:∀’a.’a→(’a→’a)→

nat→’a
end)

sig end)
sig val mult: N.nat→N.nat→N.nat end

end

Figure 5.9: An efficient and abstract implementation of N, A and M.

to use an implementation based on iteration. This not a valid criticism, since
our team can still exploit more efficient designs. For instance, assuming a
built in type of integers, the team may decide to represent natural numbers
as the positive subset of the integers int and use the built-in operations of
addition + and multiplication * on integers directly, producing the code in
Figure 5.8.

With the first implementation of N, which used the abstract Module Nat,
we implicitly assumed that every value of type Nat.nat corresponded to a
natural number. Since we are now using a proper subset of the integers, we
should enforce the invariant that only positive integers are ever used as natu-
ral numbers. Grouping the definitions of N, A and M into a single module and
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then applying a signature abstraction to hide all occurrences of the concrete
representation produces a fast implementation whose integrity cannot be
violated (Figure 5.9). The application MkPoly (FastNat.N) (FastNat.A)
(FastNat.M) is well-typed, since each of MkPoly’s arguments is at least as
general as required. The result is an efficient implementation of polynomial
evaluation.

The ability to define functors as structure components is crucial in this
example. If we could only define functors at top-level, as in (first-order)
Modules, we would be faced with only two design options, both of which
are bad: we could either make the implementation of N.nat public, com-
promising integrity but supporting efficient implementations of A and M, or
private, preserving integrity, but rendering efficient implementations of A
and M impossible.

5.2 From Modules to Higher-Order Modules

5.2.1 Functor Signatures

In Higher-Order Modules, in order to define a functor taking a functor as an
argument, we will need some means of indicating the formal argument’s type.
In (first-order) Modules, we used a signature expression to specify the struc-
tures to which a functor may be applied. Recall that a structure signature,
by containing unconstrained type specifications of the form type t : k, will
typically only specify a family of structure types. In Modules, we exploited
this variation to ensure that the functor is polymorphic and may be applied
to any instance of its argument signature. In Higher-Order Modules, we
generalise signature expressions by introducing the functor signature phrase
funsig(X:S)S′. By analogy to a structure signature, this phrase should spec-
ify a family of functor types. It is reasonable to expect each functor of a
type in this family to be applicable to any module matching the argument
signature S. But how do we interpret the result signature S′? Like the
argument S, it may contain unconstrained type specifications of the form
type t : k, thus specifying a family of result modules. The trick is to use this
variation to define a family of functor types in the following way: the phrase
funsig(X:S)S′ describes the family of types classifying functors that, when
applied to any argument of a type in the family S, return a result whose type
is in the family S′. The phrase denotes a family of types, indexed according
to the actual realisation of type components left undetermined by type t : k
specifications in the result signature S′.

How do we interpret this in the language of semantic objects? Before
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we can answer this, it helps to have an idea of what the semantic objects
of Higher-Order Modules will be. We will let M,M′ ∈ Mod range over
semantic modules, the disjoint union of both semantic structures S ∈ Str
and semantic functors F ≡ ∀P .M′ →M ∈ Fun. Note that, because we
are in a higher-order setting, the domain and range of a semantic functor
are semantic modules, not just semantic structures. Also, in Higher-Order
Modules, unlike in first-order Modules, the range of a semantic functor will
no longer be existentially quantified: the reason for this change will be
explained in the next section. Finally, recall that, in first-order Modules, a
semantic signature was just a parameterised semantic structure L ≡ ΛP .S ∈
Sig ; in Higher-Order Modules, a semantic signature will be a parameterised
semantic module L ≡ ΛP .M∈ Sig , which is a natural generalisation of the
first-order notion.

Now we can return to answer the question of what the semantic interpre-
tation of the functor signature funsig(X:S)S′ should be. Suppose the argu-
ment signature S denotes the semantic signature ΛP .M, i.e. C ` S .ΛP .M,
where P represents the type components of the argument on which any
functor, of a type in this family, should behave parametrically. Since the
result signature S′ may contain occurrences of X we should extend C by the
assumption [X : M] before elaborating S′ to its denotation (treating type
variables in P as fresh parameters). Now suppose that, in this extended con-
text, S′ denotes the semantic signature ΛQ .M′, i.e. C[X : M] ` S′ .ΛQ .M′.
Here Q arises from the undetermined type components of the range and
thus, by our previous discussion, should give rise to the parameters of the
semantic signature of the complete phrase. Our first approximation is to say
that funsig(X:S)S′ should denote the semantic signature ΛQ .∀P .M→M′.
Unfortunately, because Q is bound before P , this approach fails to capture
the functional dependency of types defined in M′ on the parameters P .
Biswas’s [Bis95] important insight is to use higher-order type variables to
encode this dependency. Let P be the set of variables {α0, . . . , αn−1}. By
raising the order (i.e. the kind) of each variable β ∈ Q , we enable it to take
the parameters α0, . . . , αn−1 as arguments. Replacing each occurrence inM′

of β ∈ Q by the application β α0 · · · αn−1 provides for a functional depen-
dency of these variables on the type parameters of the argument. Ignoring
the usual side-conditions on bound variables, the rule relating a functor
signature to its denotation can be expressed as:

C ` S . ΛP .M C[X : M] ` S′ . ΛQ .M′

C ` funsig(X:S)S′ . ΛQ̂ .∀P .M→ [Q̂/Q ] (M′)
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where Q̂ is an appropriately raised variant of Q , and the realisation

[Q̂/Q ] = {β 7→ β α0 · · · αn−1|β ∈ Q}

takes care of the parameterisation (recall that P ≡ {α0, . . . , αn−1}).
To use this technique, we will need to generalise our language of semantic

types to the higher-order setting, obtaining a variant of the simply-typed
λ-calculus. The “terms” of this calculus are semantic types extended with
Λ-abstraction (Λα.τ ) and application (ν τ ); the “types” of the calculus
are the semantic kinds, extended with the higher kind (κ → κ′) classifying
functions on types. As in the first-order setting, realisations essentially
define substitutions on type variables. However, because type variables may
have higher kinds, realisations will typically be higher-order substitutions.

We illustrate the idea with a simple example. Consider the functor
signature:

funsig(X:sig type t : k end)sig type t : k end

Since
. . . ` sig type t : k end . Λ{α}.(t = α),

and
. . .[X : (t = α)] ` sig type t : k end . Λ{β}.(t = β),

from our previous discussion it should be clear that, by raising β to account
for dependencies on α:

. . . ` funsig(X:sig type t : k end)sig type t : k end .

Λ{β}.∀{α}.(t = α) → (t = β α). (*)

Let’s consider some examples of functors that match signature (*). The
identity functor

functor(X : sig type t : k end)X

has module type
∀{α}.(t = α) → (t = α),

which matches the signature (*) by choosing the higher-order realisation
[Λα.α/β ].

The constant functor

functor(X : sig type t : k end)struct type t = int end,
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has module type

∀{α}.(t = α) → (t = int),

which matches the signature (*) by choosing the realisation [Λα.int/β ].
The functor

module F =
functor(X : sig type t : k end)struct type t = X.t → X.t end

has module type

∀{α}.(t = α) → (t = α → α),

which matches the signature (*) by choosing the realisation [Λα.α → α/β ].
Now consider the higher-order functor:

module H =
functor(G : funsig(X:sig type t : k end)sig type t : k end)

functor(Y : sig type t : k end)
G (G Y).

It has module type:

∀{β}.(∀{α}.(t = α) → (t = β α)) →
∀{δ}.(t = δ) →

(t = β (β δ)).

Notice how H is polymorphic in its first argument’s (i.e. G’s) argument-
result dependency β , and that this argument is itself required to be poly-
morphic in α. Moreover, the argument’s polymorphism is actually exploited
within the functor body, since G is applied at two different instances, choos-
ing [δ/α] and [β δ/α] respectively. Since F matches H’s argument signature
(via the realisation [Λα.α → α/β ]), the partial application H F has module
type:

∀{δ}.(t = δ) → (t = (δ → δ) → (δ → δ)).
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5.2.2 Incorporating Generativity

In the previous discussion, no mention was made of the generative nature
of functors. Recall that in first-order Modules, a functor may return new
types as the result of abstractions and functor applications appearing within
its body; in order to preserve type soundness, each application of a given
functor causes the generation of fresh types. This “generative” capability is
reflected in the semantic objects classifying functors: a semantic functor has
the form ∀P .S → ∃Q .S ′, where generativity is captured by the existential
quantification of Q in the result. In the examples of the previous section we
implicitly assumed that semantic functors had the form ∀P .M→M′, where
the result M′ is a simple module (either a structure or functor), and not,
conspicuously, an existential module. Indeed, in his paper, Biswas explicitly
uses the simplifying assumption that generativity has been removed from
the language [Bis95].

While it is possible to do this, the practical ramifications for program-
ming in the language are rather severe. To ensure data abstraction (one
of the key motivations for using a modules language), programs have to be
written in a fully functorised form. By this we mean the following. Sup-
pose P [m] is a program with an occurrence of a module m, implementing
the signature S, and we wish to ensure that the module expression m can
be replaced by any other implementation m′ matching S. Using an ab-
straction, we can isolate m from its context P by writing P [m \ S]. If this
program type-checks, then so does P [m′ \S]. If we remove generativity from
the language then we can no longer accommodate the abstraction phrase.
Without abstractions, we can only ensure the above property if P is writ-
ten as the outermost application of a functor to m, i.e. if P has the form
(functor(X : S)m′′) [m]. Notice that if the application is not outermost,
i.e. P is merely in the form P ′[(functor(X : S)m′′) [m]] for a non-empty
program context P ′, then the inner functor application may propagate the
actual implementations of types in m that are meant to be abstract ac-
cording to the signature S. With access to the concrete implementations,
the outer context P ′ can inadvertently make use of this information and
violate the intended abstraction, preventing the replacement of m by m′.
Unfortunately, insisting on fully functorised code leads to an unnatural and
unintelligible coding style in which all abstract modules must be anticipated
early on and imported as initial functor arguments, possibly at considerable
distance from their point of use. As MacQueen [Mac86] rightly points out,
this seriously impedes the incremental construction of programs, which is,
after all, the main motivation for using a modules language. Notice, also,
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that the approach only works if both S and m are closed1, since each must
be well-formed in the outermost and thus empty context. An abstraction
phrase, on the other hand, may be embedded deep within a program, and
may be used to isolate an open2 module expression using an open signature.

Biswas leaves the extension of his proposal to handle generativity as
an “important direction for future research associated with this approach
to providing semantics to higher-order functors” [Bis95]. He does not give
any concrete indication of how this may be accomplished beyond speculat-
ing that “by considering gensym as a primitive function and introducing
environments, can we capture some form of generativity in the language”
[Bis95]. The fact that this statement was written nearly five years after
the publication of the Definition of Standard ML [MTH90] is evidence of
the prevalent, state-based understanding of generativity. With our under-
standing of generativity as existential quantification, we shall see that the
higher-order extension is almost trivial. This application alone hopefully
justifies the pedantic but nevertheless useful reformulation of the static se-
mantics which we undertook in Chapter 4.

Given that we want some notion of generativity in Higher-Order Mod-
ules, we actually have two ways to proceed. We could attempt to extend
Biswas’s approach, discussed in the previous section, by adding existential
quantification to his semantic functors. This would be a considerable depar-
ture from his work and it is not clear whether it would succeed. At the very
least, the syntax of functor result signatures has to be extended to allow
the specification of generative as well as undetermined types. Furthermore,
the notion of enrichment between functors has to be altered in a non-trivial
manner to take account of existentially quantified results.

Fortunately, there is a much simpler approach: we can relax the notion of
functor generativity in a way that eliminates the need for existentially quan-
tifying over a functor’s result type. We encountered the germ of this idea
in Chapter 4, Section 4.1.3, where we briefly considered the consequences
of making functors applicative. The suggestion was to do away with the
generation of fresh types at each application of a given functor, by, instead,
generating fresh types once and for all at the functor’s point of definition.
The term “applicative” refers to the property that two distinct applications
of the same functor will yield equivalent abstract types. Expressed in terms
of existential quantification and ignoring the usual side-conditions prevent-
ing variable capture, the proposal meant replacing the “generative” functor

1A phrase is closed if it contains no free identifiers.
2A phrase is open if it contains zero or more free identifiers.
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introduction and elimination rules:

C ` S . ΛP .S C[X : S] ` s : ∃Q .S ′ C[F : ∀P .S → ∃Q .S ′] ` b : ∃Q ′.S ′′

C ` functor F (X : S) = s in b : ∃Q ′.S ′′
(T-17)

C(F) = ∀P .S ′ → ∃Q .S C ` s : ∃Q ′.S ′′
S ′′ � ϕ (S ′) Dom(ϕ) = P

C ` F s : ∃Q ∪Q ′.ϕ (S) (T-21)

by the “applicative” rules:

C ` S . ΛP .S C[X : S] ` s : ∃Q .S ′ C[F : ∀P .S → S ′] ` b : ∃Q ′.S ′′

C ` functor F (X : S) = s in b : ∃Q ∪Q ′.S ′′ (*)

C(F) = ∀P .S ′ → S C ` s : ∃Q ′.S ′′
S ′′ � ϕ (S ′) Dom(ϕ) = P

C ` F s : ∃Q ′.ϕ (S) (T-21’)

Observe that the applicative functor introduction rule (Rule (*)) elim-
inates the existential quantification of Q at F’s point of definition before
proceeding with the classification of b; Q is added once and for all to the set
of existential types produced by the classification of the complete phrase. As
a result, the elimination rule (Rule (T-21’)) is simpler: only the argument of
an application, not its functor, will introduce existential variables. Clearly,
with the applicative rules, the general form of semantic functors can now
be simplified to ∀P .S → S ′, dropping any existential quantification over the
result. This then allows us to apply Biswas’s results directly. Unfortunately,
as demonstrated by the counter-example in Chapter 4, Figure 4.4(c), Rule
(*) is not sound. The types hidden by Q may, in general, have a functional
dependency on the type parameters P of the functor. Directly eliminating
the existential from the range signature S ′ ignores this dependency.

All is not lost however. Resorting to higher-order type variables, we
can encode such functional dependencies by exploiting essentially the idea
used to define the interpretation of functor signatures. Let P be the set
of variables {α0, . . . , αn−1}. By raising the order of each variable β ∈ Q ,
we enable it to take the parameters α0, . . . , αn−1 as arguments. Replac-
ing each occurrence in the functor range S ′ of β ∈ Q by the application
β α0 · · · αn−1 provides for the functional dependency of these variables on
the type parameters of the functor.
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We can now formulate a sound introduction rule:

C ` S . ΛP .S C[X : S] ` s : ∃Q .S ′
C[F : ∀P .S → [Q̂/Q ] (S ′)] ` b : ∃Q ′.S ′′

C ` functor F (X : S) = s in b : ∃Q̂ ∪Q ′.S ′′ (T-17’)

where Q̂ is an appropriately raised variant of Q and the realisation

[Q̂/Q ] = {β 7→ β α0 · · · αn−1|β ∈ Q}

takes care of the parameterisation, provided P ≡ {α0, . . . , αn−1}. In effect,
this amounts to the skolemisation of the existentially quantified variables Q
by the universally quantified variables P .

In the sound applicative semantics, the term “applicative” refers to the
property that two distinct applications of the same functor will yield equiv-
alent abstract types, provided they both agree on the realisation of the func-
tor’s type parameters.

The example in Figure 5.10, continued in Figure 5.11, illustrates the
differences between adopting a generative semantics, naive applicative se-
mantics and sound applicative semantics for functors.

5.2.3 Generalising the Dot Notation

In Modules, the dot notation, used to project components from structures,
is syntactically restricted to paths sp ∈ StrPath. Recall that a path is es-
sentially a non-empty, dot-separated sequence of structure identifiers. As a
result, we can only access components of named, but not anonymous, struc-
ture expressions. As observed by Leroy [Ler95], if we retain this syntactic
restriction in Higher-Order Modules, it becomes impossible to fully specify
the types returned by functor applications. Consider the example of want-
ing to express a functor which, given two functors H and G returning types
u and v respectively, returns a functor that constructs a derived operation
that requires the compatibility of these types:
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functor F(X: sig type t : 0 end) =
struct datatype u = X.t with x,y end

in
structure X = F (struct type t = int end);
structure Y = F (struct type t = int end);
structure Z = F (struct type t = int → int end);
val x = X.y (Y.x 1);
val z = (Z.y (Y.x 1)) 2

(a) The definition of x is sound. The definition of z is not,
attempting to apply 1 to 2. It should be rejected by a sound
static semantics.

functor b
∀{α}.(t=α)→∃{β}.(u=β,x:α→β,y:β→α)
F (X: sig type t : 0 end) =

struct datatype u = X.t with x,y end
in
structure b

(u=β,x:int→β,y:β→int)
X = F (struct type t = int end);

structure b
(u=δ,x:int→δ,y:δ→int)
Y = F (struct type t = int end);

structure b
(u=γ,x:(int→int)→γ,y:γ→(int→int))
Z = F (struct type t = int → int end);

val x = X.yβ→int (Y.xint→δ 1)δ ;
val z = (Z.yγ→(int→int) (Y.xint→δ 1)δ ) 2

(b) The partial, unsuccessful classification of the phrase in
Figure 5.10(a) using the standard, generative semantics (Rules
(T-17) and (T-21)). Notice how the generation of fresh types
at each and every functor application ensures that X.u, Y.u
and Z.u are all distinct, preserving soundness. The offending
subphrases are underlined.

Figure 5.10: A phrase illustrating the difference between generative and
applicative functors.
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functor b
∀{α}.(t=α)→(u=β,x:α→β,y:β→α)
F (X: sig type t : 0 end) =

struct datatype u = X.t with x,y end
in
structure b

(u=β,x:int→β,y:β→int)
X = F (struct type t = int end);

structure b
(u=β,x:int→β,y:β→int)
Y = F (struct type t = int end);

structure b
(u=β,x:(int→int)→β,y:β→(int→int))
Z = F (struct type t = int → int end);

val x = (X.yβ→int (Y.xint→β 1)β )int;
val z = (Z.yβ→(int→int) (Y.xint→β 1)β )int→int 2

(a) A completely successful but unsound classification of the
phrase in Figure 5.10(a), constructed in a semantics employing
naive applicative functors (Rules (*) and (T-21’)). X.u, Y.u
and Z.u are incorrectly identified.

functor b
∀{α}.(t=α)→(u=β α,x:α→β α,y:β α→α)
F (X: sig type t : 0 end) =

struct datatype u = X.t with x,y end
in
structure b

(u=(β int),x:int→(β int),y:(β int)→int)
X = F (struct type t = int end);

structure b
(u=(β int),x:int→(β int),y:(β int)→int)
Y = F (struct type t = int end);

structure b
(u=(β (int→int)),x:(int→int)→(β (int→int)),y:(β (int→int))→(int→int))

Z = F (struct type t = int → int end);

val x = (X.y(β int)→int (Y.xint→(β int) 1)(β int))int;
val z = (Z.y(β (int→int))→(int→int) (Y.xint→(β int) 1)(β int)) 2

(b) An incomplete but sound classification of the phrase in Figure
5.10(a), constructed in a semantics using the correct rules for applica-
tive functors (Rules (T-17’) and (T-21’)). Even though X.u and Y.u
are (safely) identified, they are still correctly distinguished from Z.u.

Figure 5.11: Classifying the phrase in Figure 5.10(a) in both a naive ap-
plicative semantics and a sound applicative semantics.
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functor(H:funsig(X:sig type t:0 end)
sig type u : 0;

val in : X.t → u
end)

functor(G:funsig(X:sig type t:0 end)
sig type v = ? ;

val out : v → X.t
end)

functor(X:sig type t:0 end)
struct module Y = H X;

module Z = G X;
val image = λx. Z.out (Y.in x)

end

Of course, this program fails to type check unless we can specify that
the types returned by H and G are compatible by filling in the ? in the
definitional specification of v. Unfortunately, if we restrict projections to
paths, our only option is to fix not only v but also u, by giving equivalent
concrete definitions with specifications of the form type u = d and type v
= d′ for some particular definitions d and d′ denoting the same type d . If
u is not fixed, there is no syntax to express that for every argument X, the
v component of (G X) should be equivalent to the u component of (H X).
Intuitively, however, the functor body should type-check for any definition
of u, provided u and v are equivalent as functions of X.t. If we generalise
the dot notation to operate on arbitrary module expressions m, allowing
module, type and value projections of the form m.X, m.t and m.x, then we
can replace the ? by the type projection (H X).u, yielding a functor that
is polymorphic in the definition of u, capturing our intuition.

Remark 5.2.1 (For Type Theorists). There is also a more theoretical moti-
vation for generalising projections. If we want to prove a syntactic subject
reduction result for Modules, then a key lemma we will need is that the
type of a functor application is preserved when substituting the actual ar-
gument for the formal argument of the functor. It is easy to see that the
phrase class StrPath is not even syntactically closed under substitution of
module phrases for identifiers, making it impossible to state this lemma, let
alone prove it. By generalising projections from paths to projections from
arbitrary module expressions, the syntax of Modules becomes closed under
substitution, bringing us one step closer3 to proving syntactic subject reduc-

3But not quite all the way there, for reasons we shall not explore further in this thesis.
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t ∈ TypId type identifiers
x ∈ ValId value identifiers

X ∈ ModId module identifiers

(a) Identifiers

B ∈ SigBod signature bodies
S ∈ SigExp signature expressions

do ∈ TypOcc type occurrences

(b) Type Syntax

b ∈ StrBod structure bodies
m ∈ ModExp module expressions

vo ∈ ValOcc value occurrences

(c) Term Syntax

Figure 5.12: Higher-Order Modules Phrase Classes

tion. Courant [Cou97b] addresses a similar failing of Leroy’s module calculi:
in Leroy’s original proposal [Ler94], projections are restricted to paths; even
Leroy’s extended notion of path [Ler95], that includes applications of (func-
tor) paths to (argument) paths, fails to remedy this problem with subject
reduction.

5.3 Phrase Classes

Figure 5.12 presents the phrase classes of Higher-Order Modules. Figure
5.13 defines their (abstract) grammar. Most of the phrases in Higher-Order
Modules should be familiar from their counterparts in first-order Modules.
We will focus our attention on the differences between the grammars.

Identifiers X ∈ ModId range over module expressions and subsume the
separate phrase classes StrId and FunId of Modules. The phrase class
ModExp generalises the first-order phrase class StrExp of structure expres-
sions. Phrases m ∈ ModExp are used to express both structures and func-
tors. The distinguished phrase class of structure paths sp ∈ StrPath for
accessing subcomponents of structures has been removed. Instead, we ex-
tend the class of module expressions, type occurrences and value occurrences
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TypId def= {t,u,. . . } type identifiers

ValId def= {x,y,. . . } value identifiers

ModId def= {X,Y,F,G,. . . } module identifiers

B ::= type t = d;B type definition
| type t : k; B type specification
| val x : v; B value specification
| module X : S;B module specification
| εB empty body

S ::= sig B end structure signature
| funsig(X:S)S′ functor signature

do ::= t type identifier
| m.t type projection

b ::= type t = d; b type definition
| val x = e; b value definition
| module X = m; b module definition
| local X = m in b local module definition
| εb empty body

m ::= X module identifier
| m.X submodule projection
| struct b end structure
| functor(X : S)m functor
| m m′ functor application
| m � S signature curtailment
| m \ S signature abstraction

vo ::= x value identifier
| m.x value projection

Figure 5.13: Higher-Order Modules Grammar
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with generalised projections. The class StrPath is redundant since we es-
sentially have StrPath ⊆ ModExp.

Signature bodies B ∈ SigBod are defined as for first-order Modules,
except that we replace the structure specification structure X : S;B by its
generalisation module X : S;B. The phrase specifies a module named X,
matching the signature S. Note that S may specify either a structure or a
functor.

Signature expressions S ∈ SigExp specify modules. The new phrase
funsig(X:S)S′ specifies a functor with argument signature S and result sig-
nature S′. X is bound in S′. In particular, types defined in S′ may refer to
X. Moreover, types merely specified, but not defined, in S′ have an implicit
dependency on X.

Structure bodies b ∈ StrBod are defined as in (first-order) Modules,
except that we replace the structure definitions structure X = s;b
and local X = s in b by their generalisations module X = m; b and
local X = m in b. The phrase module X = m; b defines X as a com-
ponent of the surrounding structure expression that can be accessed by the
dot-notation. Since m may be a functor, structures may now contain func-
tor components. Recall that Modules only catered for local definitions of
functors; this restriction has now been removed. The corresponding phrase
functor F (X : S) = m in b is redundant and has been deleted, since it
can be treated as an abbreviation of local F = functor(X : S)m in b.

Module expressions m ∈ ModExp evaluate to both structures, i.e. col-
lections of type, value and module definitions, and functors. Every module
identifier X is a proper module expression, as is the direct projection m.X of
the submodule X from m (provided m evaluates to a structure). The phrase
struct b end encapsulates a structure body to form a module. The phrase
functor(X : S)m is an anonymous functor, i.e. a parameterised module. The
identifier X names the formal argument. The scope of X is the functor body
m. The functor may be applied to any module that matches the argument’s
signature S. Note that S may specify either a functor or a structure, and
that m may itself evaluate to either a functor or a structure. The phrase
m m′ is the application of the (possibly anonymous) module m, which must
be a functor, to the module m′. Since functors may now take functors as ar-
guments, m′ may itself be a functor. Curtailments and abstractions have the
same interpretation as in the first-order setting. The phrase m � S matches
the module m against the signature S and curtails it accordingly: m is spe-
cialised according to S, provided the type of m enriches a suitable realisation
of S. The actual realisation of types that are specified, but not defined, in S
is retained. Note that if m is a functor and S a functor signature, then the
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curtailment preserves the actual argument-result dependencies of m that are
merely specified, but not defined, in the functor signature S. The abstraction
m \ S is similar to the curtailment m � S. However, the actual realisation
of types is hidden outside the abstraction. Note that if m is a functor and
S a functor signature, then the abstraction hides the actual argument-result
dependencies of m. (In the static semantics, abstractions will just introduce
existentially quantified semantic modules, just as they introduced existen-
tially quantified semantic structures in the first-order semantics of Chapter
4.)

Informally, a module expression matches a signature as follows. If m
is a module evaluating to a structure, then m matches S provided that S
is of the form sig B end, and, as in the first-order setting, it implements
all of the components specified in the signature body B. In particular, the
structure must realise all of the type components that are merely specified
but not defined in B. Moreover, the structure must enrich B subject to
this realisation: every specified type must be implemented by an equivalent
type; every specified value must be implemented by a value whose type is
at least as general as its specification; finally, every specified module must
be implemented by a module that enriches its specification. As before, the
order in which components of the structure are actually defined is irrele-
vant. Furthermore, the structure is free to define more components than are
specified in the signature. If m is a module evaluating to a functor, then m
matches S provided S is of the form funsig(X:S′)S′′, and there is a realisa-
tion of the argument-result dependencies of S(i.e. the dependencies of types
merely specified in S′′ on types merely specified in S′), such that, whenever
an actual argument m′ matches the signature S′, then the application m m′

evaluates to a module matching the realisation of S′′. Of course, we won’t
need to evaluate module expressions to check matching; it will be enough to
know the type of the module at hand. This will be all be made more precise
in Section 5.4.

Finally, the grammars of type occurrences do ∈ TypOcc and value oc-
currences vo ∈ ValOcc are modified, replacing restricted type and value
projections sp.t and sp.x by the generalised phrases m.t and m.x respec-
tively. Of course, the static semantics will have to ensure that the module
expression m evaluates to a structure and not a functor.
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κ ∈ Kind kinds classifying types
ακ ∈ TypVarκ type variables

M ,N ,P ,Q ,R ∈ TypVarSet variable sets
νκ ∈ TypNamκ type names

τκ ∈ Typκ types

S ∈ Str structures
F ∈ Fun functors

M ∈Mod modules

X ∈ ExMod existential modules

L ∈ Sig signatures

C ∈ Context contexts

Figure 5.14: Semantic Objects of Higher-Order Modules

5.4 Semantic Objects

Figures 5.14, 5.15 and 5.16 define the semantic objects assigned to module
expressions. They serve the role of types in the module semantics. We let
O range over all semantic objects.

Definition 5.1 (Kinds, Type Variables, Type Names and Types).
A kind κ ∈ Kind is either a Core kind k ∈ DefKind used to specify

definable types, or a higher kind κ→ κ′, classifying functions from types of
kind κ to types of kind κ′.

Kinds are used to index sets of kind-equivalent type variables, type names
and types. For each kind κ ∈ Kind we have:

• An infinite, denumerable set of type variables, TypVarκ. A type vari-
able ακ ∈ TypVarκ ranges over types in Typκ.

• A set of type names, TypNamκ. A type name νκ ∈ TypNamκ is either
a type variable of kind κ, or an application ν ′ τ of a type name ν ′ of
kind κ′ → κ to a type τ of kind κ′.
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κ ∈ Kind ::= k Core kind
| κ→ κ′ function space

ακ ∈ TypVarκ def= {ακ, βκ, δκ, γκ, . . .} an infinite, denumerable set

α ∈ TypVar def=
⊎

κ∈Kind TypVarκ

P ∈ TypVarSet def= Fin(TypVar )

νκ ∈ TypNamκ ::= ακ type variable
| νκ′→κ τκ′ type application

τκ ∈ Typκ ::= dk Core definable type
(provided κ ≡ k ∈ DefKind)

| Λακ′ .τκ′′ type function
(provided κ ≡ κ′ → κ′′)

| νκ type name

τ ∈ Typ def=
⊎

κ∈Kind Typκ

Figure 5.15: Semantic Objects of Higher-Order Modules (cont. )
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S ∈ Str ::= t = τk,S ′ type component
(provided t 6∈ Dom(S ′))

| x : v ,S ′ value component
(provided x 6∈ Dom(S ′))

| X : M,S ′ module component
(provided X 6∈ Dom(S ′))

| εS empty structure

F ∈ Fun ::= ∀P .M→M′ functor

M∈ Mod ::= S structure
| F functor

X ∈ ExMod ::= ∃P .M existential module

L ∈ Sig ::= ΛP .M signature

C ∈ Context def=

C ∪ Ct ∪ Cx ∪ CX

∣∣∣∣∣∣∣∣∣∣
C ∈ CoreContext ,

Ct ∈ TypId fin→ Typ ,

Cx ∈ ValId fin→ ValTyp,

CX ∈ ModId fin→ Mod


Figure 5.16: Semantic Objects of Higher-Order Modules (cont. )
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• A set of types, Typκ. A type τκ ∈ Typκ is either a type name of kind
κ, a Core definable type of an equivalent Core kind, or a type function
Λα.τ ′. In the case of a function, its kind κ must be a higher kind
κ′ → κ′′, its bound variable α must have the kind κ′, and its body τ ′

must have the kind κ′′.

In short, we have generalised the first-order concepts of Definition 3.4
by allowing higher kinds, well-kinded applications of type names to types,
and well-kinded type functions. As in the first-order setting, type names
enter Core semantic objects when they arise as the denotations of type
occurrences.

Remark 5.4.1. Types, type names and type variables essentially define the
β-normal terms of an extended, simply-typed λ-calculus. The base “terms”
of the calculus are the Core definable types d ∈ DefTyp . The “base types”
are the Core kinds k ∈ DefKind. Kinds κ ∈ Kind play the role of “types”
constructed with the “function space” κ→ κ′ from “base types”. The moti-
vations for restricting our attention to terms in β-normal form are twofold:

• We avoid the formulation of β-equivalence, and, more importantly, its
extension to all other semantic objects of Higher-Order Modules.

• Terms enjoy the technically convenient property that if two terms
are equivalent, then their sets of free variables are equivalent as well.
Moreover, these are the “necessarily” free variables of the terms. This
property simplifies the proofs in subsequent sections. Note that the
property still holds when we identify terms up to η-equivalence.

The disadvantages of restricting ourselves to terms in β-normal form are
also twofold:

• Their grammar is slightly more complex (two syntactic classes of type
names and types, instead of just one). This complicates the definition
of the usual operations on terms.

• The straightforward substitution of terms for variables does not re-
spect the structure of terms. Instead, we need to define a more refined
notion of substitution (i.e. realisation) that performs β-reduction on
the fly.

Definition 5.2 (Equivalence of Types). Once again, using the Core
operation η, every type name ν of Core kind k can be viewed as an equivalent
Core definable type η(ν). We implicitly identify types that are equivalent
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up to such η-expansions and extend the operation η to operate on types of
Core kind k (any k) as follows:

η̂k( ) ∈ Typk → DefTypk

η̂k(τ ) def=
{
η(ν) if τ ≡ ν ∈ TypNamk

d if τ ≡ d ∈ DefTypk

From now on, we will identify any type of the form Λα.ν α ∈ TypNamκ→κ′

with its η-contraction ν , provided α 6∈ FV(ν) and ν ∈ TypNamκ→κ′ .
Moreover, we only consider as valid those equations between pairs of

type variables, type names and definable types that compare objects of the
same kind.

Definition 5.3 (Structures). A semantic structure S ∈ Str is a nested
association list, binding identifiers to types (of Core kind), value types and
semantic modules, i.e. both structures and functors. The domain of S,
written Dom(S), is the finite set of identifiers it binds:

Dom( ) ∈ Str → Fin(TypId ∪ValId ∪ModId)

Dom(εS) def= ∅

Dom(t = τ ,S) def= {t} ∪Dom(S)

Dom(x : v ,S) def= {x} ∪Dom(S)

Dom(X : M,S) def= {X} ∪Dom(S)

The provisos on structures in Figure 5.16 ensure that identifiers are
uniquely bound, allowing one to view a semantic structure as a triple of
finite maps with corresponding (partial) retrieval functions:

( ) ∈ (Str × TypId) ⇀ Typ

εS(t) def= undefined

(t′ = τ ,S)(t) def=
{
τ if t = t′

S(t) otherwise.

(x : v ,S)(t) def= S(t)

(X : M,S)(t) def= S(t)
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The retrieval functions for value and module bindings are defined simi-
larly.

Definition 5.4 (Functors). A semantic functor F ∈ Fun is the type of a
polymorphic function taking modules to modules. Consider a functor of type
F ≡ ∀P .M→M′. Variables in P are bound simultaneously in M and M′.
These variables capture the type components of the domain M on which
the functor behaves parametrically; their possible occurrence in the range
M′ caters for the propagation of type identities from the functor’s actual
argument to its result. In first-order Modules, the range of a functor is an
existentially quantified semantic structure. Since we have chosen applicative
functors as the more appropriate notion for Higher-Order Modules (recall
our discussion in Section 5.2.2), the range M′ is simply an unquantified
semantic module.

Definition 5.5 (Signatures). Signature expressions denote semantic sig-
natures L ∈ Sig . The signature L ≡ ΛP .M specifies a family of module
types (either structures or functors), indexed by the realisation of type vari-
ables in P . Variables in P are bound in M.

Definition 5.6 (Existential Modules). An existential module X ∈ ExMod
is an existentially quantified module type of the form ∃P .M. Variables in
P are bound in M. Intuitively, ∃P .M is the type of any abstracted module
expression, whose actual type is some member of the family of types ΛP .M.

Definition 5.7 (Contexts). A context C ∈ Context is a finite map as-
signing semantic objects to identifiers. Note that CoreContext ⊆ Context ,
so that every Core context is also a (Higher Order Modules) context, and
that contexts support Core context operations. In addition to Core bind-
ings, type, value, and module identifiers are mapped to types, value types,
and modules respectively. Again, unlike semantic structures, contexts sup-
port re-bindings to identifiers. Subsequent bindings taking precedence over
previous ones.

We will let FV(O) denote the set of variables free in O, where the notions
of free and bound are defined as usual. We identify semantic objects that
are equivalent up to capture-avoiding, kind-preserving changes of bound
variables.

Definition 5.8 (Realisations). As for first-order Modules, a realisation
ϕ ∈ Real is a kind-preserving finite map:

ϕ ∈ Real def= {f ∈ TypVar fin→ Typ | ∀κ.∀ακ ∈ Dom(f).f(ακ) ∈ Typκ},
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defining a substitution on type variables. Unlike the realisations of first-
order Modules, these realisations are higher-order substitutions.

Note that realisations are finite maps and we will often treat them as
such. Moreover, to make it convenient to reason and state properties about
the behaviour of realisations on semantic objects, we will define two auxiliary
concepts. First, for a realisation ϕ, as in first-order Modules, we define its
region as follows:

Reg( ) ∈ Real → Fin(TypVar )

Reg(ϕ) def=
⋃

τ∈Rng(ϕ)

FV(τ ).

Second, the set of variables involved in ϕ is captured by the definition:

Inv( ) ∈ Real → Fin(TypVar )

Inv(ϕ) def= Dom(ϕ) ∪ Reg(ϕ).

Definition 5.9 (Realisation of Type Names and Types). Realisation
of type names and types is defined below. Because we essentially keep types
in normal form, we may need to perform β-reductions on types and type
names during realisation (see Remark 5.4.1):

( ) ∈ (Real × TypNamκ) → Typκ

ϕ (α) def=
{
ϕ(α) if α ∈ Dom(ϕ)
α otherwise

ϕ (ν τ ) def=
{
ν̄ (ϕ (τ )) if ϕ (ν) ≡ ν̄
[ϕ (τ )/α] (τ̄ ) if ϕ (ν) ≡ Λα.τ̄

and

( ) ∈ (Real × Typκ) → Typκ

ϕ (d ) def= ϕ (d )

ϕ (Λα.τ ) def=


Λα.ϕ (τ ) if α 6∈ Inv(ϕ)

Λβ.ϕ ([β/α] (τ ))
if α ∈ Inv(ϕ) and
β 6∈ FV(Λα.τ ) ∪ Inv(ϕ)

ϕ (ν) def= ϕ (ν)

Property 5.10 (Realisation is well-defined). Since realisation is a com-
bination of substitution and reduction, we should prove that it preserves kinds
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and terminates. This follows by translating kinds, types and type names into
types and well-typed normal terms of the simply-typed λ-calculus. Realisation
can be seen as type-preserving substitution, followed by standard β-reduction
to β-normal form. By strong normalisation of the simply-typed λ-calculus
with β-reduction, all such reduction sequences terminate. Hence realisation
is total and well-defined.

We extend realisations to structures, functors and modules, avoiding
variable-capture by binding constructs (∀P .M → M′, ∃P .M and ΛP .M)
in the usual way.

Properties 5.11 (Realisations). It is easy to verify that realisations enjoy
the following properties. In later proofs, we shall frequently make implicit
appeals to these properties.

• If Dom(ϕ) ∩ FV(O) = ∅ then ϕ (O) = O.

• If Dom(ϕ) ∩ FV(O) = ∅ then (ϕ | ϕ′) (O) = ϕ′ (O).

• If Dom(ϕ) ∩ Inv(ϕ′) = ∅ then (ϕ | ϕ′) (O) = ϕ (ϕ′ (O)).

• If α 6∈ Inv(ϕ) then ϕ (Λα.τ ) = Λα.ϕ (τ ).

• If Inv(ϕ) ∩ P = ∅ then

– ϕ (ΛP .M) = ΛP .ϕ (M),

– ϕ (∃P .M) = ∃P .ϕ (M), and

– ϕ (∀P .M→M′) = ∀P .ϕ (M) → ϕ (M′).

Here, as in Definition 3.3, the operation ϕ | ϕ′ defines a parallel realisation,
i.e. provided Dom(ϕ) ∩Dom(ϕ′) = ∅ then the parallel realisation ϕ | ϕ′ is
the realisation ϕ | ϕ′ def= ϕ ∪ ϕ′ (viewing ϕ and ϕ′ as sets) with domain
Dom(ϕ) ∪Dom(ϕ′).

5.4.1 Specifying Enrichment

In first-order Modules, the intuition motivating the enrichment relation is
that, given a phrase of type O, then provided O � O′, we may also use
the phrase as if it had the less general type O′. The question is how to
generalise this notion to the higher-order setting. In particular, what shall
we mean when we say that one functor enriches another? Since functors are
polymorphic, we might expect that a more polymorphic functor enriches
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any less polymorphic one that can be obtained from the richer functor by a
realisation of its type parameters. This is similar to the way generalisation of
Core-ML value types is defined. We could stop here, and proceed with this
definition, but in fact, we will take it a little further by adapting the usual
contra-variant definition of subtyping on function spaces: roughly speaking
(and ignoring polymorphism for now), we shall also allow F � F ′ if every
functor of type F may be applied to any argument in the domain of F ′, i.e.
the domain of F is at most as rich as the domain of F ′, yielding a result at
least as rich as the range of F ′, i.e. the range of F enriches the range of F ′.
The difficulty lies in combining the two notions of polymorphic generalisation
and contra-variant enrichment in a single definition. Intuitively, this idea is
captured by the following specification:

Specification 5.12 (Enrichment). We generalise the enrichment relation
from (first-order) Modules, by extending its definition on structures to both
functors and modules.

S � S ′ Given two semantic structures S and S ′, S enriches S ′, written
S � S ′, if, and only if, the following conditions hold.

• Dom(S) ⊇ Dom(S ′),
• for each type identifier t ∈ Dom(S ′), S(t) = S ′(t),
• for each value identifier x ∈ Dom(S ′), S(x) � S ′(x),
• for each module identifier X ∈ Dom(S ′), S(X) � S ′(X).

F � F ′ Given two functors F and F ′, F enriches F ′, written F � F ′,
if, and only if, every instance of F ′ is an instance of F , i.e. for any
modules M and M′, F ′ >M→M′ implies F >M→M′.

M�M′ Given two modules M and M′, M enriches M′, written M �
M′, if, and only if, either:

• M and M′ are both structures, i.e. M ≡ S and M′ ≡ S ′, and
S � S ′; or

• M and M′ are both functors, i.e. M ≡ F and M′ ≡ F ′, and
F � F ′.

F >M→M′ A functor instance M→M′ is the type of a monomorphic
function on modules.

Given functor F ≡ ∀P .MP → M′
P , M → M′ is an instance of F ,

written F > M→M′, if, and only if, for some realisation ϕ with
Dom(ϕ) = P, M� ϕ (MP ) and ϕ (M′

P ) �M′.
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Unfortunately, Specification 5.12 cannot be taken as a proper (induc-
tive) definition of the enrichment relations, since one of the relations we are
specifying occurs in the antecedent (i.e. in a negative position) of the clause
relating functors. However, it is relatively easy for a programmer to under-
stand, and can be treated as a specification of the enrichment relations we
will define. In the next section, we will give a proper inductive definition of
enrichment and show that it satisfies Specification 5.12. For the moment,
we can observe that the property expressed by the specification is obviously
reflexive and transitive, forming a good basis for a subtyping relation.

As in first-order Modules, matching a module against a signature is
defined as a combination of realisation and enrichment:

Definition 5.13 (Signature Matching). A module M matches a sig-
nature L ≡ ΛP .M′ if, and only if, there exists a realisation ϕ such that
M� ϕ (M′) and Dom(ϕ) = P .

5.4.2 Defining Enrichment

As we discussed, Specification 5.12, although intuitive, cannot serve as a def-
inition of the enrichment relations between structures, functors and modules.
In this section, we define enrichment as a collection of inductive relations
and show that they form a pre-order that is closed under realisation. Using
these properties, we can then prove that our definition satisfies Specification
5.12. Our proofs rely on certain assumptions about the Core language which
we will state as hypotheses. These hypotheses must be proved separately
for each instantiation of the Core language. But first, we give the definition:

Definition 5.14 (Enrichment). The enrichment relations between struc-
tures, functors and modules

� ∈ Str × Str
� ∈ Fun × Fun
� ∈ Mod ×Mod

are defined as the least relations closed under the rules in Figure 5.17. Note
that Rules ( � -3) and ( � -4) allow module enrichment to be derived from
structure and functor enrichment.

Properties of Enrichment

We can now verify the properties of enrichment that justify its use as a
subtyping relation.
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Structure Enrichment S � S ′

Dom(S) ⊇ Dom(S ′)
∀t ∈ Dom(S ′).S(t) = S ′(t)
∀x ∈ Dom(S ′).S(x) � S ′(x)
∀X ∈ Dom(S ′).S(X) � S ′(X)

S � S ′ ( � -1)

Functor Enrichment F � F ′

MQ � ϕ (MP ) ϕ (M′
P ) �M′

Q

Dom(ϕ) = P Q ∩ FV(∀P .MP →M′
P ) = ∅

∀P .MP →M′
P � ∀Q .MQ →M′

Q ( � -2)

Module Enrichment M�M′

S � S ′
S � S ′ ( � -3)

F � F ′

F � F ′ ( � -4)

Figure 5.17: An inductive definition of enrichment for Higher-Order Mod-
ules.
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We need to assume that the Core satisfies the following hypothesis:

Hypothesis 5.15 (Reflexivity of Value Type Enrichment).

v � v .

Then it is easy to prove:

Property 5.16 (Reflexivity).

O � O.

Proof. The proof is an easy structural induction on O, with an appeal to
Hypothesis 5.15.

Moreover, we need to know that enrichment between value types is closed
under realisation of type variables:

Hypothesis 5.17 (Closure under Realisation of Value Type Enrich-
ment).

v � v ′ ⊃ ϕ (v) � ϕ
(
v ′

)
.

This hypothesis allows us to prove a similar closure property for the
enrichment relation on structures, functors and modules:

Lemma 5.18 (Closure under Realisation of Enrichment).

O � O′ ⊃ ϕ (O) � ϕ
(
O′).

Proof. Because we need to be able to apply the induction hypothesis to a
modified realisation in case ( � -2), we actually need to prove the statement:

O � O′ ⊃ ∀ϕ.ϕ (O) � ϕ
(
O′),

that quantifies over all ϕ. The proof then follows by induction on the rules
defining enrichment. Note that we need to appeal to Hypothesis 5.17 in case
� -1.

(As an aside, we point out that the strategy of first choosing some arbi-
trary, but fixed ϕ, and then trying to prove

O � O′ ⊃ ϕ (O) � ϕ
(
O′)

directly by induction on the rules defining enrichment, fails, although it
works fine for the enrichment relation of first-order Modules (Definition
3.17).)
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Finally, we shall need to assume that Core enrichment is transitive.

Hypothesis 5.19 (Transitivity of Value Type Enrichment).

v � v ′ ∧ v ′ � v ′′ ⊃ v � v ′′.

We can then prove that the enrichment relations on structures, functors
and modules is transitive.

Property 5.20 (Transitivity).

O � O′ ⊃ O′ � O′′ ⊃ O � O′′.

Proof. The proof is a little tricky because of the simultaneous use of contra-
variance and realisation in Rule ( � -2). The trick is to use Lemma 5.18 to
prove the stronger property:

O � O′ ⊃
(

∀ϕ,O′′.ϕ (O′) � O′′ ⊃ ϕ (O) � O′′

∧ ∀ϕ,O′′.O′′ � ϕ (O) ⊃ O′′ � ϕ (O′)

)
which succumbs to rule induction and an appeal to Hypothesis 5.19. The

stronger induction hypothesis corresponds to splitting the proof of transitivity
into a simultaneous proof of transitivity for objects enriched by realisations
of O′, together with a proof of transitivity for objects enriching realisations
of O.

Lemma 5.20 follows easily from the first conjunct, by choosing the empty,
or identity, realisation.

(As an aside, we point out that the simpler strategy of trying to prove

O � O′ ⊃ ∀O′′.O′ � O′′ ⊃ O � O′′

directly by induction on the rules defining enrichment, fails, although it
works fine for the enrichment relation of first-order Modules (Definition
3.17).)

We now have everything we need to prove that our enrichment relations
satisfy Specification 5.12. We first define, as in Specification 5.12:

Definition 5.21 (Functor Instance). A functor instance M→M′ is the
type of a monomorphic function on modules.

Given functor F ≡ ∀P .MP →M′
P , M→M′ is an instance of F , writ-

ten F >M→M′, if, and only if, for some realisation ϕ with Dom(ϕ) = P ,
M� ϕ (MP ) and ϕ (M′

P ) �M′.
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We will need the following, simple observation:

Observation 5.22 (Generic Instance). Every functor is a generic in-
stance of itself:

∀P .M→M′ >M→M′

Proof. Easy, by choosing ϕ to be the identity on P and appealing to Property
5.16.

The key to proving that our relations satisfy their specification is to show
the following lemma:

Lemma 5.23 (Characterisation).

F � F ′ if, and only if, ∀M,M′.F ′ >M→M′ ⊃ F >M→M′.

Proof. The reverse direction is easy and relies on Observation 5.22. The
forward direction is harder and requires appeals to Property 5.20 and Lemma
5.18.

It is now straightforward to verify:

Theorem 5.24 (Satisfaction). The family of relations � satisfies Spec-
ification 5.12.

Proof. Easy using Lemma 5.23.

5.5 Static Semantics

The static semantics of Modules is defined by the judgements in Figure 5.18.
We have indicated, below each judgement, its intended English reading. The
judgements are defined by the following rules:

Denotation Rules

The denotation rules for signature bodies and signature expressions are the
same as their first-order counterparts (cf. Section 3.1.3), except that we have
adopted the notation ΛP .M instead of (P)M for semantic signatures. Rule
(H-4) generalises the first-order Rule (E-4) by catering for module specifica-
tions instead of structure specifications, but is otherwise unchanged. Rule
(H-7) is new and deals with functor signatures, incorporating the ideas we
sketched in Section 5.2.1. Finally, the original denotation rule for projecting
a type component from a path (Rule (E-8)) has been generalised to support
the projection of a type component from an arbitrary module expression
(Rule (H-9)).
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C ` S . L
In context C, signature expression S denotes signature L.

C ` B . L
In context C, signature body B denotes signature L.

C ` do . d
In context C, type occurrence do denotes definable type d .

(a) Denotation Judgements

C ` b : X
In context C, structure body b has existential module type X .

C ` m : X
In context C, module expression m has existential module type X .

C ` vo : v
In context C, value occurrence vo has value type v .

(b) Classification Judgements

Figure 5.18: Higher-Order Modules Judgements

Signature Bodies C ` B . L

C ` d . d P ∩ FV(d ) = ∅
C[t = d ] ` B . ΛP .S t 6∈ Dom(S)
C ` type t = d;B . ΛP .t = d ,S (H-1)

C[t = αk] ` B . ΛP .S αk 6∈ FV(C) ∪ P t 6∈ Dom(S)
C ` type t : k; B . Λ{αk} ∪ P .t = αk,S (H-2)

C ` v . v P ∩ FV(v) = ∅
C[x : v ] ` B . ΛP .S x 6∈ Dom(S)

C ` val x : v; B . ΛP .x : v ,S (H-3)

C ` S . ΛP .M
C[X : M] ` B . ΛQ .S P ∩ FV(C) = ∅
Q ∩ (P ∪ FV(M)) = ∅ X 6∈ Dom(S)
C ` module X : S;B . ΛP ∪Q .X : M,S (H-4)

C ` εB . Λ∅.εS (H-5)
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Signature Expressions C ` S . L

C ` B . L
C ` sig B end . L (H-6)

C ` S . ΛP .M
P ∩ FV(C) = ∅ P = {ακ0

0 , . . . , α
κn−1

n−1 }
C[X : M] ` S′ . ΛQ .M′

Q ′ ∩ (P ∪ FV(M) ∪ FV(ΛQ .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}
C ` funsig(X:S)S′ . ΛQ ′.∀P .M→ [Q ′/Q ] (M′) (H-7)

(H-7) The range signature S′ denotes a semantic signature ΛQ .M′. We
want to capture the fact that types specified in S′ may have a func-
tional dependency on the type parameters in P . We cater for these
dependencies by applying the realisation [Q ′/Q ] to M′. This effec-
tively parameterises each occurrence in M′ of a variable β ∈ Q by
the variables P . The kinds of the variables in Q must be adjusted to
reflect this, yielding the set Q ′. Having modified variables in Q to take
account of their implicit dependencies on P , we can move the parame-
terisation over Q from the range, i.e. ΛQ .M′, to a position outside the
entire functor yielding the signature ΛQ ′.∀P .M→ [Q ′/Q ] (M′). This
is how we systematically treat type parameters arising from the range
of a functor signature. Note that, even though these parameters are
bound by an “outermost” Λ, they still manage to encode the depen-
dency of the functor’s result types on the functor’s type arguments.

Type Occurrences C ` do . d

t ∈ Dom(C) C(t) = τ

C ` t . η̂(τ ) (H-8)

C ` m : ∃P .S t ∈ Dom(S) S(t) = τ P ∩ FV(τ ) = ∅
C ` m.t . η̂(τ ) (H-9)

(H-9) The side condition P ∩ FV(τ ) = ∅ ensures that existential variables
in P do not escape their scope. Note that m must be a structure, not
a functor.
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Classification Rules

The classification rules for structure bodies are the same as their first-order
counterparts (cf. Section 4.2.1): Rules (H-12) and (H-13) merely generalise
the first-order Rules (T-15) and (T-16) by catering for module definitions
instead of structure definitions, but are otherwise unchanged.

The classification rules for module expressions deserve the most com-
ment. Rules (H-15) and (H-16) subsume the role of the first-order Rules
(T-19), (E-9) and (E-10), but also cater for generalised module projections.
Rules (H-18) and (H-19) are new and formalise the applicative semantics
of Section 5.2.2 for anonymous functors and module applications. The re-
maining rules for encapsulating a structure body, curtailing a module by a
signature and abstracting a module by a signature are unchanged from the
first-order rules of Section 4.2.1, except that the last two now apply to both
structures and functors.

Finally, the original classification rule for projecting a value component
from a path (Rule (E-12)) has been generalised to support the projection of
a value component from an arbitrary module expression (Rule (H-23)).

This static semantics, as it stands, does not yield a type checking algo-
rithm. For instance, in Rule (H-19), classifying a functor application, we
have to “guess” a realisation ϕ such that M′′ � ϕ (M′) and Dom(ϕ) = Q .
In Section 5.6, we define an algorithm that finds a suitable matching re-
alisation provided it exists. We can then replace the problematic premise
M′′ � ϕ (M′) with an appeal to this algorithm. Similar comments apply to
the rules for module curtailment, Rule H-20, and module abstraction, Rule
H-21. All the other rules, by contrast, are syntax directed and can be used
directly to define a type checking algorithm.

Structure Bodies C ` b : X

C ` d . d P ∩ FV(d ) = ∅
C[t = d ] ` b : ∃P .S t 6∈ Dom(S)
C ` type t = d; b : ∃P .t = d ,S (H-10)

C ` e : v P ∩ FV(v) = ∅
C[x : v ] ` b : ∃P .S x 6∈ Dom(S)

C ` val x = e; b : ∃P .x : v ,S (H-11)
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C ` m : ∃P .M P ∩ FV(C) = ∅
C[X : M] ` b : ∃P ′.S
P ′ ∩ (P ∪ FV(M)) = ∅ X 6∈ Dom(S)

C ` module X = m; b : ∃P ∪ P ′.X : M,S (H-12)

C ` m : ∃P .M C[X : M] ` b : ∃P ′.S
P ∩ FV(C) = ∅ P ′ ∩ P = ∅
C ` local X = m in b : ∃P ∪ P ′.S (H-13)

C ` εb : ∃∅.εS (H-14)

Module Expressions C ` m : X

X ∈ Dom(C) C(X) = M
C ` X : ∃∅.M (H-15)

C ` m : ∃P .S X ∈ Dom(S) S(X) = M
C ` m.X : ∃P .M (H-16)

(H-16) As we have generalised the dot notation to apply to arbitrary mod-
ule expressions, which may have existentially quantified types, we need
to ensure that the projection of a sub-module X from an existential
structure ∃P .S does not allow variables in P to escape their scope. Ex-
istentially quantifying over P in the result ∃P .M is sufficient. More-
over, this allows us to access deeply nested type or value components
even though the intermediate sub-modules might contain existentially
quantified variables. Note that the side-conditions of Rules (H-9) and
(H-23) will prevent these variables from escaping their scope via pro-
jected type and value components. Also note that m must be a struc-
ture, not a functor.

C ` b : X
C ` struct b end : X (H-17)
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C ` S . ΛP .M
P ∩ FV(C) = ∅ P = {ακ0

0 , . . . , α
κn−1

n−1 }
C[X : M] ` m : ∃Q .M′

Q ′ ∩ (P ∪ FV(M) ∪ FV(∃Q .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}
C ` functor(X : S)m : ∃Q ′.∀P .M→ [Q ′/Q ] (M′) (H-18)

(H-18) Note the applicative semantics of functors. Classifying the func-
tor body m introduces existential types Q . In general, because m is
classified in the extended context C[X : M], variables in Q may have
hidden functional dependencies on the type parameters P of the for-
mal argument X. We make these dependencies explicit by applying
the realisation [Q ′/Q ] to M′. This effectively skolemises each occur-
rence in M′ of a variable β ∈ Q by the variables P . The kinds of the
variables in Q must be adjusted to reflect this, yielding the set Q ′.
Having “raised” variables in Q by their implicit parameters, we can
move the existential quantification over the functor range, i.e. ∃Q .M′,
to a position outside the entire functor yielding the existential module
∃Q ′.∀P .M→ [Q ′/Q ] (M′). This is how we systematically avoid the
need to existentially quantify the range of a semantic functor.

C ` m : ∃P .∀Q .M′ →M
C ` m′ : ∃P ′.M′′

P ∩ (P ′ ∪ FV(M′′)) = ∅
P ′ ∩ FV(∀Q .M′ →M) = ∅
M′′ � ϕ (M′)
Dom(ϕ) = Q

C ` m m′ : ∃P ∪ P ′.ϕ (M) (H-19)

(H-19) Note that, because the functor m is an anonymous module, its type
may be existentially quantified (for instance, m might be an abstracted
functor). However, because functors are applicative, the range of the
functor will simply be a semantic module M, not an existentially
quantified type as in the first-order semantics. To classify the ap-
plication, we first eliminate the existential quantifiers in both the type
of functor and the type of the argument, yielding the semantic functor
∀Q .M′ →M, and semantic module M′′. We now choose a realisation
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ϕ of the functor’s type parameters Q such that M′′ enriches the re-
alised domain ϕ (M′). We then propagate this realisation through to
the range M of the functor yielding the result type ϕ (M). (Another
way of saying the last two sentences is that we choose the functor in-
stance ∀Q .M′ →M >M′′ → ϕ (M) appropriate to the domainM′′.)
However, because the type ϕ (M) may mention the eliminated exis-
tential variables P and P ′, we need to ensure that they cannot escape
their scope. So we re-introduce an existential quantifier that hides
both P and P ′ in the final type of the application ∃P ∪ P ′.ϕ (M).

C ` m : ∃P .M
C ` S . ΛP ′.M′ P ∩ FV(ΛP ′.M′) = ∅
M � ϕ (M′) Dom(ϕ) = P ′

C ` m � S : ∃P .ϕ (M′) (H-20)

(H-20) Applying the realisation ϕ to M′ in the result ∃P .ϕ (M′) ensures
that the actual realisations of type components merely specified in
S are retained. In particular, if m is a functor, then the curtailment
preserves the actual argument-result dependencies of m that are merely
specified, but not defined, in S.

C ` m : ∃P .M
C ` S . ΛP ′.M′ P ∩ FV(ΛP ′.M′) = ∅
M � ϕ (M′) Dom(ϕ) = P ′

C ` m \ S : ∃P ′.M′ (H-21)

(H-21) As in Rule H-20 we require that there be some realisation ϕ such
that M matches ΛP ′.M′. However, the type of m \ S is ∃P ′.M′, not
∃P .ϕ (M′). As a result, types merely specified in S are made abstract.
In particular, if m is a functor, then the abstraction makes the actual
argument-result dependencies of m that are merely specified, but not
defined, in S abstract. Note that this is the only rule that introduces
existentially quantified variables.

Value Occurrences C ` vo : v

x ∈ Dom(C) C(x) = v
C ` x : v (H-22)

C ` m : ∃P .S x ∈ Dom(S) S(x) = v P ∩ FV(v) = ∅
C ` m.x : v (H-23)
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(H-23) The side condition P ∩ FV(v) = ∅ ensures that existential variables
in P do not escape their scope. Note that m must be a structure, not
a functor.

5.6 An Algorithm for Matching

The rules defining the static semantics of Higher-Order Modules almost cap-
ture a type checking algorithm that, given a context and phrase, calculates
the semantic object (if any) that the phrase denotes or is classified by. How-
ever, Rules H-19, H-20 and H-21 present a problem. Each of the rules carries
premises that require the choice of an appropriate realisation such that one
module enriches the realisation of another. We have not yet shown how such
a realisation may be found. For (first-order) Modules it is easy to see that
we can factor the process of matching a structure S to a signature ΛP .S ′
into two steps: first, we find an appropriate realisation ϕ, then we check that
S � ϕ (S ′). Unfortunately, in the higher-order case, these two steps can no
longer be carried out separately. In Rule � -2, defining when one functor
enriches another, we need to guess a realisation such that the domain of the
less general functor enriches the realisation of the more general functor’s
domain. The notions of enrichment and matching are now intertwined, and
it should come as no surprise that the algorithm for matching must simul-
taneously construct a realisation while verifying enrichment. Note that the
realisations we need to construct are essentially higher-order substitutions,
since semantic types define the terms of a simply typed λ-calculus (cf. Re-
mark 5.4.1). Although, in general, higher-order unification of typed λ-terms
is undecidable and non-unitary (i.e. there may be more than one solution
to a given problem) [Hue75], we shall find that the matching problems en-
countered during type checking belong to a restricted class of problem for
which matching is both decidable and unitary. Indeed, we will only need
to construct realisations for type variables that occur in types that take the
restricted form of higher-order patterns. The class of higher-order patterns
was originally identified and studied by Miller [Mil91].

Definition 5.25 (Signature Matching Algorithm). Figure 5.19 defines
the rules of an algorithm, ∀P .∀R ` O � O′ ↓ ϕ, that, given as inputs two
sets of type variables P and R, and a pair of semantic objects O and O′, be
they structures, functors or modules, computes a realisation ϕ as its output,
provided it succeeds.

The intention is that, provided certain conditions on its inputs hold, we
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Structure Matching ∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � εS ↓ ∅ (M -1)

t ∈ Dom(S) S(t) = τ ∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � t = τ ,S ′ ↓ ϕ (M -2)

α 6∈ P ∪ R
t ∈ Dom(S)
S(t), (α β0 · · · βn−1) ∈ Typκ

FV(S(t)) ∩ R ⊆ {β i | i ∈ [n]}
∀P .∀R ` S � [Λβ0 · · ·βn−1.S(t)/α] (S ′) ↓ ϕ

∀P .∀R ` S � t = α β0 · · · βn−1,S ′ ↓ ([Λβ0 · · ·βn−1.S(t)/α] | ϕ) (M -3)

x ∈ Dom(S) S(x) � v ∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � x : v ,S ′ ↓ ϕ (M -4)

X ∈ Dom(S) ∀P .∀R ` S(X) �M ↓ ϕ ∀P .∀R ` S � ϕ (S ′) ↓ ϕ′

∀P .∀R ` S � X : M,S ′ ↓ (ϕ | ϕ′)
(M -5)

Functor Matching ∀P .∀R ` F � F ′ ↓ ϕ

N ∩ (P ∪ R ∪M ) = ∅
M ∩ (P ∪ R) = ∅
∀P ∪ R ∪M .∀∅ ` MM �MN ↓ ϕ′

∀P .∀R ∪M ` ϕ′ (M′
N ) �M′

M ↓ ϕ

∀P .∀R ` ∀N .MN →M′
N � ∀M .MM →M′

M ↓ ϕ (M -6)

Module Matching ∀P .∀R ` M �M′ ↓ ϕ

∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � S ′ ↓ ϕ (M -7)
∀P .∀R ` F � F ′ ↓ ϕ

∀P .∀R ` F � F ′ ↓ ϕ (M -8)

Figure 5.19: An algorithm for matching. Subject to certain constraints, we
have ∀P .∀R ` O � O′ ↓ ϕ if, and only if, O � ϕ (O′).
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will have:

O � ϕ
(
O′) if, and only if, ∀P .∀R ` O � O′ ↓ ϕ.

The algorithm traverses the structure of O′ to incrementally compute
a matching realisation while verifying enrichment. Informally, Rule (M -2)
verifies that S defines an equivalent type component t, where t has a specific
definition in S ′. Rule (M -3), on the other hand, verifies that S realises the
type component t of S ′, where t is merely specified, but not defined, in S ′.
More precisely, t is specified in way that permits it to have some functional
dependency α on the fixed parameters β0, . . . , βn−1. The type α β0 · · · βn−1

corresponds to a higher-order pattern in the sense of Miller [Mil91]: α is a
variable that must occur in the domain of the computed realisation; its
arguments {β0, . . . , βn−1} ⊆ R are fixed parameters on which the definition
of t may depend. The preconditions on the inputs to the algorithm will
ensure that the side condition α 6∈ P ∪ R uniquely determines whether Rule
(M -2) or Rule (M -3) applies. In Rule M -6, due to the contravariance of
functor enrichment, the computation of the realisation ϕ is delayed as the
roles of left and right object are swapped in order to construct a realisation
ϕ′ with domain N such that the generic domain of the lesser functor matches
the realised domain of the richer functor.

The rules define an algorithm because, on any input satisfying the pre-
conditions, there is a most one instance of a rule that applies (the rules are
syntax directed). Further details of the algorithm’s operation and the roles
of the input sets P and R will be explained in Section 5.6.1.

Theorem 5.26 (Termination). The algorithm of Definition 5.25 termi-
nates.

Proof. We define a positive measure on the size of the inputs to the algo-
rithm and then show that in each rule, the size of the inputs to each premise
is strictly smaller than the size of the inputs to its conclusion. In particular,
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we define

m(εS) def= 0

m(d = τ ,S) def= 1 +m(S)

m(x : v ,S) def= 1 +m(S)

m(X : M,S) def= 1 +m(M) +m(S)

m(∀P .M→M′) def= 1 +m(M) +m(M′)

m(M) def=
{

1 +m(S) if M≡ S
1 +m(F) if M≡ F

m(P ,R,O,O′) def= m(O) +m(O′).

Observing that m(ϕ (O)) = m(O), it is easy to see that each invocation of
the algorithm on inputs P, R, O, and O′ of size m(P ,R,O,O′) decreases
the size of this measure in recursive calls.

5.6.1 Ground and Solvable Modules

We now define conditions on the inputs to the algorithm for which it is
well-behaved. In Section 5.7 we will show that these conditions are always
satisfied whenever we need to invoke the algorithm. Intuitively, we will say
a matching problem ∀P .∀R ` O � O′ ↓ is well-posed, if O is ground and
O′, the object to which the desired realisation will be applied, is solvable.
More precisely, we define:

Definition 5.27 (Ground and Solvable Modules). The family of pred-
icates
∀ ` Gnd and ∀ .∃ .∀ ` Slv on structures, functors and modules is
defined by the rules in Figure 5.20 and 5.21. The predicates characterise the
classes of ground and solvable objects (respectively) for which Algorithm
5.25 is well-behaved.

Intuitively, if an object O is ground with respect to a set of variables
P , written ∀P ` O Gnd, then FV(O) ⊆ P . Moreover, if O is a functor
∀Q .M → M′ then, because of contravariance (and thus the swapping of
roles in Rule M -6), we also require that M is solvable for the variables in
Q , and (swapping back again) that M′ is ground with respect to P ∪ Q
(note we must cater for the possible occurrence of the parameters Q in M′).
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Ground Structures ∀P ` S Gnd

∀t ∈ Dom(S). FV(S(t)) ⊆ P
∀x ∈ Dom(S). FV(S(x)) ⊆ P
∀X ∈ Dom(S). ∀P ` S(X) Gnd

∀P ` S Gnd (G-1)

Ground Functors ∀P ` F Gnd

∀P .∃Q .∀∅ ` MQ Slv ∀P ∪Q ` M′
Q Gnd

∀P ` ∀Q .MQ →M′
Q Gnd (G-2)

Ground Modules ∀P ` M Gnd

∀P ` S Gnd
∀P ` S Gnd (G-3)

∀P ` F Gnd
∀P ` F Gnd (G-4)

Figure 5.20: The definition of ground and solvable objects (the definition of
solvable objects is continued in Figure 5.21). We will show that provided
∀P ∪ R ` O Gnd and ∀P .∃Q .∀R ` O′ Slv, then, for any realisation ϕ with
Dom(ϕ) = Q and Reg(ϕ) ∩ R = ∅, we have ∀P .∀R ` O � O′ ↓ ϕ if, and
only if, O � ϕ (O′).
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Solvable Structures ∀P .∃Q .∀R ` S Slv

P ∩ R = ∅
∀P .∃∅.∀R ` εS Slv (S-1)

FV(τ ) ⊆ P ∪ R ∀P .∃Q .∀R ` S Slv
∀P .∃Q .∀R ` t = τ ,S Slv (S-2)

α 6∈ P
∀i ∈ [n].β i ∈ R
∀i 6= j ∈ [n].β i 6= β j

∀P ∪ {α}.∃Q .∀R ` S Slv

∀P .∃{α} ∪Q .∀R ` t = α β0 · · · βn−1,S Slv (S-3)

FV(v) ⊆ P ∪ R ∀P .∃Q .∀R ` S Slv
∀P .∃Q .∀R ` x : v ,S Slv (S-4)

∀P .∃Q .∀R ` M Slv ∀P ∪Q .∃Q ′.∀R ` S Slv
∀P .∃Q ∪Q ′.∀R ` X : M,S Slv (S-5)

Solvable Functors ∀P .∃Q .∀R ` F Slv

∀P ∪ R.∃N .∀∅ ` M Slv ∀P .∃Q .∀R ∪N ` M ′ Slv
∀P .∃Q .∀R ` ∀N .M → M ′ Slv (S-6)

Solvable Modules ∀P .∃Q .∀R ` M Slv

∀P .∃Q .∀R ` S Slv
∀P .∃Q .∀R ` S Slv (S-7)

∀P .∃Q .∀R ` F Slv
∀P .∃Q .∀R ` F Slv (S-8)

Figure 5.21: The definition of solvable objects (continued from Figure 5.20).
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Solvability is captured by the predicate ∀P .∃Q .∀R ` O Slv. Suppose
we are looking for a realisation ϕ as a solution to a matching problem.
Intuitively, the prefix ∀P .∃Q .∀R declares the role of any free type variables
in O. The set P contains variables which may occur free in Reg(ϕ). Q is
the set of variables we are solving for, i.e. we require Dom(ϕ) = Q . The set
R lists the parameters which must not occur free in Reg(ϕ), i.e. it records
the set of parameters introduced by any enclosing semantic functor of O,
and thus the parameters that may appear as arguments to variables in Q .
However, ifO is a functor ∀N .M→M′ then, because of contravariance (and
thus the swapping of roles in Rule M -6), we require that M is solvable for
the variables in N (with respect to free variables P ∪R and no parameters),
and, swapping back again, M′ is solvable for Q with respect to P , and the
parameters R ∪ N . The set N is added to R as we enter the range of the
functor: since we are now in the scope of N , variables in Q should be allowed
to take on these additional parameters.

We can characterise the solvability of O for a set a variables Q , with
respect to free variables P and parameters R, informally as follows:

• The sets P , Q , and R are distinct.

• FV(O) ⊆ P ∪Q ∪ R.

• FV(O) \ (P ∪ R) = Q .

• If O is a functor ∀N .M → M′ then its domain M must be solvable
for the variables N , with respect to free variables P ∪ R and no pa-
rameters. On the one hand, the parameters R of Q are considered as
free variables for N , because the variables in N are declared within
the scope of R. On the other hand, because no variables have yet been
declared in the scope of N , the set of parameters for N is empty.

• Each variable α ∈ Q first occurs positively within O, where α first
occurs positively in O if, and only if:

either O is a structure S, and

either α first occurs in a type binding t = α β0 · · · βn−1 within
S, where β0, . . . , βn−1 are distinct parameters drawn from
R.

or α first occurs positively within a sub-module of S;

or O is a functor ∀N .M → M′, in which case α may not occur in
the domain M, and must first occur positively in the range M′,
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where it may be applied to any of the additional parameters in
N as well as R.

Our algorithm ∀P .∀R ` O � O′ ↓ operates by traversing O′ to find
a first positive occurrence of a variable not occurring in P ∪R, matching it
against its corresponding binding in O to determine its realisation, applying
the realisation to the remaining problem, and proceeding until the traversal
of O′ and the construction of the realisation is complete. Along the way,
it also checks that the enrichment relation holds. The two conditions, that
the region of the realisation may not contain parameters (from R) and that
each variable in the domain of the realisation is applied to a list of distinct
parameters, ensure that the realisation is unique, provided it exists.

Properties of Ground and Solvable Objects

It is easy to verify the following properties of ground and solvable objects.
We shall make use of them in subsequent proofs.

Lemma 5.28 (Closure).

• ∀P ` O Gnd ⊃ FV(O) ⊆ P.

• ∀P .∃Q .∀R ` O Slv ⊃ P ∩Q = ∅ ∧Q ∩ R = ∅ ∧ P ∩ R = ∅.

• ∀P .∃Q .∀R ` O Slv ⊃ FV(O) ⊆ P ∪Q ∪ R.

• ∀P .∃Q .∀R ` O Slv ⊃ FV(O) \ (P ∪ R) = Q.

Lemma 5.29 (Strengthening).

• If ∀P ∪Dom(ϕ) ` O Gnd, Dom(ϕ) ∩ P = ∅ and Reg(ϕ) ⊆ P then
∀P ` ϕ (O) Gnd.

• If ∀P ∪Dom(ϕ).∃Q .∀R ` O Slv, Dom(ϕ) ∩ P = ∅ and Reg(ϕ) ⊆
P ∪ R then ∀P .∃Q .∀R ` ϕ (O) Slv.

• In particular, if ∀P ∪ {ακ}.∃Q .∀R ` O Slv, ακ 6∈ P and FV(τκ) ⊆
P ∪ R then ∀P .∃Q .∀R ` [τκ/ακ] (O) Slv.

Lemma 5.30 (Weakening).

• ∀P ` O Gnd ⊃ ∀P ∪ P ′ ` O Gnd.

• ∀P .∃Q .∀R ` O Slv ⊃ P ′ ∩ (Q ∪ R) = ∅ ⊃ ∀P ∪ P ′.∃Q .∀R ` O Slv.

Lemma 5.31 (Grounding).

• ∀P .∃Q .∀R ` O Slv ⊃ ∀P ∪Q ∪ R ` O Gnd.
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5.6.2 Soundness

We can now verify that our algorithm only computes correct realisations:

Theorem 5.32 (Soundness). If ∀P .∀R ` O � O′ ↓ ϕ then O � ϕ (O′),
provided ∀P ∪ R ` O Gnd and ∀P .∃Dom(ϕ).∀R ` O′ Slv.

(Readers not interested in the proof should skip ahead to Section 5.6.3
on page 205.)

Proof (Soundness). We prove the stronger theorem:

∀P .∀R ` O � O′ ↓ ϕ ⊃
∀P ∪ R ` O Gnd ⊃
∀Q . ∀P .∃Q .∀R ` O′ Slv ⊃ Dom(ϕ) = Q

∧ Reg(ϕ) ⊆ P
∧ O � ϕ (O′)

 .

by induction on the rules in Figure 5.19.

M-1 Easy.

M-2 By induction we may assume:

t ∈ Dom(S), (1)

S(t) = τ , (2)

∀P ∪ R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` S ′ Slv ⊃ Dom(ϕ) = Q

∧ Reg(ϕ) ⊆ P
∧ S � ϕ (S ′)

 (3)

We need to show:

∀P ∪ R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` t = τ ,S ′ Slv ⊃ Dom(ϕ) = Q

∧ Reg(ϕ) ⊆ P
∧ S � ϕ (t = τ ,S ′)


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Assume
∀P ∪ R ` S Gnd. (4)

Consider an arbitrary Q such that:

∀P .∃Q .∀R ` t = τ ,S ′ Slv. (5)

Inverting (4), by (1) we have, in particular FV(S(t)) ⊆ P ∪ R. Hence,
by (2):

FV(τ ) ⊆ P ∪ R. (6)

Lemma 5.28 (Closure) on (5) ensures Q ∩ (P ∪ R) = ∅, from which

Q ∩ (FV(τ )) = ∅ (7)

follows by (6). Hence (5) cannot have been derived by Rule (S-3), and
must in fact result from an application of Rule (S-2). Inverting (5)
we therefore have both

FV(τ ) ⊆ P ∪ R (8)

and
∀P .∃Q .∀R ` S ′ Slv. (9)

We can now apply induction hypothesis (3) to (4), Q, and (9) to
obtain:

Dom(ϕ) = Q , (10)

Reg(ϕ) ⊆ P (11)

and
S � ϕ

(
S ′

)
. (12)

Clearly, by (10) we can re-express (7) as Dom(ϕ) ∩ FV(τ ) = ∅. Con-
sequently:

ϕ (τ ) = τ . (13)

With (2) and (12), we can verify the premises of Rule ( � -1) to derive:

S � t = τ , ϕ
(
S ′

)
, (14)

which we may re-express by (13) as

S � ϕ
(
t = τ ,S ′

)
. (15)

Combining (10), (11) and (15) gives the desired result.
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M-3 By induction we may assume:

α 6∈ P ∪ R, (1)

t ∈ Dom(S), (2)

S(t), (α β0 · · · βn−1) ∈ Typκ, (3)

FV(S(t)) ∩ R ⊆ {β i | i ∈ [n]}, (4)

∀P ∪ R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` [Λβ0 · · ·βn−1.S(t)/α] (S ′) Slv ⊃ Dom(ϕ) = Q

∧ Reg(ϕ) ⊆ P
∧ S � ϕ

(
[Λβ0 · · ·βn−1.S(t)/α] (S ′)

)
 (5)

We need to show:

∀P ∪ R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` t = α β0 · · · βn−1,S ′ Slv ⊃ Dom ([Λβ0 · · ·βn−1.S(t)/α] | ϕ) = Q

∧ Reg ([Λβ0 · · ·βn−1.S(t)/α] | ϕ) ⊆ P
∧ S � ([Λβ0 · · ·βn−1.S(t)/α] | ϕ)

(
t = α β0 · · · βn−1,S ′

)


Assume
∀P ∪ R ` S Gnd. (6)

Consider an arbitrary Q such that

∀P .∃Q .∀R ` t = α β0 · · · βn−1,S ′ Slv. (7)

By (1) we know that FV(α β0 · · · βn−1) 6⊆ P∪R hence (7) cannot have
been derived by Rule (S-2) and must be the result of an application of
Rule (S-3). Inverting (7) we therefore have:

α 6∈ P , (8)

∀i ∈ [n].β i ∈ R, (9)

∀i 6= j ∈ [n].β i 6= β j , (10)
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∀P ∪ {α}.∃Q ′.∀R ` S ′ Slv, (11)

for some Q ′ with Q = {α} ∪Q ′.

Inverting (6), by (2) we have FV(S(t)) ⊆ P ∪ R, which together with
(4) ensures:

FV(Λβ0 · · ·βn−1.S(t)) ⊆ P . (12)

Lemma 5.29 (Strengthening) on (11) with [Λβ0 · · ·βn−1.S(t)/α] using
(8) and (12) produces:

∀P .∃Q ′.∀R ` [Λβ0 · · ·βn−1.S(t)/α]
(
S ′

)
Slv. (13)

We can now apply induction hypothesis (5) to (6), Q ′ and (13) to
obtain:

Dom(ϕ) = Q ′, (14)

Reg(ϕ) ⊆ P (15)

and
S � ϕ

(
[Λβ0 · · ·βn−1.S(t)/α]

(
S ′

))
. (16)

It is straightforward to show:

Dom([Λβ0 · · ·βn−1.S(t)/α] | ϕ) = {α} ∪Dom(ϕ) = Q . (17)

Moreover, (12) and (15) ensure that

Reg([Λβ0 · · ·βn−1.S(t)/α] | ϕ) ⊆ P . (18)

Lemma 5.28 (Closure) on (11) yields:

Q ′ ∩ ((P ∪ {α}) ∪ R) = ∅. (19)

Together with (19), (14) and (9) ensure that

α 6∈ Dom(ϕ), (20)

∀i ∈ [n].βi 6∈ Dom([Λβ0 · · ·βn−1.S(t)/α] | ϕ). (21)

By applying the realisation using facts (20) and (21) we can verify:

S(t) = ([Λβ0 · · ·βn−1.S(t)/α] | ϕ)
(
α β0 · · · βn−1

)
. (22)
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Moreover, from (19), (12) and (14) we can verify that
Dom(ϕ) ∩ Inv([Λβ0 · · ·βn−1.S(t)/α]) = ∅. Hence

([Λβ0 · · ·βn−1.S(t)/α] | ϕ)
(
S ′

)
= ϕ

(
[Λβ0 · · ·βn−1.S(t)/α]

(
S ′

))
,

and thus, by equation (22):(
t = S(t), ϕ

(
[Λβ0 · · ·βn−1.S(t)/α]

(
S ′

)))
= ([Λβ0 · · ·βn−1.S(t)/α] | ϕ)

(
t = α β0 · · · βn−1,S ′

)
. (23)

With (2), (22) and (16), we can verify the premises of Rule ( � -1)
that, if followed by equation (23), derives:

S � ([Λβ0 · · ·βn−1.S(t)/α] | ϕ)
(
t = α β0 · · · βn−1,S ′

)
. (24)

Combining (17), (18) and (24) gives the desired result.

M-4 Similar to, but easier than, case M-2 .

M-5 By induction we may assume:

X ∈ Dom(S), (1)

∀P ∪ R ` S(X) Gnd ⊃
∀Q . ∀P .∃Q .∀R ` M Slv ⊃ Dom(ϕ1) = Q

∧ Reg(ϕ1) ⊆ P
∧ S(X) � ϕ1 (M)

 (2)

∀P ∪ R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` ϕ1 (S ′) Slv ⊃ Dom(ϕ2) = Q

∧ Reg(ϕ2) ⊆ P
∧ S � ϕ2 (ϕ1 (S ′))

 (3)

We need to show:

∀P ∪ R ` S Gnd ⊃
∀Q . ∀P .∃Q .∀R ` X : M,S ′ Slv ⊃ Dom (ϕ1 | ϕ2) = Q

∧ Reg (ϕ1 | ϕ2) ⊆ P
∧ S � (ϕ1 | ϕ2) (X : M,S ′)


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Assume
∀P ∪ R ` S Gnd. (4)

Consider an arbitrary Q such that

∀P .∃Q .∀R ` X : M,S ′ Slv. (5)

Inverting (5) we must have both

∀P .∃Q1.∀R ` M Slv (6)

and
∀P ∪Q1.∃Q2.∀R ` S ′ Slv. (7)

for some Q1,Q2 with Q = Q1 ∪Q2.

Inverting (4) together with (1) yields

∀P ∪ R ` S(X) Gnd. (8)

Applying induction hypothesis (2) to (8), Q1, and (6) we obtain:

Dom(ϕ1) = Q1, (9)

Reg(ϕ1) ⊆ P , (10)

S(X) � ϕ1 (M). (11)

Lemma 5.28 (Closure) on (6) ensures

Q1 ∩ P = ∅ (12)

and
FV(M) ⊆ P ∪Q1 ∪ R. (13)

Lemma 5.29 (Strengthening) on (7) with ϕ1 using (9), (12) and (10)
yields:

∀P .∃Q2.∀R ` ϕ1

(
S ′

)
Slv. (14)

We can now apply induction hypothesis (3) to (4), Q2, and (14) to
obtain:

Dom(ϕ2) = Q2, (15)
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Reg(ϕ2) ⊆ P , (16)

S � ϕ2

(
ϕ1

(
S ′

))
. (17)

Lemma 5.28 (Closure) on (7) ensures

Q2 ∩ (P ∪Q1 ∪ R) = ∅. (18)

It is easy to show
Dom(ϕ1 | ϕ2) = Q , (19)

Reg(ϕ1 | ϕ2) ⊆ P . (20)

Now (ϕ1 | ϕ2) (M) = ϕ1 (M) follows from (13), (15) and (18). More-
over, we can easily verify that Dom(ϕ2) ∩ Inv(ϕ1) = ∅ using (9), (10)
and (18). Hence (ϕ1 | ϕ2) (S ′) = ϕ2 (ϕ1 (S ′)) and we have:

(ϕ1 | ϕ2)
(
X : M,S ′

)
= X : ϕ1 (M), ϕ2

(
ϕ1

(
S ′

))
. (21)

With (1), (11), and (17) we can verify the premises of Rule ( � -1)
that, if followed by equation (21), derives:

S � (ϕ1 | ϕ2)
(
X : M,S ′

)
. (22)

Combining (19), (20) and (22) gives the desired result.

M-6 By induction we may assume:

N ∩ (P ∪ R ∪M ) = ∅, (1)

M ∩ (P ∪ R) = ∅, (2)

∀P ∪ R ∪M ∪ ∅ ` MM Gnd ⊃
∀Q . ∀P ∪ R ∪M .∃Q .∀∅ ` MN Slv ⊃ Dom(ϕ′) = Q

∧ Reg(ϕ′) ⊆ P ∪ R ∪M
∧MM � ϕ′ (MN )

 (3)
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∀P ∪ R ∪M ` ϕ′ (M′
N ) Gnd ⊃

∀Q . ∀P .∃Q .∀R ∪M ` M′
M Slv ⊃ Dom(ϕ) = Q

∧ Reg(ϕ) ⊆ P
∧ ϕ′ (M′

N ) � ϕ (M′
M )

 (4)

We need to show:

∀P ∪ R ` ∀N .MN →M′
N Gnd ⊃

∀Q . ∀P .∃Q .∀R ` ∀M .MM →M′
M Slv ⊃ Dom(ϕ) = Q

∧ Reg(ϕ) ⊆ P
∧ ∀N .MN →M′

N � ϕ (∀M .MM →M′
M )


Assume

∀P ∪ R ` ∀N .MN →M′
N Gnd. (5)

Consider an arbitrary Q such that

∀P .∃Q .∀R ` ∀M .MM →M′
M Slv. (6)

Inverting (6) we must have both

∀P ∪ R.∃M .∀∅ ` MM Slv (7)

and
∀P .∃Q .∀R ∪M ` M′

M Slv. (8)

Inverting (5) we must have both

∀P ∪ R.∃N .∀∅ ` MN Slv (9)

and
∀P ∪ R ∪N ` M′

N Gnd. (10)

Applying Lemma 5.31 (Grounding) to (7) we obtain:

∀P ∪ R ∪M ` MM Gnd. (11)

From (1), in particular, we have M ∩N = ∅, so by Lemma 5.30
(Weakening) on (9) and M we also have:

∀P ∪ R ∪M .∃N .∀∅ ` MN Slv. (12)
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Induction hypothesis (3) on (11), N , and (12) produces:

Dom(ϕ′) = N , (13)

Reg(ϕ′) ⊆ P ∪ R ∪M , (14)

MM � ϕ′ (MN ). (15)

By Lemma 5.30 (Weakening) on (10) and M we also have:

∀P ∪ R ∪N ∪M ` M′
N Gnd. (16)

Furthermore, Lemma 5.29 (Strengthening) on (16) and ϕ′ using (1),
(13) and (14) establishes:

∀P ∪ R ∪M ` ϕ′
(
M′

N

)
Gnd. (17)

We can now apply induction hypothesis (4) to (17), Q, and (8) to
obtain:

Dom(ϕ) = Q , (18)

Reg(ϕ) ⊆ P , (19)

ϕ′
(
M′

N

)
� ϕ

(
M′

M

)
. (20)

It remains to show:

∀N .MN →M′
N � ϕ

(
∀M .MM →M′

M

)
.

Two applications of Lemma 5.28 (Closure) on (7) and (8) ensure that
M ∩ (P ∪ R) = ∅ and M ∩Q = ∅. Then, from (19) and (18), it is
easy to see that M ∩ Inv(ϕ) = ∅. Hence:

ϕ
(
∀M .MM →M′

M

)
= ∀M .ϕ (MM ) → ϕ

(
M′

M

)
. (21)

Two applications of Lemma 5.28 (Closure) on (7) and (8) estab-
lish that FV(MM ) ⊆ P ∪ R ∪M and Q ∩ (P ∪ R ∪M ) = ∅. Hence
Dom(ϕ) ∩ FV(MM ) = ∅ and ϕ (MM ) = MM letting us re-express
(15) as:

ϕ (MM ) � ϕ′ (MN ). (22)
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Two applications of Lemma 5.28 (Closure) on (5) and (7) allows us
to verify that

M ∩ FV(∀N .MN →M′
N ) = ∅. (23)

Applying Rule ( � -2) to (22), (20), (13) and (23) derives:

∀N .MN →M′
N � ∀M .ϕ (MM ) → ϕ

(
M′

M

)
.

which we may re-express by (21) as:

∀N .MN →M′
N � ϕ

(
∀M .MM →M′

M

)
. (24)

Combining (18), (19) and (24) gives the desired result.

M-7 Trivial induction.

M-8 Trivial induction.

5.6.3 Completeness

We can also show that our algorithm is complete, i.e. if a matching problem
is well-posed and has a solution, then the algorithm computes it:

Theorem 5.33 (Completeness). If O � ϕ (O′) then, provided ∀P ∪ R `
O Gnd and ∀P .∃Dom(ϕ).∀R ` O′ Slv and Reg(ϕ) ∩ R = ∅, our algorithm
succeeds with ∀P .∀R ` O � O′ ↓ ϕ.

(Readers not interested in the proof of completeness should skip ahead
to Section 5.7 on page 218.)

In order to prove the completeness of the matching algorithm we will
need a stronger induction principle than the one provided by the definition
of � . Fortunately, a slightly different definition of � does the trick:

Definition 5.34 (Strong Enrichment). The family of relations �′ on
structures, functors and modules is defined by the rules in Figure 5.22.

The alternative family of relations �′ gives us an appropriate induc-
tion principle for proving completeness. The validity of performing induction
on the rules of �′ instead of � is justified by:

Lemma 5.35 (Strong Induction).

O � O′ ⊃ O �′ O′
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Structure Enrichment S �′ S ′

S �′ εS ( �′ -1)

t ∈ Dom(S) S(t) = τ S �′ S ′

S �′ t = τ ,S ′ ( �′ -2)

x ∈ Dom(S) S(x) � v S �′ S ′

S �′ x : v ,S ′ ( �′ -3)

X ∈ Dom(S) S(X) �′ M S �′ S ′

S �′ X : M,S ′ ( �′ -4)

Functor Enrichment F �′ F ′

MQ �′ ϕ (MP ) ϕ (M′
P ) �′ M′

Q

Dom(ϕ) = P Q ∩ FV(∀P .MP →M′
P ) = ∅

∀P .MP →M′
P �′ ∀Q .MQ →M′

Q ( �′ -5)

Module Enrichment M�′ M′

S �′ S ′
S �′ S ′ ( �′ -6)

F �′ F ′

F �′ F ′ ( �′ -7)

Figure 5.22: An slightly different definition of enrichment with a stronger
induction principle. One can show O �′ O′ whenever O � O′.
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We will also need the following (easy) lemma:

Lemma 5.36 (Filtering). Suppose τ is of the form τ ≡ ϕ
(
α β0 · · · βn−1

)
(for some n ≥ 0).If βi 6∈ Inv(ϕ) ∪ FV(α β0 · · · β i−1) (for all i ∈ [n]), then
we must have

ϕ(α) = Λβ0 · · ·βn−1.τ

(up to η, α-equivalence).

Proof (Completeness). We can now prove the stronger theorem:

O �′ O′ ⊃
∀Ō, ϕ,P ,R.

Reg(ϕ) ∩ R = ∅ ⊃
O′ = ϕ

(
Ō

)
⊃

∀P ∪ R ` O Gnd ⊃
∀P .∃Dom(ϕ).∀R ` Ō Slv ⊃(

∀P .∀R ` O � Ō ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

Note that we need to do induction on the relation �′ rather than �
. Completeness then follows easily by an appeal to Lemma 5.35 (Strong
Induction).

The proof itself is a tricky rule induction and requires appeals to Lemmas
5.28 (Closure), 5.31 (Grounding), 5.29 (Strengthening) and 5.30 (Weaken-
ing) and 5.36 (Filtering).

�′ -1 Easy.

�′ -2 By induction we may assume:

t ∈ Dom(S), (1)

S(t) = τ , (2)

∀S̄, ϕ,P ,R.
Reg(ϕ) ∩ R = ∅ ⊃
S ′ = ϕ

(
S̄

)
⊃

∀P ∪ R ` S Gnd ⊃
∀P .∃Dom(ϕ).∀R ` S̄ Slv ⊃(

∀P .∀R ` S � S̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

(3)
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We need to show:

∀S̄, ϕ,P ,R.
Reg(ϕ) ∩ R = ∅ ⊃

(t = τ ,S ′) = ϕ
(
S̄

)
⊃

∀P ∪ R ` S Gnd ⊃
∀P .∃Dom(ϕ).∀R ` S̄ Slv ⊃(

∀P .∀R ` S � S̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

Consider arbitrary S̄, ϕ, P, R such that:

Reg(ϕ) ∩ R = ∅, (4)

(t = τ ,S ′) = ϕ
(
S̄

)
, (5)

∀P ∪ R ` S Gnd, (6)

∀P .∃Dom(ϕ).∀R ` S̄ Slv. (7)

By (5) there must be some type τ̄ and structure S̄ ′ such that:

τ = ϕ (τ̄ ) (8)

and
S ′ = ϕ

(
S̄ ′

)
, (9)

where
S̄ = (t = τ̄ , S̄ ′). (10)

Inverting (7) we have two cases:

A Assumption (7) was derived by S-2. Then the following premises
must hold:

FV(τ̄ ) ⊆ P ∪ R, (a)

∀P .∃Dom(ϕ).∀R ` S̄ ′ Slv. (b)

Lemma 5.28 (Closure) on (7) ensures Dom(ϕ) ∩ (P ∪ R) = ∅.
Hence ϕ (τ̄ ) = τ̄ by (a), and equations (2) and (8) yield:

S(t) = τ̄ . (c)
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Induction hypothesis (3) on S̄ ′, ϕ, P and R, applied to (4),(9),
(6) and (b) yields:

∀P .∀R ` S � S̄ ′ ↓ ϕ. (d)

Reg(ϕ) ⊆ P , (e)

Rule (M -2) applied to (1), (c) and (d) derives:

∀P .∀R ` S � t = τ̄ , S̄ ′ ↓ ϕ. (f)

Combining (f) and (e) gives the desired result.

B Assumption (7) was derived by S-3. Then the following premises
must hold:

α 6∈ P , (a)

∀i ∈ [n].β i ∈ R, (b)

∀i 6= j ∈ [n].β i 6= β j , (c)

∀P ∪ {α}.∃Q .∀R ` S̄ ′ Slv, (d)

for some α, Q, n, and βi (i ∈ [n]), where

Dom(ϕ) = {α} ∪Q (e)

and
τ̄ = α β0 · · · βn−1. (f)

Lemma 5.28 (Closure) on (d) together with (a) ensures

α 6∈ P ∪ R. (g)

By (2), (8) and (f) we have

S(t) = ϕ
(
α β0 · · · βn−1

)
. (h)

Since they are equal, S(t) and α β0 · · · βn−1 must be of the same
kind κ, for some κ, that is:

S(t), (α β0 · · · βn−1) ∈ Typκ. (i)
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Lemma 5.28 (Closure) on (7), ensures

Dom(ϕ) ∩ R = ∅, (j)

P ∩ R = ∅. (k)

Consider arbitrary i ∈ [n]. Then βi ∈ R by (b) from which βi 6∈
Inv(ϕ) follows by (j) and (4); moreover, from (g) we have βi 6= α,
and from (c) we obtain βi 6∈ {βj | j ∈ i− 1}.
Hence βi 6∈ Inv(ϕ) ∪ FV(α β0 · · · β i−1). Since i was arbitrary,
we have:

∀i ∈ [n].βi 6∈ FV(α β0 · · · β i−1). (l)

Lemma 5.36 (Filtering) on equation (h) and (l) determines that:

ϕ (α) = Λβ0 · · ·βn−1.S(t). (m)

From (m) we clearly have: FV(S(t)) \ {βi | i ∈ [n]} ⊆ FV(ϕ (α)).
Hence FV(S(t)) ⊆ FV(ϕ (α)) ∪ {βi | i ∈ [n]}. Now

FV(S(t)) ∩ R ⊆ (FV(ϕ (α)) ∪ {βi | i ∈ [n]}) ∩ R
⊆ (FV(ϕ (α)) ∩ R) ∪ ({βi | i ∈ [n]} ∩ R).

Hence by (e), (4) and (b):

FV(S(t)) ∩ R ⊆ {β i | i ∈ [n]}. (n)

Inverting (6) we have, in particular by (1), FV(S(t)) ⊆ P ∪ R,
which, together with (k) and (n), lets us show:

FV(Λβ0 · · ·βn−1.S(t)) ⊆ P . (o)

Lemma 5.29 (Strengthening) (d) on α and Λβ0 · · ·βn−1.S(t) us-
ing (a) and (o) produces:

∀P .∃Q .∀R ` [Λβ0 · · ·βn−1.S(t)/α]
(
S̄ ′

)
Slv. (p)

Lemma 5.28 (Closure) on (d) yields:

α 6∈ Q , (q)
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Q ∩ P = ∅. (r)

Let ϕ′ def= {α 7→ ϕ (α) |α ∈ Q}. Then (m) and (q) give:

ϕ = [Λβ0 · · ·βn−1.S(t)/α] | ϕ′, (s)

since
Dom(ϕ′) = Q . (t)

In particular, by (4) we also have:

Reg(ϕ′) ∩ R = ∅. (u)

From (r), (q) and (o) it is easy to verify that
Dom(ϕ) ∩ Inv([Λβ0 · · ·βn−1.S(t)/α]) = ∅. Hence, by (9) we have:

S ′ = ϕ′
(
[Λβ0 · · ·βn−1.S(t)/α]

(
S̄ ′

))
. (v)

Induction hypothesis (3) on [Λβ0 · · ·βn−1.S(t)/α]
(
S̄ ′

)
, ϕ′, P and

R, applied to (u), (v), (6) and (p) (using equality (t)) yields:

∀P .∀R ` S � [Λβ0 · · ·βn−1.S(t)/α]
(
S̄ ′

)
↓ ϕ′, (w)

Reg(ϕ′) ⊆ P . (x)

Rule (M -3) applied to (g), (1), (i), (n) and (w) derives:

∀P .∀R ` S � t = α β0 · · · βn−1, S̄ ′ ↓ ([Λβ0 · · ·βn−1.S(t)/α] | ϕ′)

i.e.:
∀P .∀R ` S � S̄ ↓ ϕ. (y)

by (10) and (s).
Finally, using (s), (o) and (x) it is easy to verify

Reg(ϕ) = Reg([Λβ0 · · ·βn−1.S(t)/α] | ϕ′)
= FV(Λβ0 · · ·βn−1.S(t)) ∪ Reg(ϕ′)
⊆ P . (z)

Combining (y) and (z) gives the desired result.

�′ -3 Similar to case �′ -2 , reasoning as in sub-case A .
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�′ -4 By induction we may assume:

X ∈ Dom(S), (1)

∀M̄, ϕ,P ,R.
Reg(ϕ) ∩ R = ∅ ⊃
M = ϕ

(
M̄

)
⊃

∀P ∪ R ` S(X) Gnd ⊃
∀P .∃Dom(ϕ).∀R ` M̄ Slv ⊃(

∀P .∀R ` S(X) � M̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

(2)

∀S̄, ϕ,P ,R.
Reg(ϕ) ∩ R = ∅ ⊃
S ′ = ϕ

(
S̄

)
⊃

∀P ∪ R ` S Gnd ⊃
∀P .∃Dom(ϕ).∀R ` S̄ Slv ⊃(

∀P .∀R ` S � S̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

(3)

We need to show:

∀S̄, ϕ,P ,R.
Reg(ϕ) ∩ R = ∅ ⊃

X : M,S ′ = ϕ
(
S̄

)
⊃

∀P ∪ R ` S Gnd ⊃
∀P .∃Dom(ϕ).∀R ` S̄ Slv ⊃(

∀P .∀R ` S � S̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

Consider arbitrary S̄, ϕ, P, R such that:

Reg(ϕ) ∩ R = ∅, (4)

X : M,S ′ = ϕ
(
S̄

)
, (5)

∀P ∪ R ` S Gnd, (6)

∀P .∃Dom(ϕ).∀R ` S̄ Slv. (7)

By (5) there must be some module M̄ and structure S̄ ′ such that:

M = ϕ
(
M̄

)
, (8)
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S ′ = ϕ
(
S̄ ′

)
, (9)

where
S̄ = X : M̄, S̄ ′. (10)

Inverting (7) the following premises must hold:

∀P .∃Q1.∀R ` M̄ Slv, (11)

∀P ∪Q1.∃Q2.∀R ` S̄ ′ Slv, (12)

for some Q1 and Q2 with

Dom(ϕ) = Q1 ∪Q2. (13)

Two applications of Lemma 5.28 (Closure) to (11) and (12) yield:

FV(M̄) ⊆ P ∪Q1 ∪ R, (14)

Q1 ∩ P = ∅, (15)

Q2 ∩ (P ∪Q1 ∪ R) = ∅. (16)

Let ϕ1
def= {α 7→ ϕ (α) |α ∈ Q1} and ϕ2

def= {α 7→ ϕ (α) |α ∈ Q2}.
Then

Dom(ϕ1) = Q1, (17)

Dom(ϕ2) = Q2 (18)

and
ϕ = ϕ1 | ϕ2, (19)

by (13) and (16). Moreover, from (4) we obtain:

Reg(ϕ1) ∩ R = ∅, (20)

Reg(ϕ2) ∩ R = ∅. (21)
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Now Dom(ϕ2) ∩ FV(M̄) = ∅ follows from (14), (16) and (18). Hence
ϕ

(
M̄

)
= (ϕ1 | ϕ2)

(
M̄

)
= ϕ1

(
M̄

)
, and by (8):

M = ϕ1

(
M̄

)
. (22)

Inverting (6) we have, in particular by (1),

∀P ∪ R ` S(X) Gnd. (23)

Induction hypothesis (3) on M̄, ϕ1, P and R, applied to (20), (22),
(23) and (11) (using equality (17)) yields:

∀P .∀R ` S(X) � M̄ ↓ ϕ1, (24)

Reg(ϕ1) ⊆ P . (25)

It is easy to verify that Dom(ϕ2) ∩ Inv(ϕ1) = ∅.
Hence ϕ

(
S̄ ′

)
= (ϕ1 | ϕ2)

(
S̄ ′

)
= ϕ2

(
ϕ1

(
S̄ ′

))
, and by (9) we have:

S ′ = ϕ2

(
ϕ1

(
S̄ ′

))
. (26)

Lemma 5.29 (Strengthening) on (12) with ϕ1 using (15), (17) and (25)
produces:

∀P .∃Q2.∀R ` ϕ1

(
S̄ ′

)
Slv. (27)

Induction hypothesis (3) on ϕ1

(
S̄ ′

)
, ϕ2, P and R, applied to (21),

(26), (6) and (27) (using equality (18)) yields:

∀P .∀R ` S � ϕ1

(
S̄ ′

)
↓ ϕ2, (28)

Reg(ϕ2) ⊆ P . (29)

Rule (M -5) applied to (1), (24), and (28) derives

∀P .∀R ` S � X : M̄, S̄ ′ ↓ (ϕ1 | ϕ2),

i.e. using equations (10) and (19):

∀P .∀R ` S � S̄ ↓ ϕ. (30)
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Using (19), (25) and (29) it is easy to verify:

Reg(ϕ) = Reg(ϕ1 | ϕ2)
= Reg(ϕ1) ∪ Reg(ϕ2)
⊆ P . (31)

Combining (30) and (31) gives the desired result.

�′ -5 By induction we may assume:

∀M̄, ϕ,P ,R.
Reg(ϕ) ∩ R = ∅ ⊃
ϕ′ (MN ) = ϕ

(
M̄

)
⊃

∀P ∪ R ` MM Gnd ⊃
∀P .∃Dom(ϕ).∀R ` M̄ Slv ⊃(

∀P .∀R ` MM � M̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

(1)

∀M̄, ϕ,P ,R.
Reg(ϕ) ∩ R = ∅ ⊃
M′

M = ϕ
(
M̄

)
⊃

∀P ∪ R ` ϕ′ (M′
N ) Gnd ⊃

∀P .∃Dom(ϕ).∀R ` M̄ Slv ⊃(
∀P .∀R ` ϕ′ (M′

N ) � M̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

(2)

Dom(ϕ′) = N , (3)

M ∩ FV(∀N .MN →M′
N ) = ∅. (4)

We need to show:

∀F̄ , ϕ,P ,R.
Reg(ϕ) ∩ R = ∅ ⊃
∀M .MM →M′

M = ϕ
(
F̄

)
⊃

∀P ∪ R ` ∀N .MN →M′
N Gnd ⊃

∀P .∃Dom(ϕ).∀R ` F̄ Slv ⊃(
∀P .∀R ` ∀N .MN →M′

N � F̄ ↓ ϕ ∧ Reg(ϕ) ⊆ P
)

Consider arbitrary F̄ , ϕ, P, R such that:

Reg(ϕ) ∩ R = ∅, (5)
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∀M .MM →M′
M = ϕ

(
F̄

)
, (6)

∀P ∪ R ` ∀N .MN →M′
N Gnd, (7)

∀P .∃Dom(ϕ).∀R ` F̄ Slv. (8)

W.l.o.g. we may assume (by renaming bound variables if necessary)
that:

M ∩ Inv(ϕ) = ∅, (9)

M ∩N = ∅. (10)

Then, by (6), can assume:

F̄ ≡ ∀M .M̄M → M̄′
M . (11)

for some M̄M and M̄′
M .

Moreover, by (9) and (11) we have

ϕ
(
F̄

)
= ∀M .ϕ

(
M̄M

)
→ ϕ

(
M̄′

M

)
, (12)

where, by (6):
MM = ϕ

(
M̄M

)
, (13)

M′
M = ϕ

(
M̄′

M

)
. (14)

Inverting (7) the following premises must hold:

∀P ∪ R.∃N .∀∅ ` MN Slv, (15)

∀P ∪ R ∪N ` M′
N Gnd. (16)

Similarly, inverting (8), using (11), the following premises must also
hold:

∀P ∪ R.∃M .∀∅ ` M̄M Slv, (17)

∀P .∃Dom(ϕ).∀R ∪M ` M̄′
M Slv. (18)
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Two applications of Lemma 5.28 (Closure) to (17) and (18) yield
FV(M̄M ) ⊆ P ∪ R ∪M and Dom(ϕ) ∩ (P ∪ R ∪M ) = ∅. Hence
Dom(ϕ) ∩ FV(M̄M ) = ∅, ϕ

(
M̄M

)
= M̄M and, by (13), we have:

MM = M̄M . (19)

By Lemma 5.31 (Grounding) on (17) using equation (19) we obtain:

∀P ∪ R ∪M ` MM Gnd. (20)

Lemma 5.30 (Weakening) on (15) with M , using assumption (10) pro-
vides:

∀P ∪ R ∪M .∃N .∀∅ ` MN Slv. (21)

Clearly
Reg(ϕ′) ∩ ∅ = ∅, (22)

ϕ′ (MN ) = ϕ′ (MN ) . (23)

Induction hypothesis (1) on MN , ϕ′, P ∪ R ∪ M and ∅, applied to
(22), (23), (20) and (21) (using equation (3)) yields

∀P ∪ R ∪M .∀∅ ` M̄M �MN ↓ ϕ′, (24)

Reg(ϕ′) ⊆ P ∪ R ∪M . (25)

Lemma 5.30 (Weakening) on (16) with M provides:

∀P ∪ R ∪N ∪M ` M′
N Gnd. (26)

Lemma 5.28 (Closure) on (15) establishes N ∩ (P ∪ R) = ∅, which
together with (10) yields:

N ∩ (P ∪ R ∪M ) = ∅. (27)

Lemma 5.29 (Strengthening) on (26) with ϕ′ using (3), (27) and (25)
yields:

∀P ∪ R ∪M ` ϕ′
(
M′

N

)
Gnd. (28)



218 Higher-Order Modules

From (9), we have, in particular, M ∩ Reg(ϕ) = ∅, which, together
with (5), ensures:

Reg(ϕ) ∩ (R ∪M ) = ∅. (29)

Induction hypothesis (2) on M̄′
M , ϕ, P and R ∪M, applied to (29),

(14), (28) and (18) yields

∀P .∀R ∪M ` ϕ′
(
M′

N

)
� M̄′

M ↓ ϕ, (30)

Reg(ϕ) ⊆ P . (31)

Lemma 5.28 (Closure) on (17) establishes:

M ∩ (P ∪ R) = ∅. (32)

Applying Rule (M -6) to (27), (32), (24) and (30) derives

∀P .∀R ` ∀N .MN →M′
N � ∀M .M̄M → M̄′

M ↓ ϕ,

which, by equation (11), may be rewritten as:

∀P .∀R ` ∀N .MN →M′
N � F̄ ↓ ϕ. (33)

Combining (33) and (31) gives the desired result.

�′ -6 Trivial induction.

�′ -7 Trivial induction.

5.7 A Type Checking Algorithm for Higher-Order
Modules

In the preceding sections we focussed on producing an algorithm for match-
ing. Although the algorithm is only sound and complete provided its inputs
are ground and solvable, we can now turn to the static semantics of Higher-
Order Modules to show that, whenever we need to invoke the algorithm,
the matching problem will indeed be well-posed. To this end, we first de-
fine a notion of ground contexts, ground existential modules, and solvable
signatures.
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Ground Contexts ` C Gnd

∀X ∈ Dom(C). ∀FV(C(X)) ` C(X) Gnd
` C Gnd (G-5)

Ground Existential Modules ` X Gnd

∀FV(∃P .M) ` M Gnd
` ∃P .M Gnd (G-6)

Solvable Signatures ` L Slv

∀FV(ΛP .M).∃P .∀∅ ` M Slv
` ΛP .M Slv (G-7)

Figure 5.23: The definition of ground contexts, ground existential modules,
and solvable signatures.

Definition 5.37 (Well-formed Contexts, Existential Modules, Sig-
natures). The three predicates ` C Gnd, ` X Gnd and ` L Slv are
defined by the rules in Figure 5.23.

We will need a lemma that allows us to eliminate spurious variables from
judgements stating solvability and groundedness:

Lemma 5.38 (Elimination).

• If ∀P ` O Gnd then ∀FV(O) ` O Gnd.

• If ∀P .∃Q .∀R ` O Slv then ∀P ∩ FV(O).∃Q .∀R ` O Slv.

Proof. The proof proceeds by strong rule induction. The proof is easy and
requires appeals to Lemmas 5.28 (Closure) and 5.29 (Strengthening).

To show the well-formedness of semantic functors introduced by Rules
(H-7) and (H-18) we will also need the following lemma:

Lemma 5.39 (Raising). If ∀P ∪ P ′.∃Q .∀R ` O Slv, where

• P ∩ P ′ = ∅,

• P ′ = {ακ0
0 , . . . , α

κn−1

n−1 },

• Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q},
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• [Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}, and

• Q ′ ∩ (P ∪ P ′ ∪ R) = ∅,

then ∀P .∃Q ′.∀R ∪ P ′ ` [Q ′/Q ] (O) Slv.

Proof. We first prove a simpler lemma for the case where P ′ consists of a
single variable:

∀P .∃Q .∀R ` O Slv ⊃
∀ακ ∈ P .∀βκ′ ∈ Q .βκ→κ′ 6∈ P ∪ R ⊃

∀P \ {ακ}.∃{βκ→κ′ |βκ′ ∈ Q}.∀R ∪ {ακ} ` O′ Slv
where O′ ≡ {βκ′ 7→ βκ→κ′ ακ|βκ′ ∈ Q} (O)

The proof proceeds by strong rule induction.
Lemma 5.39 then follows easily by induction on n, the size of P ′.

We will also need a further simple lemma to enable invocation of the
algorithm in Rules (H-19), (H-20) and (H-21).

Lemma 5.40 (Invocation).

Provided ∀FV(M) ` M Gnd and ` ΛP .M′ Slv, where (without loss of
generality) P ∩ FV(M) = ∅, we have, for any ϕ:

Dom(ϕ) = P and M� ϕ (M′),
if, and only if,

∀FV(M) ∪ FV(ΛP .M′).∀∅ ` M �M′ ↓ ϕ.

Proof. A simple consequence of Lemma 5.30 (Weakening), Theorem 5.32
(Soundness) and Theorem 5.33 (Completeness).

This final lemma is needed to show that realisations cannot introduce
spurious free variables:

Lemma 5.41 (Free Variables).

Provided ∀P ` M Gnd and ∀P .∃Dom(ϕ).∀R ` O′ Slv, we have O � ϕ (O′)
implies FV(Reg(ϕ)) ⊆ P.

Proof. This is a simple consequence of Strong Induction (Lemma 5.35) and
the stronger statement we used to prove Completeness (Theorem 5.33).

We can now prove the main theorem which justifies the correctness of
appeals to the matching algorithm in Rules (H-19), (H-20) and H-21:
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Lemma 5.42 (Invariance).
Provided ` C Gnd, we have:

• C ` d . d implies FV(d ) ⊆ FV(C).

• C ` v . v implies FV(v) ⊆ FV(C).

• C ` e : v implies FV(v) ⊆ FV(C).

• C ` do . d implies FV(d ) ⊆ FV(C).

• C ` vo : v implies FV(v) ⊆ FV(C).

• C ` S . L implies ` L Slv and FV(L) ⊆ FV(C).

• C ` B . L implies ` L Slv and FV(L) ⊆ FV(C).

• C ` m : X implies ` X Gnd and FV(X ) ⊆ FV(C).

• C ` b : X implies ` X Gnd and FV(X ) ⊆ FV(C).

Proof. The proof proceeds by induction on the rules of the static semantics.
The proofs of the first three statements are Core language dependent but
must be carried out simultaneously with the proofs of the remaining state-
ments. We cannot easily factor them out as separate lemmas since we need
to maintain the invariant that the context is ground in order to be able to
use the fourth and fifth statements. Other than that, the proof is fairly
easy. In particular, we need to appeal to Lemma 5.39 (Raising) in cases
H-18 (skolemising a functor) and H-7 (parameterising a functor signature).
Lemma 5.38 (Elimination) is needed in a number of cases to remove spuri-
ous bound variables in order to establish that the resulting semantic objects
are indeed well-formed. In cases H-19 and H-20, Lemma 5.41 (Free Vari-
ables) is used to show that a matching realisation does not introduce any
variables that did not already occur free in the current context. The fact
that the existential module inferred by Rule H-21 is ground is a consequence
of Lemma 5.31 (Grounding).

5.8 Contribution and Relation to Biswas’s Work

Since this chapter relies heavily on the work of Biswas [Bis95], we should
make its relation to it clear. Biswas studies a skeletal Modules language sup-
porting uniquely-kinded Core definable types but no Core value bindings,
while we prove our results for a full language supporting many-kinded Core
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definable types, Core values and enrichment on Core value types. The clever
observation that higher-order variables may be used to interpret higher-order
functor signatures is due to Biswas. His presentation of the static seman-
tics, especially of signature expressions, is very operational; ours is not. The
underlying intuition, though not the precise statement, of our specification
of enrichment (Specification 5.12) as a combination of polymorphic gener-
alisation and contra-variant enrichment, is reconstructed from his informal
account. Our definition of enrichment (Definition 3.17) is simpler than his
operational formulation. We justify its suitability for subtyping by proving
that it is a pre-order; he does not. Our matching algorithm (Algorithm
5.25), unlike his, is fully deterministic and requires less book-keeping, but it
is basically a slightly optimised version of his algorithm and the credit for
the underlying ideas should lie with him. Biswas sketches a proof that his
algorithm is sound and complete. The proofs of soundness and complete-
ness of the algorithm presented here are my own, although the sequence of
preparatory lemmas and the definitions of ground and solvable objects owe
a great debt to the lemmas and more complicated relations presented in
Biswas’s paper.

My contribution, in relation to Biswas’s work, can be summarised as
a rational reconstruction of his ideas that builds on the reformulation of
the static semantics in Chapter 4, resulting in a more accessible account.
Biswas’s work, regrettably, does not seem to have had the significant impact
on the wider Standard ML community that it deserves. I believe this is
largely due to its difficult presentation. I hope the work in this chapter
remedies this situation.

The novel contribution of this chapter is the addition of generativity us-
ing applicative functors, and the successful generalisation of Biswas’s ideas
from a skeletal to a full language, particularly to a language supporting
many-kinded Core definable types (e.g. the parameterised types of Core-
ML). These accomplishments address the two important areas for future
research singled out in Biswas’s concluding remarks. In combination, these
ideas can now be used to design an acceptable, higher-order version of Stan-
dard ML’s first-order modules language.



Chapter 6

Separate Compilation for
Modules

In this chapter, we address the foundations for the separate compilation of
Modules. One of the main criticisms of Standard ML Modules is its per-
ceived lack of support for separate compilation. In Section 6.1 we set the
scene by briefly describing the approach to separate compilation commonly
taken in traditional programming languages. The success of this approach
relies on identifying a suitable notion of compilation unit, where each unit
can be factored into a description of the unit’s implementation, and a de-
scription of the interface that this implementation presents to other com-
pilation units. In Section 6.2, we review the naive approach to separate
compilation in Standard ML, that attempts to identify compilation units
with constrained module definitions, and show why it fails. We place the
blame for this failure, not on the semantics of Modules, but on an inappro-
priate choice of compilation unit. In Section 6.3, we identify an alternative
notion of compilation unit, based on abstracted module definitions, that sat-
isfies the requirements of separate compilation. In Section 6.4 we reveal a
theoretical sense in which our solution is only partial: a module expression
may fail to admit a complete syntactic representation of its type, preventing
a programmer from fully specifying its interface using an abstraction. After
analysing the problem we suggest appropriate modifications to the seman-
tics, which are formalised for a skeletal higher-order modules language in
Section 6.5. The adequacy of our proposal is expressed by a theorem, whose
proof is sketched. Section 6.6 concludes this chapter with a brief assessment.

223
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6.1 Modules and Separate Compilation

Leroy gives a nice summary of modularisation and separate compilation
[Ler94]:

“Modularisation is the process of decomposing a program in
small units (modules) that can be understood in isolation by the
programmers, and making the relations between these units ex-
plicit to the programmers. Separate compilation is the process
of decomposing a program in small units (compilation units)
that can be typechecked and compiled separately by the com-
piler, and making the relations between these units explicit to
the compiler and linker. Both processes are required for real-
istic programming: modularisation makes large programs un-
derstandable by programmers; separate compilation makes large
programs tractable by compilers.”

In the simplest separate compilation schemes, each compilation unit has
a name, a public interface and a private implementation. A unit’s interface
records the static information used to typecheck and compile references to
the unit’s implementation. The unit’s implementation must satisfy its inter-
face. The unit’s interface and the implementation may refer to antecedent
units on which it depends.

The approach of distinguishing between the public interface and the
private implementation of a unit has two useful properties. A unit may
be implemented, typechecked and compiled as soon as the interfaces, but
not necessarily any of the implementations, of its antecedents are available.
Moreover, if a unit’s implementation changes but its interface remains fixed,
none of the units depending on it need to be re-typechecked or re-compiled.

The programming language Modula-2 [Wir88] is a good example of a
language supporting this simple form of separate compilation. It also has
a first-order module system. Modula-2 is particularly elegant because the
notion of module coincides with the notion of compilation unit. In Modula-2,
a module identifier is defined by giving both its private implementation and
its public interface. Moreover, clients of a module are not allowed to assume
any more about the module than is declared in its interface. In this way,
it is possible to identify compilation unit interfaces with module interfaces,
and compilation unit implementations with module implementations.

Ideally, as in Modula-2, in Standard ML the distinction between separate
compilation and modularisation should merely be a matter of perspective:
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we should be able to identify compilation units with modules. Like Modula-
2, Standard ML’s syntax supports a form of constrained module definition
in which the implementation of the identifier is accompanied by an explicit
signature. The implementation is constrained to match the signature. Un-
fortunately, as observed by Leroy [Ler94], the approach of identifying com-
pilation units with Standard ML’s constrained definitions does not succeed.

Motivated by the failure of this approach, Leroy [Ler94] proposes an
alternative Modules calculus that, while preserving most of the flavour of
Standard ML Modules, drops the distinction between syntactic and seman-
tic objects, using signature expressions directly to type modules. Leroy’s
semantics provides good support for separate compilation.

Leroy’s strategy for achieving separate compilation might lead one to
believe that Standard ML’s distinction between syntactic types and seman-
tic objects cannot support separate compilation1. The purpose of the next
two sections is to dispel this belief. We first analyse why the identification
of compilation units with constrained module definitions fails. Instead of
rejecting the semantics of Standard ML, we place the blame on an inappro-
priate choice of compilation unit. We then suggest an alternative notion of
compilation unit that supports separate compilation.

Since we do not consider compilation issues in this thesis, we will only
address the primary concern of separate typechecking of compilation units.

6.2 Identifying Compilation Units with Constrained
Definitions

In Standard ML, as in Modula-2, it is possible to define a structure iden-
tifier by giving both its implementation and a signature expression used to
constrain that implementation: the type of the implementation must match
the signature. Similarly, one can constrain a functor definition by an explicit
result signature: the type of the functor body must match this signature. In
Mini-SML, the analog of Standard ML’s syntax is obtained by adding the
phrases:

structure X:S = s;b

functor F(X:S):S′ = s in b

to the syntax of structure bodies.
At first sight, this syntax seems to support separate compilation in the

same way that the syntax of Modula-2 does. Since each module is declared
1We do not mean to imply that this is suggested by Leroy.
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with a signature that its definition must match, it is tempting to identify a
constrained definition with a compilation unit, treating the module identifier
as the unit’s name, the structure expression as its implementation and the
signature as its interface. Intuitively, any program that is written as a
sequence of constrained definitions should be “separately compilable”.

Unfortunately, this approach fails: it is possible to write a “separately
compilable” program that typechecks as a monolithic program, but con-
tains a compilation unit that fails to typecheck when relying solely on the
information provided by its antecedents’ interfaces.

The reason this approach fails is quite simple. In Modula-2, a module’s
declared interface completely determines its typing properties — this is why
it can be used as the interface of the corresponding compilation unit. In
Standard ML, on the other hand, the signature of a constrained definition
need not fully determine the typing properties of the defined module identi-
fier. It is true that the module’s implementation must match the signature;
but the signature alone does not determine the identifier’s interface to the
rest of the program. This is because the explicit signature is merely used to
curtail the type of its implementation. Consequently, the actual realisation
of any type component that is merely specified but not defined in the sig-
nature is apparent to the rest of the program. If the correct classification
of the remaining program depends on this realisation, then relying on the
information in the signature alone can cause separate typechecking to fail.
Moreover, if we replace the implementation by another, then the proviso
that the replacement matches the same signature does not guarantee that
the remaining program will continue to typecheck, because it may match
the signature via a different realisation.

In Mini-SML terms, the semantics of Standard ML’s constrained defini-
tions are equivalent to the semantics derived from the following abbrevia-
tions:

structure X:S = s;b def= structure X = s � S;b

functor F(X:S):S′ = s in b def= functor F (X : S) = s � S′ in b

Note that, in the expansion of each abbreviation, the constraining signature
curtails its implementation.

It is easy to see why it is a mistake to identify compilation units with
constrained definitions by examining the semantics of constrained defini-
tions. Ignoring the side conditions on variable capture, the derived rule for
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the constrained structure definition is:

C ` s : ∃P .S
C ` S . ΛP ′.S ′
S � ϕ (S ′)
Dom(ϕ) = P ′

C[X : ϕ (S ′)] ` b : ∃P ′′.S ′′
X 6∈ Dom(S ′′)

C ` structure X:S = s;b : ∃P ∪ P ′′.(X : ϕ (S ′),S ′′)

Observe that the type ϕ (S ′) of the structure identifier X is determined both
from the denotation ΛP ′.S ′ of the signature S and from the type ∃P .S of its
actual implementation s. This is because ϕ (S ′) incorporates the matching
realisation ϕ. By preserving this realisation, the type of X contains more
information than the signature alone. Moreover, it is this more informative
type that serves as X’s “interface” to the remaining definitions in b (notice
that b is classified in the context C[X : ϕ (S ′)]). Clearly, the static seman-
tics of this phrase means that the signature, on its own, does not provide
adequate information for typechecking b. For this reason, it is a mistake to
consider S as the interface of X, and it should come as no surprise that the
naive identification of compilation units with constrained definitions fails.
Similar comments apply to the derived rule for a constrained functor defi-
nition.

6.3 Identifying Compilation Units with Abstracted
Definitions

The previous discussion shows that the naive identification of compilation
units with constrained definitions fails. But this does not imply that Stan-
dard ML is incompatible with separate compilation, as long as we can iden-
tify a better notion of compilation unit.

Contrast the curtailment rule:

C ` s : ∃P .S
C ` S . ΛP ′.S ′ P ∩ FV(ΛP ′.S ′) = ∅
S � ϕ (S ′) Dom(ϕ) = P ′

C ` s � S : ∃P .ϕ (S ′)

that underlies the semantics of constrained definitions, with the abstraction
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rule:
C ` s : ∃P .S
C ` S . ΛP ′.S ′ P ∩ FV(ΛP ′.S ′) = ∅
S � ϕ (S ′) Dom(ϕ) = P ′

C ` s \ S : ∃P ′.S ′

While the type of the curtailment s � S depends on both the type of s
and the denotation of S, the type ∃P ′.S ′ of the abstraction s \ S is fully
determined solely by the signature’s denotation ΛP ′.S ′.

This observation suggests that abstractions may be used to enforce the
requirement needed for separate compilation, namely, that a module’s com-
plete typing properties are captured by an explicit signature.

If we define abstracted definitions to be definitions of the form:

structure X = s \ S;b,

functor F (X : S) = s \ S′ in b,

then the semantics of abstraction ensures that, in each case, the type of the
module identifier is determined by its accompanying signature(s) alone. We
claim that typechecking of the remaining definitions in b can proceed inde-
pendently of the task of verifying that the implementation of the identifier
is well-typed and matches its signature.

We can justify this claim by examining the derived rules for abstracted
definitions. For instance, ignoring the side conditions to prevent variable
capture, the derived rule for an abstracted structure definition is:

C ` s : ∃P .S
C ` S . ΛP ′.S ′
S � ϕ (S ′)
Dom(ϕ) = P ′

C[X : S ′] ` b : ∃P ′′.S ′′
X 6∈ Dom(S ′′)

C ` structure X = s \ S;b : ∃P ′ ∪ P ′′.(X : S ′,S ′′)

Observe that, provided the signature denotes, then the classification of the
entire phrase can be split into two independent subtasks. The first task
corresponds to verifying that the implementation s matches the signature
(checking C ` s : ∃P .S and S � ϕ (S ′) with Dom(ϕ)=P ’). The sec-
ond task corresponds to classifying the remaining definitions of b (checking
C[X : S ′] ` b : ∃P ′′.S ′′ and X 6∈ Dom(S ′′)). The tasks are independent, be-
cause the parameters required to carry out each task, namely P ′ and S ′,
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are determined by the signature alone. A similar division into independent
subtasks arises from the derived rule for an abstracted functor definition.

We thus obtain a simple solution to the separate compilation problem:
identify compilation units with abstracted definitions and define a separately
compilable program to be a program that is written as a sequence of ab-
stracted definitions. For a program written in this style, each unit’s imple-
mentation can be typechecked by relying solely on the signature(s) of its
antecedent units. Moreover, the type (and typability) of the program is the
same, irrespective of whether we choose to check it as a whole or to check
its units separately.

Remark 6.3.1 (Compilation Units for Higher-Order Modules). Although our
discussion has focussed on first-order Modules, the proposal to identify com-
pilation units with abstracted definitions applies equally well to Higher-
Order Modules, and for the same reasons. Indeed, it is even easier in the
higher-order case because we already have a notion of functor interface:
the functor signature. Moreover, since structure and functor definitions are
subsumed by a single notion of module definition, we can get away with a
uniform treatment of both by identifying compilation units with abstracted
module definitions:

module X = m \ S; b.

Remark 6.3.2. Strictly speaking, Leroy’s criticism that the original version
of Standard ML [MTH90] does not support separate compilation is valid, but
only because of syntactic deficiencies of the language. This version does not
support abstractions, although they are mentioned in MacQueen’s original
design [HMM86] and their adoption is discussed in the Commentary [MT91].
Furthermore, even with their adoption, the systematic use of abstractions
to achieve separate compilation is too restrictive for practical programming.
This is due to shortcomings in the syntax of signature expressions. In this
version of Standard ML, signatures cannot specify concrete type definitions.
This has the unfortunate consequence of forcing the programmer to hide
the definitions of all type components of an abstracted structure. Type
sharing constraints alleviate this restriction somewhat but not in a fully
general manner. These problems disappear in the revision of Standard ML
[MTH96]. It supports abstractions and the syntax of signature expressions
has been changed to include type definitions.
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6.4 A Lingering Problem: The Lack of Syntactic
Interfaces

In the previous section, we identified a programming style that supports
separate compilation. As long as the programmer adheres to this style, she
can separately type-check (and compile) the components of her program.
The style is flexible enough for practical programming, because the syntax
of signatures provides fine control over the abstraction of individual type
components.

There remains, however, a sense in which this approach is unsatisfactory
and offers only a partial solution. As we will soon see, in Mini-SML (and, by
extension, Standard ML), it is not always possible to fully specify the type
of a structure expression using a signature. Consequently, it is possible to
write a program consisting of a sequence of ordinary module definitions that
typechecks, but which cannot be re-written as a sequence of compilation
units by surrounding each module’s implementation with an abstraction.
In theory, this can prevent a programmer from decomposing a monolithic
program into a sequence of separate compilation units that still typecheck.

From a practical, software engineering perspective, this is a minor flaw:
the primary motivation for identifying a notion of compilation unit is to
support the incremental construction of programs (not the inverse process).
Nevertheless, it is worth pointing out why the problem arises. In the remain-
der of this chapter, we illustrate the problem and propose modifications to
the semantics that make it disappear. The main point of this work is not to
suggest that these modifications are urgently required, but merely to clar-
ify exactly how far the semantics is from enjoying the property that every
module expression admits a syntactic representation of its type.

6.4.1 Eclipsed Identifiers

In Mini-SML, as in Standard ML, it is possible to redeclare an identifier
which is already declared in the current context. This is useful, as it allows
the same component name to be re-used within substructures and subsig-
natures. The meaning of an identifier is resolved by static scoping: each
occurrence of an identifier refers to its textually most recent declaration.

Unfortunately, this simple scheme has a flaw: it prevents a programmer
from referring to two distinct declarations of the same identifier in situa-
tions where it is necessary to do so: any earlier declaration is eclipsed by
the shadow of the most recent declaration. In turn, this can prevent the
programmer from expressing the full type of a module using a signature.
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structure X = (struct type t = int end
\ sig type t : 0 end);

structure Y = (struct local A = X in
structure X = (struct type u = bool end

\ sig type u : 0 end);
type v = A.t → X.u

end
\ sig structure X : sig type u : 0 end;

type v = ? → X.u
end)

Figure 6.1: A structure with an inexpressible type because of an eclipsed
identifier.

structure X = (struct type t = int end
\ sig type t : 0 end);

functor F (A : sig type t : 0 end) =
struct structure X = (struct type u = bool end

\ sig type u : 0 end);
type v = A.t → X.u

end
in
structure Y = (F X) \ (sig structure X : sig type u : 0 end;

type v = ? → X.u
end)

Figure 6.2: Another structure with an inexpressible type because of an
eclipsed identifier.



232 Separate Compilation for Modules

Example 6.4.1. To see why, consider the (contrived) example in Figure 6.1.
The structure expression in the definition of Y has a type, but it is impossible
to give a signature expression that fully specifies this type. To specify Y’s
type we need to be able to complete the specification of its type component
v by filling in the ? . Unfortunately, we are prevented from doing this
because the domain and range of v’s definition are types that cannot be
specified in a common context. The domain of v can only be specified as
X.t in a context where the outermost definition of X is in scope. The range
of v can only be specified as X.u in a context where the inner specification
of X is in scope. Since the definition and specification of X both declare
the same identifier, one must eclipse the other and they cannot be in scope
at the same time. Because the actual definition of its v-component cannot
be specified, the type of Y cannot be fully captured by a signature.

The example in Figure 6.2, that uses a functor definition instead of a
local definition, demonstrates the same flaw, indicating that the cause does
not lie with allowing local definitions.

This problem with eclipsed identifiers has been noted before by Harper
and Lillibridge [HL94]. They suggest a solution to this problem that relies
on distinguishing between external and internal component identifiers. This
solution is satisfactory, but it requires the programmer to maintain two
name-spaces, which can be inconvenient.

We will sketch another solution, that relies on distinguishing declarations
by their binding depth. Observe that the example above is problematic only
because the syntax of Mini-SML does not allow us to distinguish between
different declarations of the same identifier, in this case the structure iden-
tifier X. Every reference to an identifier is resolved by static scoping. In
the semantics, this behaviour is ensured by defining contexts as finite maps.
Extending a context by a new declaration overrides any previous declaration
of that identifier.

Our alternative solution relies on defining contexts, not as finite-maps,
but as lists of declarations. New declarations are added to the head of the
list, without forgetting the effect of previous declarations. In this way, all
declarations are preserved in the inverse order in which they were added.

To provide access to all declarations in the context, each reference to an
identifier must now be accompanied by an index indicating the depth of the
intended declaration. The depth is understood to be relative to the depth
of other declarations of the same identifier, counting from the head of the
context. Intuitively, the reference in, where i is an identifier and n ≥ 0 is an
index, references the n-th-most recent declaration of i in the current context.
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sig structure X : sig type u : 0 end;
type v = X1.t → X.u

end

Figure 6.3: The signature of Y using indexed identifiers.

For convenience, we adopt the convention that the reference i, lacking an
index, is an abbreviation for i0, i.e. the most recent declaration of i. We will
formalise this mechanism in Section 6.5.

Example 6.4.2. The signature in Figure 6.3 exploits an indexed reference to
fully specify the problematic type of the structure expression Y in Figure
6.1.

Our technique is essentially a combination of named identifiers and de
Bruijn [deB72] indices. Although terms written in pure de Bruijn notation
are notoriously difficult for humans to read, our scheme seems more accept-
able in realistic programming situations. First, we need only use an index
when we need to refer to an eclipsed identifier (this rarely occurs in practice
and can easily be avoided by disciplined programming). Second, the count-
ing scheme is relative to identifiers of the same name: hence indices, when
they need to be used, are small and manageable.

6.4.2 Anonymous Abstract Types

There is another, more problematic phenomenon that can prevent a struc-
ture expression s from admitting a complete specification of its type as a
signature S. It is possible for the type ∃P .S of the structure expression to
contain an existentially quantified variable α ∈ P , i.e. an abstract type, that
is anonymous, in the sense that α does not occur as the denotation of a type
component within the semantic object S. For the signature S to completely
specify the type of the structure s, there must be a one-to-one correspon-
dence between the parameters P ′ of the signature’s denotation ΛP ′.S ′ and
the abstract types P that are existentially quantified in the structure’s type
∃P .S. The problem is that a signature parameter can never be anonymous.
So if the type ∃P .S quantifies an anonymous abstract type, no such corre-
spondence can exist.

Example 6.4.3. Consider the definition of the structure X in Figure 6.4. It
is well-typed, but its type contains an anonymous abstract type.
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structure X =
((struct type t = int;

type u = int → int
end
\ sig type t : 0;

type u = int → t
end)

� sig type u : 0
end)

Figure 6.4: A structure with an anonymous abstract type.

functor F (A : sig type u : 0 end) = A
in
structure X = F (struct type t = int;

type u = int → int
end
\ sig type t : 0;

type u = int → t
end)

Figure 6.5: Another structure with an anonymous abstract type.
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The type of the innermost structure expression is:

∃∅.(t = int,u = int → int).

The type of the inner abstraction that hides the implementation of all
occurrences of t is:

∃{α}.(t = α,u = int → α).

Finally, the type of the curtailment that forgets the type component t,
yet preserves the implementation of u, is:

∃{α}.(u = int → α).

Notice that the abstract type α is anonymous.
Unfortunately, there is no signature expression that, when used as an

abstraction, fully specifies the type of X’s implementation. To see why,
suppose, to the contrary, that S is such a signature expression. Inverting the
abstraction rule, it must be that case that S denotes the semantic signature:

Λ{α}.(u = int → α).

This signature is not solvable in the sense of Definition 4.2 (Chapter 4),
precisely because the type parameter α is anonymous in (u = int → α).
This contradicts Lemma 4.3 (Solvability), that states that the denotation of
a signature must be solvable. It follows that S cannot exist.

The example in Figure 6.5, that uses functor application instead of cur-
tailment, demonstrates the same flaw, indicating that anonymous abstract
types do not only arise from curtailment phrases.

This raises a natural question: can we modify the semantics in such a
way that every module expression admits a signature specifying its type?
The observation that the existential quantification in module types cannot
be captured by the restricted form of type parameterisation afforded by
signature expressions suggests two ways to proceed.

The first is to generalise signature expressions to provide a finer degree
of control of type parameterisation: unfortunately, it is not clear how to
do this in a manner that preserves the fundamental properties ensured by
solvable signatures: the decidability and existence of unique solutions to
signature matching problems.

A more radical proposal is to abandon the use of existential quantifica-
tion altogether. Observe that the only construct that introduces existential
types is the abstraction s \ S. Deleting the phrase from the language al-
lows us to simplify the static semantics dramatically. Structure expressions
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can be classified by simple semantic structures (as opposed to existential
structures). Moreover, the classification rules no longer have to implicitly
eliminate and re-introduce existential quantifiers when determining the clas-
sification of a phrase from the classification of its subphrases.

The loss of the abstraction phrase is lamentable. Without it, there is no
way to isolate a structure from its program context. In Section 5.2.2, we
discussed how abstractions permit the programmer to change the realisation
of type components within a structure, without this change affecting the
typability of the surrounding program.

Fortunately, it is possible to formulate a weaker form of abstraction
without resorting to existential quantification. Intuitively, the idea is to
strike a compromise between the semantics of constrained and abstracted
module definitions. We retain the syntax of constrained definitions but
suggest a different semantics:

C ` s : S
C ` S . ΛP .S ′
S � ϕ (S ′)
Dom(ϕ) = P
P ∩ FV(C) = ∅
C[X : S ′] ` b : S ′′
X 6∈ Dom(S ′′)

C ` structure X:S = s;b : X : ϕ (S ′), ϕ (S ′′)

The novelty of this rule lies in the treatment of the signature constraint.
The variables P of the signature are treated as parameters during the classi-
fication of b. Thus their actual realisation, ϕ, cannot affecting the typability
of b. This allows X’s actual implementation s to change, provided it con-
tinues to match the signature. The realisation is not abstracted, however.
Instead, it is applied to the result type X : ϕ (S ′), ϕ (S ′′). This final step of
discharging the parameters manages to avoid the introduction of existential
quantification over P .

Notice that the signature S fully determines X’s interface to the remain-
ing definitions in b, providing good support for separate compilation. How-
ever, any change in realisation will be reflected in the type of the complete
phrase, even though it cannot affect the typability of the remaining defini-
tions. In short, the realisation of the module is locally abstract, but globally
transparent. Indeed, the semantics of the phrase module X : S = s;b is
very similar to the semantics of the functor application

(functor(X′ : S)struct module X = X′; b end) s,
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except that the former is a structure body, while the latter is structure
expression.

The advantage of this semantics is the following. If such a definition oc-
curs at the top-level of a program, then it may be treated as a compilation
unit, without relying on existential types. The disadvantage of this seman-
tics is that if the definition occurs, not at the top-level, but deeper within
the program, then any change in its realisation may affect the program’s
typability. In summary, the phrase provides a weak form of abstraction that
is adequate for separate compilation, but cannot replace the role of arbitrary
abstractions.

6.5 A Module Language with Syntactic Represen-
tations of Types

The aim of this section is to sketch a modules language that, by adopting
the changes discussed in Sections 6.4.1 and 6.4.2, namely the introduction of
indexed identifiers to prevent eclipsing, and the removal of abstractions to
rule out anonymous abstract types, enjoys the following, informal property:

Property 6.1 (Representation). Every well-typed module expression ad-
mits a signature that fully specifies its type.

Since Higher-Order Modules is already equipped with a notion of functor
signature, and has a uniform treatment of structures and functors, it is easier
to design our language as a variant of Higher-Order Modules. However, for
the results in this section, the sheer size of a full Modules and Core language
begins to get in the way of feasible pencil and paper proof. To simplify the
argument, we will eliminate the Core by considering a skeletal Modules
language with a fixed grammar of definable types and no value definitions
or specifications. A further simplification is to restrict our attention to a
language with a single kind (?) of (non-parameterised) definable types.

Figure 6.6 defines the grammar of our language. Most of its phrases
should be familiar from the full definition of Higher-Order Modules. Note
that type and module declarations are referenced by indexed identifiers, as
motivated in Section 6.4.1. The abstraction phrase m \ S has been removed
in favour of the constrained definition module X : S = m;b. This is the
higher-order version of the phrase proposed in Section 6.4.2.

The semantic objects of our language are defined in Figure 6.7. They
are derived from the semantic objects of Higher-Order Modules, with the
following modifications. The set of Core kinds has been replaced by a single
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TypId def= {t,u,. . . } type identifiers

ModId def= {X,Y,F,G,. . . } module identifiers

d ::= tn indexed type identifier
| m.t type projection
| d → d function space

B ::= type t = d;B type definition
| type t;B type specification
| module X : S;B module specification
| εB empty body

S ::= sig B end structure signature
| funsig(X:S)S′ functor signature

b ::= type t = d; b type definition
| module X = m; b module definition
| module X : S = m;b constrained module definition
| local X = m in b local module definition
| εb empty body

m ::= Xn indexed module identifier
| m.X submodule projection
| struct b end structure
| functor(X : S)m functor
| m m′ functor application
| m � S signature curtailment

Figure 6.6: Grammar
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κ ∈ Kind ::= ? base kind
| κ→ κ′ function space

ακ ∈ TypVarκ def= {ακ, βκ, δκ, γκ, . . .} type variables

α ∈ TypVar def=
⊎

κ∈Kind TypVarκ

P ,Q , . . . ∈ TypVarSet def= Fin(TypVar ) type variable sets

d ∈ DefTyp ::= ν? type name
| d → d ′ function space

νκ ∈ TypNamκ ::= ακ type variable
| νκ′→κ τκ′ application

τκ ∈ Typκ ::= d definable type
(provided κ ≡ ?)

| Λακ′ .τκ′′ type abstraction
(provided κ ≡ κ′ → κ′′)

| νκ type name

τ ∈ Typ def=
⊎

κ∈Kind Typκ

S ∈ Str ::= t = τ?,S type component
(provided t 6∈ Dom(S))

| X : M,S module component
(provided X 6∈ Dom(S))

| εS empty structure

F ∈ Fun ::= ∀P .M→M′ functor

M∈ Mod ::= S structure
| F functor

L ∈ Sig ::= ΛP .M signature

C ∈ Context ::= C[t = τ?] type declaration
| C[X : M] module declaration
| εC empty context

Figure 6.7: Semantic Objects
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base kind ? classifying definable types. Semantic structures and contexts
no longer declare value components. The removal of the abstraction phrase
means that existentially quantified types are no longer needed. Finally,
instead of being finite maps, contexts are defined inductively as lists of dec-
larations to support the use of indexed identifiers. For readability, contexts
are defined to extend to the right2, so that the head of a context is its
rightmost declaration, and its tail the context preceding that declaration.

The definition of the enrichment relations, � , between structures,
functors and modules is as for Higher-Order Modules (Definition 5.14), ex-
cept that the premise concerning value components is deleted from the rule
relating structures (Rule ( � -1)).

The definition of the operation η̂( ), converting a type of kind ? into an
equivalent definable type, degenerates to:

η̂( ) ∈ Typ? → DefTyp

η̂(ν) def= ν

η̂(d ) def= d .

We can now present the judgements and rules of the static semantics.
The rules defining the denotation of definable types are straightforward.
The only novelty lies in Rules (1)-(4) that formalise the retrieval of the
nth-most recent declaration of a type identifier. The denotation judgements
for signature expressions and bodies are essentially unchanged. The classi-
fication rules for structure bodies and expressions are degenerate instances
of the corresponding rules in Higher-Order Modules. Since the abstraction
phrase has been removed, we can classify module expression by module types
M ∈ Mod instead of existential module types ∃P .M. This simplifies the
rules considerably because they no longer need to perform any implicit elim-
ination and introduction of existential quantifiers. Rules (18)-(21) formalise
the retrieval of the nth-most recent declaration of a module identifier; their
definition is analogous to Rules (1)-(4).

Definable Types C ` d . d

C[t = τ ] ` t0 . η̂(τ ) (1)

C ` tn . d
C[t = τ ] ` tn+1 . d (2)

2This goes against the usual convention that lists extend to the left, but this is just a
matter of syntax.
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C ` tn . d t 6= t′

C[t′ = τ ] ` tn . d (3)

C ` tn . d
C[X : M] ` tn . d (4)

C ` m : S t ∈ Dom(S) S(t) = τ

C ` m.t . η̂(τ ) (5)

C ` d . d C ` d′ . d ′

C ` d → d′ . d → d ′ (6)

Signature Bodies C ` B . L

C ` d . d P ∩ FV(d ) = ∅
C[t = d ] ` B . ΛP .S t 6∈ Dom(S)
C ` type t = d;B . ΛP .t = d ,S (7)

C[t = α?] ` B . ΛP .S α? 6∈ FV(C) ∪ P t 6∈ Dom(S)
C ` type t;B . Λ{α?} ∪ P .t = α?,S (8)

C ` S . ΛP .M
C[X : M] ` B . ΛQ .S P ∩ FV(C) = ∅
Q ∩ (P ∪ FV(M)) = ∅ X 6∈ Dom(S)
C ` module X : S;B . ΛP ∪Q .X : M,S (9)

C ` εB . Λ∅.εS (10)

Signature Expressions C ` S . L

C ` B . L
C ` sig B end . L (11)
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C ` S . ΛP .M
P ∩ FV(C) = ∅ P = {ακ0

0 , . . . , α
κn−1

n−1 }
C[X : M] ` S′ . ΛQ .M′

Q ′ ∩ (P ∪ FV(M) ∪ FV(ΛQ .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}
C ` funsig(X:S)S′ . ΛQ ′.∀P .M→ [Q ′/Q ] (M′) (12)

Structure Bodies C ` b : S

C ` d . d C[t = d ] ` b : S t 6∈ Dom(S)
C ` type t = d; b : t = d ,S (13)

C ` m : M C[X : M] ` b : S X 6∈ Dom(S)
C ` module X = m; b : X : M,S (14)

C ` m : M
C ` S . ΛP .M′ M� ϕ (M′)
Dom(ϕ) = P P ∩ FV(C) = ∅
C[X : M′] ` b : S X 6∈ Dom(S)

C ` module X : S = m;b : (X : ϕ (M′), ϕ (S)) (15)

C ` m : M C[X : M] ` b : S
C ` local X = m in b : S (16)

C ` εb : εS (17)

Module Expressions C ` m : M

C[X : M] ` X0 : M (18)

C ` Xn : M
C[X : M′] ` Xn+1 : M (19)

C ` Xn : M X 6= X′

C[X′ : M′] ` Xn : M (20)
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C ` Xn : M
C[t = τ ] ` Xn : M (21)

C ` m : S X ∈ Dom(S) S(X) = M
C ` m.X : M (22)

C ` b : M
C ` struct b end : M (23)

C ` S . ΛP .M P ∩ FV(C) = ∅ C[X : M] ` m : M′

C ` functor(X : S)m : ∀P .M→M′ (24)

C ` m : ∀Q .M′ →M C ` m′ : M′′ M′′ � ϕ (M′) Dom(ϕ) = Q
C ` m m′ : ϕ (M)

(25)

C ` m : M′ C ` S . ΛP .M M′ � ϕ (M) Dom(ϕ) = P
C ` m � S : ϕ (M) (26)

6.5.1 A Strategy to Establish the Representation Property

We can express the representation property more formally as the following
requirement: if C ` m : M then there is some signature S such that C `
S . Λ∅.M. Insisting on an empty set of parameters in the denotation of S
ensures that S is a complete specification of the type of m. From now on,
we shall refer to such a signature as a representation of M.

Unfortunately, we cannot simply recover a representation by defining
an inductive translation of the semantic object. Semantic objects arise by
erasing the dependency of type phrases on module terms. Thus, given a
arbitrary semantic object, it is typically impossible to infer the module terms
that produced it.

Instead, we will need to use a more refined strategy that constructs a
representation by induction on the derivation of C ` m : M. The idea is to
incrementally construct the representation of M from both the subphrases
of m and the representations obtained for their types.

For example, in the case of a well-typed application m m′, if m’s type
has the representation funsig(X:S)S′, then the type of the application may
be represented by the derived signature [m′/X]S′, obtained by substituting
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the actual argument in the functor signature’s range. Of course, this means
that we will need to define a notion of substitution on phrases.

In the case of a projection m.X, a representation can be obtained by pro-
jecting the corresponding subsignature from the representation of m’s type.
This requires care, because X’s specification may depend on components
specified earlier in the enclosing signature.

In the case of an identifier occurrence Xn, we will need to construct a
representation from the signature used to introduce that identifier. To prove
that the representation property holds, we will therefore need to maintain
the invariant that every module identifier in the context admits a signature
denoting its type. If X occurs in a phrase of the form functor(X : S). . .X . . .
or module X : S = m;. . .X . . . then the signature S introducing X into
the context may not itself be a representation, because its denotation may
contain a non-empty set of parameters. Fortunately, we can define an oper-
ation that strengthens the original signature to yield a representation of X’s
type in the context of its declaration.

6.5.2 Syntactic Operations on Phrases

In this section, we define the syntactic operations needed to establish the
representation property.

The first operation we will need is a notion of substituting a module
expression for a module identifier, and a definable type for a type identifier.
This is the technical motivation for introducing de Bruijn indexed identifiers.
The indices allow us to define substitution in a way that avoids the capture
of free identifiers.

The definition of substitution relies on an auxiliary operation on phrases,
called lifting. Its definition is derived from the standard definition of lifting
used to implement substitution for pure de Bruijn terms. Lifting is a ternary
operation, written p ↑n

X. Lifting modifies the phrase p to avoid the capture of
any free occurrences of the module identifier X. It is used when substituting
p into the scope of a new declaration of X. Intuitively, lifting increments
the free occurrences of X within p to refer past one extra declaration of X.
The additional argument n is just a counter of the number of declarations of
X enclosing p. The counter keeps track of which occurrences of X are free,
and which are bound. Thus, when we encounter the phrase Xi, if i ≥ n, the
occurrence is free and lifted to Xi+1; otherwise, the occurrence is bound by
one of the n enclosing declarations of X and is left unchanged. The operation
p ↑n

t for lifting a type identifier is analogous.
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Definition 6.2 (Lifting). We will only show a few cases of the definition.
The others are similar.

Lifting of module identifiers is defined as:

X′i ↑n
X

def=
{

Xi+1 if X = X′ and i ≥ n

X′i otherwise.

(m.X′) ↑n
X

def= (m ↑n
X).X′

...

(functor(X′ : S)m) ↑n
X

def=

{
functor(X′ : (S ↑n

X))(m ↑n
X) if X 6= X′

functor(X′ : (S ↑n
X))(m ↑(n+1)

X ) if X = X′

...
(type t = d; b) ↑n

X
def= type t = (d ↑n

X); (b ↑n
X)

...

Lifting of type identifiers is analogous:

t′i ↑n
t

def=
{

ti+1 if t = t′ and i ≥ n

t′i otherwise.

(m.t′) ↑n
t

def= (m ↑n
t ).t′

...
(functor(X : S)m) ↑n

t
def= functor(X : (S ↑n

t ))(m ↑n
t )

...

(type t′ = d; b) ↑n
t

def=

{
type t′ = (d ↑n

t ); (b ↑n
t ) if t 6= t′

type t = (d ↑n
t ); (b ↑(n+1)

t ) if t = t′

...

We can now define substitution. Our definition is derived from the stan-
dard one for pure de Bruijn terms. The operation [m/Xn]p substitutes the
module expression m for any free occurrences of Xn within the phrase p,
adjusting the indices on other free occurrences of X accordingly. Intuitively,
when we encounter the phrase Xi we get one of the following cases: if i = n
then the substitution takes place; if i > n then this is a free occurrence and
must be adjusted to the free occurrence Xi−1 (since the substitution elimi-
nates one declaration of X); otherwise i < n and this is a bound occurrence
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that remains unchanged. Note that if p is a declaration binding an iden-
tifier, then we need to prevent the capture of any free occurrences of that
identifier in m. This is achieved by lifting references to that identifier in m,
before substituting in the scope of the declaration. If the bound identifier
happens to be X itself, then we also need to ensure that the substitution
does not affect occurrences bound by this declaration of X. This is achieved
by incrementing the index n of the substitution before descending into the
scope of the declaration.

Definition 6.3 (Substitution). We will only show a few cases of the def-
inition. The others are similar.

The substitution of a module expression for a module identifier is defined
as follows:

[m/Xn]X′i def=


m if X = X′ and i = n
Xi−1 if X = X′ and i > n

X′i otherwise.

[m/Xn](m′.X′) def= ([m/Xn]m′).X′

...

[m/Xn](functor(X′ : S)m′) def=


functor(X′ : ([m/Xn]S))

([(m ↑0
X′)/Xn]m′)

if X 6= X′

functor(X′ : ([m/Xn]S))
([(m ↑0

X′)/X(n+1)]m′)
if X = X′

...
[m/Xn](type t = d; b) def= type t = ([m/Xn]d); ([(m ↑0

t )/X
n]b)

...
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The substitution of a definable type for a type identifier is analogous:

[d/tn]t′i def=


d if t = t′ and i = n
ti−1 if t = t′ and i > n

t′i otherwise.

[d/tn](m.t′) def= ([d/tn]m).t′

...
[d/tn](functor(X : S)m) def= functor(X : ([d/tn]S))([(d ↑0

X)/tn]m)
...

[d/tn](type t′ = d′; b) def=


type t′ = ([d/tn]d′); ([(d ↑0

t′)/t
n]b)

if t 6= t′

type t′ = ([d/tn]d′); ([(d ↑0
t′)/t

(n+1)]b)
if t = t′

...

To motivate the definitions that follow, it is convenient to introduce some
additional terminology. Let’s define a signature expression to be semanti-
cally complete if, and only if, it denotes a semantic signature with an empty
set of parameters. Note that a representation must always be semantically
complete. Similarly, let’s define a signature to be syntactically complete if,
and only if, either it is a structure signature with a body that contains no
type specifications of the form type t and only contains module specifica-
tions with syntactically complete signatures; or, it is a functor signature
with a syntactically complete range. It is easy to verify that a signature
expression can only be semantically complete if it is syntactically complete.

To establish the representation property, we will need to construct a syn-
tactically complete signature for each module expression in order to obtain
a representation of its type.

If the module expression is a projection m.X that is well-typed, then
the representation of m’s type must be a syntactically complete structure
signature sig B end. Our method is to obtain a representation for m.X’s
type from the corresponding subsignature of B. Intuitively, the projection
operation B ↓m

X , defined below, constructs a representation for the type of
m.X from both m and its representation’s body B. Note that we cannot
merely extract the subsignature of X since it may contain occurrences of
identifiers specified previously in the body. To prevent the introduction of
dangling references, we substitute any occurrence of a previously specified
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type identifier by its definition, and any occurrence of a previously specified
module component by the corresponding component of m. This is why the
projection operation needs to take a module expression as an argument.

Definition 6.4 (Projection). Projection is defined as the following partial
operation on signature bodies:

(type t;B) ↓m
X

def= undefined

(type t = d;B) ↓m
X

def= [d/t0](B ↓(m↑0t )
X )

(module X′ : S; B) ↓m
X

def=


S if X = X′

[(m.X′)/X′0](B ↓(m↑0
X′ )

X )
if X 6= X′

εB ↓m
X

def= undefined

Note that if the signature sig B end is syntactically complete and B contains
a specification of X, then the result of B ↓m

X is well-defined.

The final cases we need to deal with are when the module expression
is an occurrence, say X0, of an identifier declared as a functor argument
functor(X : S). . .X0 . . . or as a constrained definition module X : S =
m′;. . .X0 . . ., or the module expression is a curtailment m � S. In each case,
we would like to use the signature S as a representation but cannot because
it may be syntactically incomplete. Our method of obtaining a representa-
tion is to complete the signature. This is the purpose of the strengthening
operation, defined below. Strengthening the signature S by a matching mod-
ule m, written S\m, converts every type specification of S into a definitional
type specification derived from m, yielding a syntactically complete signa-
ture. In this way, the strengthened signature (S ↑0

X)\X0 may be used as a
representation of X0’s type; similarly, the strengthened signature S\m may
be used as a representation of m � S’s type.

Definition 6.5 (Strengthening). The strengthening operation is defined



6.5 A Module Language with Syntactic Representations of Types 249

as follows.

(type t = d;B)\m def= type t = d; (B\(m ↑0
t ))

(type t;B)\m def= type t = m.t; (B\(m ↑0
t ))

(module X : S;B)\m def= module X : (S\m.X); (B\(m ↑0
X))

εB\m
def= εB

(sig B end)\m def= sig (B\m) end

(funsig(X:S)S′)\m def= funsig(X:S)(S′\((m ↑0
X) X0))

Remark 6.5.1. The definitions of projection and strengthening are general-
isations of similar operations originally proposed by Leroy [Ler95, Ler94].
In Leroy’s formulation, the operations’ module argument is a path. Courant
[Cou97b] also exploits generalised operations.

6.5.3 Properties

The proof of the representation property relies on the following lemmas,
which we state without further proof.

The denotation of a signature is closed under realisation:

Lemma 6.6 (Closure under Realisation).
If C ` B . L, then ϕ (C) ` B . ϕ (L).
If C ` S . L, then ϕ (C) ` S . ϕ (L).

The denotation of a signature is preserved by enrichment of the context:

Lemma 6.7 (Enrichment).
If C[X : M] ` S . L and M′ �M then C[X : M′] ` S . L.

The denotation of a signature can be preserved by lifting the signature
past an additional declaration in the context:

Lemma 6.8 (Weakening).
If C ` S . L then C[X : M] ` S ↑0

X . L and C[t = τ ] ` S ↑0
t . L.

The denotation of a signature or signature body is preserved by discharg-
ing a declaration with a module expression of the appropriate type:

Lemma 6.9 (Substitution). Provided C ` m : M:

• C[X : M] ` S . L implies C ` [m/X0]S . L.



250 Separate Compilation for Modules

` C Rep

` εC Rep (R-1)

` C Rep C ` d . d
` C[t = d ] Rep (R-2)

` C Rep C ` S . ΛP .M
` C[X : M] Rep (R-3)

Figure 6.8: The definition of representable contexts.

• C[X : M] ` B . L implies C ` [m/X0]B . L.

The denotation of a projected signature is the same as the corresponding
component of the body’s denotation, provided the module expression used
in the projection has the type of the enclosing body:

Lemma 6.10 (Projection).
If C ` B . Λ∅.S, C ` m : S and X ∈ Dom(S) then the projection B ↓m

X is
well-defined and C ` B ↓m

X . Λ∅.S(X).

Finally, strengthening a signature by a matching module yields the cor-
responding realisation of the signature’s denotation:

Lemma 6.11 (Strengthening).
If C ` S . ΛP .M, C ` m : M′, M′ � ϕ (M), and Dom(ϕ) = P then

C ` S\m . Λ∅.ϕ (M).

The proof of the representation property relies on maintaining the fol-
lowing predicate on contexts as an invariant:

Definition 6.12 (Representable Contexts). The predicate ` C Rep,
read “C is representable”, is defined as the least relation closed under the
rules in Figure 6.8.

Intuitively, a context is representable if, and only if, every semantic ob-
ject in its range arises as the denotation of some type phrase, where the
denotation is derived from the preceding assumptions in the context. Note
that the meta-variables d, S and P of Rules (R-2) and (R-3) are existen-
tially quantified, since they occur in the premises, but not the conclusions,
of the rules. If a context is representable, then every occurrence of a module
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identifier declared in that context can be given a syntactic representation
of its type by taking the original signature expression, lifting it past the
subsequent declarations in the context and then strengthening the resulting
signature by the occurrence itself.

We can now state the main theorem of this Chapter:

Theorem 6.13 (Representation). Provided ` C Rep, if C ` m : M then
there is some signature expression S such that C ` S . Λ∅.M.

Proof (Representation). We use strong induction on the rules defining
the classification judgements to prove the statements:

C ` b : S ⊃ ` C Rep ⊃ ∃B̄.C ` B̄ . Λ∅.S,

C ` m : M⊃ ` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M.

Here are the cases:

13 By strong induction we can assume the original premises:

C ` d . d , (1)

C[t = d ] ` b : S, (2)

t 6∈ Dom(S) (3)

as well as the induction hypothesis:

` C[t = d ] Rep ⊃ ∃B̄.C[t = d ] ` B̄ . Λ∅.S. (4)

We need to show:

` C Rep ⊃ ∃B̄.C ` B̄ . Λ∅.t = d ,S.

Assume:
` C Rep. (5)

From (5) and premise (1) if follows that:

` C[t = d ] Rep. (6)
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By induction hypothesis (4) on (6), we obtain a signature body B such
that:

C[t = d ] ` B . Λ∅.S. (7)

Applying Rule (7) to (1), (7) and (3) we can derive:

C ` type t = d;B . Λ∅.t = d ,S. (8)

Choosing B̄ ≡ type t = d;B gives the desired result.

14 By strong induction we can assume the original premises:

C ` m : M, (1)

C[X : M] ` b : S, (2)

X 6∈ Dom(S) (3)

as well as the induction hypotheses:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M, (4)

` C[X : M] Rep ⊃ ∃B̄.C[X : M] ` B̄ . Λ∅.S. (5)

We need to show:

` C Rep ⊃ ∃B̄.C ` B̄ . Λ∅.X : M,S.

Assume:
` C Rep. (6)

By induction hypothesis (4) on (6), we obtain a signature expression
S such that:

C ` S . Λ∅.M. (7)

From (6) and (7) if follows that:

` C[X : M] Rep. (8)
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By induction hypothesis (5) on (8), we obtain a signature body B such
that:

C[X : M] ` B . Λ∅.S. (9)

Applying Rule (9) to (7), (9) and (3) we can derive:

C ` module X : S;B . Λ∅.X : M,S. (10)

Choosing B̄ ≡ module X : S;B gives the desired result.

15 By strong induction we can assume the original premises:

C ` m : M, (1)

C ` S . ΛP .M′, (2)

M� ϕ
(
M′), (3)

Dom(ϕ) = P , (4)

P ∩ FV(C) = ∅, (5)

C[X : M′] ` b : S, (6)

X 6∈ Dom(S) (7)

as well as the induction hypotheses:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M, (8)

` C[X : M′] Rep ⊃ ∃B̄.C[X : M′] ` B̄ . Λ∅.S. (9)

We need to show:

` C Rep ⊃ ∃B̄.C ` B̄ . Λ∅.(X : ϕ
(
M′), ϕ (S)).
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Assume:
` C Rep. (10)

By Lemma 6.11 (Strengthening) on (2), (1), (3) and (4) we have:

C ` S\m . Λ∅.ϕ
(
M′). (11)

From (10) and (2) it is easy to show that:

` C[X : M′] Rep. (12)

By induction hypothesis (9) on (12), we obtain a signature body B
such that:

C[X : M′] ` B . Λ∅.S. (13)

By Lemma 6.6 (Closure under Realisation) on ϕ and (13) we obtain:

ϕ
(
C[X : M′]

)
` B . ϕ (Λ∅.S). (14)

By (4) and (5), (14) may be expressed as:

C[X : ϕ
(
M′)] ` B . Λ∅.ϕ (S). (15)

Applying Rule (9) to (11), (15) and (7) we can derive:

C ` module X : S\m; B . Λ∅.X : ϕ (M), ϕ (S). (16)

Choosing B̄ ≡ module X : S\m; B gives the desired result.

16 By strong induction we can assume the original premises:

C ` m : M, (1)

C[X : M] ` b : S, (2)

as well as the induction hypotheses:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M, (3)

` C[X : M] Rep ⊃ ∃B̄.C[X : M] ` B̄ . Λ∅.S. (4)
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We need to show:

` C Rep ⊃ ∃B̄.C ` B̄ . Λ∅.S.

Assume:
` C Rep. (5)

By induction hypothesis (3) on (5), we obtain a signature expression
S such that:

C ` S . Λ∅.M. (6)

From (5) and (6) if follows that:

` C[X : M] Rep. (7)

By induction hypothesis (4) on (7), we obtain a signature body B such
that:

C[X : M] ` B . Λ∅.S. (8)

Using Lemma 6.9 (Substitution) on (1) and (8), we can substitute m′

for X to obtain:
C ` [m′/X0]B . Λ∅.S. (9)

Choosing B̄ ≡ [m′/X0]B gives the desired result.

17 Trivial.

18 We need to show:

` C[X : M] Rep ⊃ ∃S̄.C[X : M] ` S̄ . Λ∅.M

Assume:
` C[X : M] Rep. (1)

Inverting (1) there must be some signature S and set of variables P
such that:

C ` S . ΛP .M. (2)

By Lemma 6.8 (Weakening) on (2) extended with the declaration of X
we have:

C[X : M] ` S ↑0
X . ΛP .M. (3)
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By Rule (18) on (3) we can derive:

C[X : M] ` X0 : M. (4)

Let ϕ be the identity realisation with:

Dom(ϕ) = P . (5)

From reflexivity of � it follows that:

M� ϕ (M). (6)

By Lemma 6.11 (Strengthening) on (3), (4) and (6) and (5) we obtain:

C[X : M] ` (S ↑0
X)\X0 . Λ∅.ϕ (M).

Since ϕ is the identity, this is equivalent to:

C[X : M] ` (S ↑0
X)\X0 . Λ∅.M. (7)

Choosing S̄ ≡ (S ↑0
X)\X0 gives the desired result.

19 By strong induction we can assume the original premise:

C ` Xn : M, (1)

as well as the induction hypothesis:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M (2)

We need to show:

` C[X : M′] Rep ⊃ ∃S̄.C[X : M′] ` S̄ . Λ∅.M.

Assume
` C[X : M′] Rep. (3)

Inverting (3) we must have:

` C Rep. (4)
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By induction hypothesis (2) on (4) we obtain a signature S such that:

C ` S . Λ∅.M. (5)

By Lemma 6.8 (Weakening) on (5) extended with the declaration of X
we obtain:

C[X : M] ` S ↑0
X . Λ∅.M. (6)

Choosing S̄ ≡ S ↑0
X gives the desired result.

20 Similar to case 19 , except that we weaken by the declaration of a
distinct module identifier, lifting references to this module identifier.

21 Similar to case 19 , except that we weaken by the declaration of a type
identifier, lifting references to this type identifier.

22 By strong induction we can assume the original premises:

C ` m : S, (1)

X ∈ Dom(S), (2)

S(X) = M (3)

as well as the induction hypothesis:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.S (4)

We need to show:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M.

Assume:
` C Rep. (5)

By induction hypothesis (4) on (5) we obtain a signature expression S
such that:

C ` S . Λ∅.S. (6)

Inverting (6), which can only have been derived by Rule (11), we must
have S ≡ sig B end for some signature body B such that:

C ` B . Λ∅.S. (7)
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By Lemma 6.10 (Projection) applied to (7), and premises (1) and (2)
we know that the projection B ↓m

X is well-defined and that:

C ` B ↓m
X . Λ∅.S(X). (8)

By (3) this can be re-expressed as:

C ` B ↓m
X . Λ∅.M. (9)

Choosing S̄ ≡ B ↓m
X yields the desired result.

23 The result follows easily by induction on the premise.

24 By strong induction we can assume the original premises:

C ` S . ΛP .M, (1)

P ∩ FV(C) = ∅, (2)

C[X : M] ` m : M′ (3)

as well as the induction hypothesis:

` C[X : M] Rep ⊃ ∃S̄.C[X : M] ` S̄ . Λ∅.M′. (4)

We need to show:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.∀P .M→M′.

Assume:
` C Rep. (5)

From (5) and (1) we can derive:

` C[X : M] Rep. (6)

By induction hypothesis (4) on (6), we obtain a signature S′ such that:

C[X : M] ` S′ . Λ∅.M′. (7)

Applying Rule (12) to (1), (2) and (7) we can derive:

C ` funsig(X:S)S′ . Λ∅.∀P .M→M′ (8)

Choosing S̄ ≡ funsig(X:S)S′ gives the desired result.
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25 By strong induction we can assume the original premises:

C ` m : ∀Q .M′ →M, (1)

C ` m′ : M′′, (2)

M′′ � ϕ
(
M′), (3)

Dom(ϕ) = Q (4)

as well as the induction hypotheses:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.∀Q .M′ →M, (5)

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M′′. (6)

We need to show:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.ϕ (M).

Assume
` C Rep. (7)

By induction hypothesis (5) on (7), we obtain a signature S such that:

C ` S . Λ∅.∀Q .M′ →M. (8)

Inverting (8), which can only have been derived by Rule (12), it follows
that S ≡ funsig(X:S1)S1, for some S1 and S1, such that:

C ` S1 . ΛQ .M′, (9)

C[X : M′] ` S2 . Λ∅.M, (10)

where w.l.o.g. we can assume that:

Q ∩ FV(C) = ∅. (11)
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By Lemma 6.6 (Closure under Realisation) applied to (10) and ϕ, we
obtain:

ϕ
(
C[X : M′]

)
` S2 . ϕ (Λ∅.M). (12)

By (4) and (11) we can re-express (12) as:

C[X : ϕ
(
M′)] ` S2 . Λ∅.ϕ (M). (13)

By Lemma 6.7 (Enrichment) on (13) and (3) we obtain:

C[X : M′′] ` S2 . Λ∅.ϕ (M). (14)

Using Lemma 6.9 (Substitution) on (2) and (14), we can substitute m′

for X to obtain:
C ` [m′/X0]S2 . Λ∅.ϕ (M). (15)

Choosing S̄ ≡ [m′/X0]S2 gives the desired result.

26 By strong induction we can assume the original premises:

C ` m : M′, (1)

C ` S . ΛP .M, (2)

M′ � ϕ (M), (3)

Dom(ϕ) = P (4)

as well as the (redundant) induction hypothesis:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.M′ (5)

We need to show:

` C Rep ⊃ ∃S̄.C ` S̄ . Λ∅.ϕ (M).

Assume:
` C Rep. (6)

By Lemma 6.11 (Strengthening) applied to (2), (1), (3) and (4) we
have:

C ` S\m . Λ∅.ϕ (M). (7)

Choosing S̄ ≡ S\m yields the desired result.
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6.6 Conclusion

In this chapter, we have shown that Modules can support separate compi-
lation. We analysed why the naive approach to separate compilation fails
in Standard ML, placing the blame on an inappropriate choice of compi-
lation unit. We suggested a better notion of compilation unit, based on
abstractions. From a practical perspective, this approach seems perfectly
acceptable.

However, from a theoretical perspective, the problems posed by eclipsed
identifiers and anonymous abstract types mean that some module expres-
sions may fail to possess syntactic representations of their types. We sketched
a simplified (higher-order) Modules language that, by introducing indexed
identifiers and removing the abstraction phrase, always admits syntactic
representations. This property is captured by Theorem 6.13.

The language we proposed sports a weak form of abstraction (the con-
strained module definition) that supports separate compilation. Unfortu-
nately, the loss of general abstractions means that it is impossible to isolate
a module expression from its program context if that expression occurs, not
at the top-level, but deeper within the program.

We should point out that the proof of Theorem 6.13 is constructive. In
principle, the proof can be implemented in a compiler to report module types
to the user as syntactic signatures, instead of semantic objects. Such an
implementation can relieve the programmer of the burden of understanding
semantic objects.





Chapter 7

First-Class Modules

In Chapter 5 we promoted the status of functors by making them first-class
citizens of the Modules language. Although much more expressive than first-
order Modules, Higher-Order Modules still maintains a rigid stratification
between Modules and the Core. The notion of computation at the level
of Modules is very weak, consisting solely of functor application, to model
the linking of modules, and projection, to provide access to the components
of structures. This weakness reflects the historical intention that Modules
should merely be used to express the architecture of Core programs: actual
algorithms and data structures are expressed by Core values and types.

To support general-purpose programming, the Core must provide more
powerful notions of computation than Modules. For instance, Standard
ML’s Core supports recursive types and functions, control constructs, ex-
ceptions and references. Unfortunately, the stratification between Core and
Modules means that the computational mechanisms of the Core cannot be
exploited in the construction of modules. In this chapter, we relax this
restriction by making modules first-class citizens of a particular Core lan-
guage, Core-ML. In this extension, modules may be passed as arguments to
Core-ML functions, returned as results of Core-ML computations, stored in
data structures and so on.

In Section 7.1 we extend the grammar, semantic objects and static se-
mantics of Core-ML to support first-class higher-order modules. In Section
7.2 we present an example illustrating the elegance of first-class modules. In
Section 7.3 we give another example illustrating the additional expressive
power of first-class modules. In Section 7.4 we propose an alternative, intu-
itively more natural elimination phrase for first-class modules but show that
it is unsound. This violation of soundness highlights an important distinc-
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tion between type abstraction at the level of Modules and its counterpart in
the extended Core. In Section 7.4.1 we sketch a dynamic semantics for first-
class modules and give a sketched proof that our static semantics is sound
for this dynamic semantics. Section 7.5 closes with a brief assessment.

7.1 Core-ML with First-Class Modules

The motivation for introducing first-class modules is to extend the repertoire
of computations producing module results. One way of achieving this end is
to extend the class of module expressions and types directly with constructs
usually associated with the Core. Taken to the extreme, this approach
relaxes the stratification between Modules and the Core by removing it
altogether: Modules and the Core are amalgamated in a single language.
This is the route taken by Harper and Lillibridge [HL94], and explored
further in the subsequent work by Lillibridge [Lil97], and Harper and Stone
[SH96, HS97].

We adopt a different approach. We maintain the distinction between
Core and Modules, but relax the stratification by enriching the Core lan-
guage with a family of Core types, called package types, corresponding to
first-class modules. A package type is introduced by encapsulating, or pack-
ing, a module as a Core expression. A package type is eliminated by breaking
an encapsulation, unpacking an expression as a module in the scope of an-
other expression. Because package types are ordinary Core types, packages
are first-class citizens of the Core. The introduction and elimination phrases
allow computation to alternate between computation at the level of Mod-
ules and computation at the level of the Core, without having to identify
the notions of computation.

The advantage of preserving the distinction between Modules and the
Core language is that we do not have to make an a priori commitment to
a particular Core language in order to give the definition of Modules; the
approach of amalgamating the Core and Modules into a single language, on
the other hand, forces such a commitment from the outset. The advantage of
distinguishing between Modules computation and Core computation is that
each form of computation can be designed to satisfy different invariants. For
instance, the invariant needed to support applicative functors, namely that
the abstract types returned by a functor depend only on its type arguments
and not the value of its term argument, is violated if we extend Modules
computation directly with computational mechanisms such as conditional
computation and recursion. On the other hand, these are precisely the sort
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of mechanisms that Core computation should provide. Applicative func-
tors provide good support for programming with Higher-Order Modules;
recursion and conditional computation are necessary in order to support
realistic Core programs. By keeping Modules computation and Core com-
putation separate, we can accommodate both. By contrast, although the
amalgamated languages proposed by Harper and Lillibridge [HL94], Lillib-
ridge [Lil97], and Harper and Stone [SH96, HS97] support higher-order func-
tors, because there is only a single notion of computation, there is a trade-off
between supporting either applicative functors or recursion and conditional
computation. Since ruling out the latter is too severe a restriction, functors
are not applicative.

From now on we will refer to a first-class module as a package, and its
type as a package type. For concreteness, we will describe our extension of
the Core with package types as an extension of a particular Core language,
Core-ML. The technique should apply to other Core languages as well.

In Chapter 3, we were able give a presentation of Core-ML parameterised
by an arbitrary Modules language, exploiting the fact that the points of
contact between Core and Modules are few. This level of abstraction enabled
us to generalise first-order Modules to Higher-Order Modules while keeping
the definition of Core ML essentially fixed. Since the aim of this chapter is
to extend Core-ML with first-class modules, we will need to make a stronger
commitment to a particular modules language. For maximum generality, we
will fix the modules language to be Higher-Order Modules.

We shall call the language resulting from the combination of Higher-
Order Modules, Core-ML and package types First-Class Modules.

7.1.1 Phrase Classes

The grammar of Core-ML must be extended to support package types.
The grammar of Core-ML type phrases is modified by extending the

grammar of simple types with the phrase <S> ∈ SimTyp, specifying a
package type. For instance, if we were to adopt a call-by-value dynamic
semantics, then <S> would specify the simple type of a Core value that
encapsulates a module value, where the type of the module value must match
the signature S. The denotation rule for package types will ensure that the
denotation of the simple type <S> is derived from the denotation of the
encapsulated signature expression S.

The grammar of Core-ML value expressions is extended with phrases
introducing and eliminating package types.

The value expression pack m as S ∈ ValExp introduces a value of pack-



266 First-Class Modules

CoreId def= {i, j, . . .} λ-bound identifiers

SimTypVar def= {′a, ′b, . . .} simple type variables

DefKind def= {0, 1, 2, 3, . . .} kinds (arities)

u ::= ′a
| u → u′ function type
| do(u0, . . . ,uk−1) type occurrence
| <S> package type

d ::= Λ(′a0, . . . ,
′ak−1).u parameterised simple type

v ::= ∀′a0, . . . ,
′an−1.u polymorphic simple type

e ::= i identifier
| λi.e λ-abstraction
| e e′ application
| vo value occurrence
| pack m as S package introduction
| open e as X : S in e′ package elimination

Figure 7.1: Grammar of Core-ML Extended with Package Types

age type <S>. For instance, in a call-by-value dynamic semantics, the
phrase is evaluated by evaluating the module expression m and encapsulat-
ing the resulting module value as a Core-ML value. The classification rule
will ensure that the module expression matches the signature S, via some
realisation. The signature determines the package type of the expression,
and is also used to make the actual realisation of types in m abstract.

The phrase open e as X : S in e′ ∈ ValExp eliminates a value of package
type <S>. For instance, in a call-by-value dynamic semantics, the expres-
sion e is evaluated to an encapsulated module value, the module value is
bound to the module identifier X, and the value of the entire phrase is
obtained by evaluating the client expression e′ in the current environment
extended with the value of X. The classification rule will ensure that e has
package type <S>, that X is assumed to have the type of an arbitrary re-
alisation of S, and that the type of e′ does not depend on the realisation.
Note that the explicit signature determines the package type of e.

Figure 7.1 summarises the grammar of Core-ML extended with package
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types (cf. Figure 3.11).

7.1.2 Semantic Objects

The semantic objects of Core-ML must be extended to include the semantic
counterpart of package type phrases.

The denotation of a package type phrase is a semantic package type
<∃P .M> ∈ SimTyp. Variables in P are bound in M. By definition,
we admit a package type <∃P .M> only if it satisfies the following well-
formedness condition: the corresponding signature ΛP .M must be solvable
( ` ΛP .M Slv) in the sense of Definition 5.37. The motivation for this
proviso will be explained in a moment.

As usual, we identify package types that are equivalent up to renamings
of bound variables. Moreover, since we do not want to distinguish between
package types that differ merely in a reordering of components, we from now
on identify all package types that are equivalent according to the following
definition:

Definition 7.1 (Equivalence of Package Types). Two package types
<∃P .M> and <∃P ′.M′> are equivalent, written <∃P .M> = <∃P ′.M′>
if, and only if:

• P ′ ∩ FV(∃P .M) = ∅ and M′ � ϕ (M) for some ϕ with Dom(ϕ) = P ;
and, symmetrically,

• P ∩ FV(∃P ′.M′) = ∅ and M � ϕ′ (M′) for some ϕ′ with Dom(ϕ′) =
P ′.

The well-formedness condition on package types is intended to ensure
that the equivalence on simple types is decidable. Intuitively, the equivalence
of two well-formed package types can be decided by two invocations of the
signature matching algorithm.

Conjecture 7.2 (Decidability). The equivalence on package types of Def-
inition 7.1 is decidable.

Proof (Sketch). Consider the two package types <∃P .M> and <∃P ′.M′>.
Suppose we want to decide whether they are equivalent by verifying the con-
ditions of Definition 7.1. Since P and P ′ are bound we can w.l.o.g. assume
that P ′ ∩ FV(∃P .M) = ∅ and P ∩ FV(M′) = ∅. By the definition of well-
formed package types we have ` ΛP ′.M′ Slv. Two straightforward applica-
tions of Lemma 5.31 (Grounding) and Lemma 5.38 (Elimination) establish
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that ∀FV(M′) ` M′ Gnd. By the definition of well-formed package types
we also have ` ΛP .M Slv. Appealing to Lemma 5.40 (Invocation) it follows
that there exists a realisation ϕ such that M′ � ϕ (M) with Dom(ϕ) = P
if, and only if, the invocation of the algorithm ∀FV(M′) ∪ FV(ΛP .M).∀∅ `
M′ �M ↓ . succeeds. Thus the first half of Definition 7.1 can be decided
by the matching algorithm. A symmetric argument applies for deciding the
second half.

Remark 7.1.1. Strictly speaking, the naive argument used in the proof of
Conjecture 7.2 does not constitute a valid proof. This is because the def-
initions of simple type equivalence, realisation and enrichment are now in-
tertwined, while our proofs of the lemmas to which we appeal assumed
they were not. However, the purpose of this chapter is not to develop the
full meta-theory of First-Class Modules but merely to sketch a plausible
proposal. We conjecture that the supporting lemmas still hold, but with
modified proofs.

Remark 7.1.2. The motivation for focusing on the decidability of package
type equivalence may not be clear. The reason decidability is important
is that the equivalence between simple types is fundamental to the static
semantics of Core-ML. For instance, a Core-ML function application can be
classified only if type of the argument is equivalent to the function’s domain
type. This should be contrasted with the static semantics of Modules for
which the enrichment relation on module types is fundamental. For instance,
a functor application can be classified only if the type of the argument
enriches (a realisation) of the functor’s domain. Enrichment is a pre-order,
not an equivalence relation. The static semantics of Core-ML and Modules
are predicated on different notions of type comparison, type equivalence on
the one hand, and type ordering on the other. It is fortunate that we can
use the ordering of Modules to define an appropriate equivalence on package
types.

Figure 7.2 summarises the semantic objects of Core-ML extended with
package types (cf. Figure 3.13). Notice the proviso that package types are
well-formed.

7.1.3 Static Semantics

We extend the judgements defining the static semantics of Core-ML by
adding the following three rules:
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dk ∈ DefTypk ::= Λ(′a0, . . . ,
′ak−1).u parameterised simple type

(provided ′a0, . . . ,
′ak−1 distinct)

v ∈ ValTyp ::= ∀′a0, . . . ,
′an−1.u polymorphic simple type

(provided ′a1, . . . ,
′an−1 distinct)

u ∈ SimTyp ::= ′a simple type variable
| u → u ′ function space
| νk(u0, . . . , uk−1) type name occurrence
| <∃P .M> package type

(provided ` ΛP .M Slv)

C ∈ CoreContext def=

{
Ci ∪ C′a

∣∣∣∣∣ Ci ∈ CoreId fin→ SimTyp,

C′a ∈ SimTypVar fin→ SimTypVar

}

Figure 7.2: Semantic Objects of Core-ML Extended with Package Types

Denotation Rules

Simple Types C ` u . u

C ` S . ΛP .M
C ` <S> . <∃P .M> (P-1)

(P-1) Since the denotation of the signature expression S must be solvable by
Lemma 5.42 (Invariance), the resulting package type is well-formed.

Classification Rules

Monomorphic Values C ` e : u

C ` m : ∃P ′.M′

C ` S . ΛP .M
P ′ ∩ FV(ΛP .M) = ∅
M′ � ϕ (M)
Dom(ϕ) = P

C ` pack m as S : <∃P .M> (P-2)



270 First-Class Modules

C ` e : <∃P .M>
C ` S . ΛP .M
P ∩ FV(C) = ∅
C[X : M] ` e′ : u
P ∩ FV(u) = ∅

C ` open e as X : S in e′ : u (P-3)

(P-2) The static semantics of pack m as S is almost identical to the seman-
tics of the abstraction phrase m \ S (Rule (H-21)). It too introduces
an existential quantifier. The only difference is that the type of the
phrase is an encapsulated existentially quantified module type. Notice
also that abstracting the type of m by an explicit signature ensures
that the resulting package type is well-formed (by Lemma 5.42 (Invari-
ance)). This would not be the case were we to use the classification of
m directly to derive the package type “<∃P ′.M′>”, since there is no
guarantee that the corresponding signature ΛP ′.M′ is solvable (for a
counter-example, let m be the module expression in Example 6.4.3).

(P-3) The rule requires that e is a package of the specified package type
<S>. By assuming that X has the type of an arbitrary realisation of S,
the rule ensures that the type of e′ is parametric in the package’s actual
realisation. Moreover, the side condition P ∩ FV(u) = ∅ prevents the
type of e′ from depending on this realisation. Observe that the explicit
signature S uniquely determines the simple type of the expression e
(up to the equivalence of package types), while guaranteeing that it
is well-formed (by Lemma 5.42 (Invariance)). This makes the type
inference problem for Core-ML tractable: intuitively, it means that a
type inference algorithm never has to guess the type of an expression
that is used as a package.

Remark 7.1.3. The syntax pack m as S and open e as X : S in e′

is deliberately designed to evoke the phrases pack τ e as ∃α:κ.τ ′ and
open e as α:κ, x:τ in e′ associated with the higher-order existential types
of Type Theory (Section 2.2.2). Indeed, their classification rules are very
similar.

Let’s compare Rule (P-2) with the existential introduction rule of Figure
2.14:

C ` ∃α:κ.τ ′ : ? C ` τ : κ C ` e : [τ/α] (τ ′)
C ` pack τ e as ∃α:κ.τ ′ : ∃α:κ.τ ′
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Both rules introduce an existential quantifier. In Rule (P-2), the witness
to this quantifier is the implicit realisation ϕ, while in this rule, it is the
explicitly specified type τ . The signature S in the phrase pack m as S serves
the same role as the template ∃α:κ.τ ′ in the phrase pack τ e as ∃α:κ.τ ′: each
indicates the type occurrences that are to be made abstract in the actual
types of m and e, respectively. The premise C ` S . ΛP .M, establishing
the signature’s denotation, corresponds to the well-formedness premise C `
∃α:κ.τ ′ : ?. Finally, the premises C ` m : ∃P ′.M′ and M′ � ϕ (M) ensure
that the actual type of m is a realisation of the existential module type, much
as the premise C ` e : [τ/α] (τ ′) ensures that the type of e is a substitution
instance of the existential type. The only substantive differences in these
rules is that Rule (P-2) can introduce an n-ary, not just a unary quantifier;
moreover, Rule (P-2) incorporates an appeal to enrichment that corresponds
to permitting e’s actual type to be a subtype of [τ/α] (τ ′).

Now let us compare Rule (P-3) with the existential elimination rule of
Figure 2.14:

C ` ∃α:κ.τ : ?
C ` e : ∃α:κ.τ
C, α : κ, x : τ ` e′ : τ ′

C ` τ ′ : ?

C ` open e as α:κ, x:τ in e′ : τ ′

Both rules eliminate an existential quantifier. The declaration X:S in the
phrase open e as X : S in e′ serves the same role as the declarations
α:κ, x:τ in the phrase open e as α:κ, x:τ in e′: each specifies the existential
type of the opened term. In Rule (P-3), the hypothetical witness to the
quantifier is the implicit set of type variables P , while in this rule, it is
the explicitly specified type variable α. Both P and α must be fresh with
respect to the type variables in the context, ensuring that the body of each
phrase is parametric in the actual witness of the quantifier (to see that
α must be fresh, it suffices to show that C, α : κ, x : τ ` e′ : τ ′ only if `
C, α : κ, x : τ valid, from which it then follows that α 6∈ FV(C)). Finally, the
side-condition P ∩ FV(u) = ∅ plays the same role as the premise C ` τ ′ : ?:
each verifies that the type of the body is independent of the actual witness
to the quantifier (the correspondence may be difficult to see at first, but
α 6∈ FV(τ ′) is a simple consequence of applying a free variable lemma to the
premise C ` τ ′ : ?, coupled with the previous observation that α 6∈ FV(C)).
Of course, the rules differ in the sense that Rule (P-3) eliminates an n-ary,
not a unary quantifier.

Remark 7.1.4. Even without the well-formedness condition on package types,
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signature Stream =
sig type state: 0;

val start: state;
val next: state → state;
val value: state → int

end

Figure 7.3: The signature Stream of integer streams

as long as the current context C is ground, then, provided the package types
occurring in C are well-formed, any additional package types arising from
the phrases <S>, pack m as S and open e as X : S in e′ will be well-formed
too. In each case, the semantic package type that is specified, introduced
or eliminated is determined from the denotation of the explicit signature S.
This denotation is guaranteed to be solvable by Lemma 5.42 (Invariance).
However, it is preferable to impose the well-formedness condition on the
definition of semantic package types, since this makes the above proviso on
C redundant, while ensuring that any test of equivalence with a pre-existing
package type in C will be decidable; this measure also prevents Rules (C-7)
and (C-9) from silently introducing ill-formed package types.

7.2 An Example: The Sieve of Eratosthenes

We can illustrate the elegance of package types using a nice example adapted
from Mitchell and Plotkin’s exploration of existential types [MP88]. We take
no credit for the example itself, nor for its explanation, which is paraphrased
from [MP88].

The example is an implementation of the Sieve of Eratosthenes. The
Sieve is an algorithm for enumerating prime numbers. Let Sieve be the
enumeration 2, 3, 5, 7, 11 . . . of primes.

We can think of an enumeration as a stream, or infinite list, of values.
For this example, we will only need streams of integers.

In turn, we can represent a stream as a “process”, defined by a set
of internal states, a designated initial or start state, a transition function
taking us from one state to the next state, and a specific value associated
with each state. Reading the values off the process’s sequence of states yields
the stream.

Our implementation of Sieve uses packages to represent streams. The
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val sift =
λs.open s as S:Stream in

pack
struct

val divisor = S.value S.start;
val filter = fix λfilter.

λstate. if (divides divisor (S.value state))
then (filter (S.next state))
else state;

type state = S.state;
val start = filter S.start;
val next = λstate.filter (S.next state);
val value = S.value

end
as Stream;

Figure 7.4: The function sift implementing sift .

abbreviated signature Stream, defined in Figure 7.3, specifies the type of a
structure implementing a stream1. The denotation of Stream is the following
semantic signature:

Λα0.(state = α, start : α,next : α → α,value : α → int).

Given a stream s, let sift(s) be the substream of s consisting of those
values not divisible by the initial value of s.

Figure 7.4 depicts an implementation sift of sift based on representing
streams as packaged modules of signature Stream. The function sift takes
a packaged stream, opens it, constructs the filtered stream and returns it as
a package2. Our implementation of sift assumes the existence of a boolean
test divides i j that returns true if, and only if, i is divisible by j with
remainder zero. It is easy to see that sift has the type:

u → u

where u is the package type:

u ≡ <∃α0.(state = α, start : α,next : α → α,value : α → int)>.
1We use a signature abbreviation for convenience only: every occurrence of the signa-

ture identifier Stream in the code that follows can be removed by in-lining its definition.
2The function sift can also be implemented as a functor.
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module Sieve =
struct

type state = <Stream>;
val start = pack

struct
type state = int;
val start = 2;
val next = succ;
val value = λstate.state

end
as Stream;

val next = sift;
val value = λstate.open state as S:Stream in

S.value S.start
end \ Stream;

Figure 7.5: The implementation Sieve of Sieve.

If start is the stream 2, 3, 4, 5, 6, 7, 8, . . ., then the stream obtained by
taking the initial value of each stream in the sequence of streams:

start = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . .
sift(start) = 3, 5, 7, 9, 11, . . .
sift(sift(start)) = 5, 7, 11, . . .
sift(sift(sift(start))) = 7, 11, . . .

...

will itself yield the stream of primes 2, 3, 5, 7, . . ..
This is the intuition for constructing the Sieve of Eratosthenes: Sieve is

implemented as a process representing the stream of primes. The states of
Sieve are streams. The start state of Sieve is the stream start of all integers
≥ 2. The next state of Sieve is obtained by sift ing the current state. The
value of each Sieve state is the first value of that state viewed as a stream.

Figure 7.5 shows an implementation of Sieve as the structure Sieve. The
type Sieve.state is the type of packaged streams. The value Sieve.start
is the packaged stream of all integers ≥ 2. The function Sieve.next sift’s
a given state. The function Sieve.value returns the first value of a state
(opened as a stream).
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val nthstate = fix λnthstate.
λn.ifzero n

(Sieve.start)
(Sieve.next (nthstate (+ n (-1))));

val nthprime = λn.Sieve.value (nthstate n);

Figure 7.6: The function nthprime implementing the mathematical function
nthprime.

Note that Sieve also matches the signature Stream, reflecting our con-
ceptualisation of Sieve as a stream constructed from streams. In particular,
the type of the implementation of Sieve, before abstraction by Stream is:

∃∅.(state = u, start : u,next : u → u,value : u → int),

where:

u ≡ <∃α0.(state = α, start : α,next : α → α,value : α → int)>.

Applying the abstraction yields:

∃α0.(state = α, start : α,next : α → α,value : α → int).

(As an aside, notice that, because Sieve matches Stream, we can even
apply the sift function to the package pack Sieve as Stream. Of course,
in a call-by-value dynamic semantics, this application fails to terminate as
the definition of the resulting start state diverges: since the values of Sieve’s
states are distinct primes, none of the subsequent states of Sieve have a
value that is divisible by the value of Sieve’s start state.)

In Figure 7.6, the value nthprime implements the mathematical function
nthprime(n) that returns the n-th prime number, for n ≥ 0. Notice how
the function nthstate is used to construct the n-th state of the sieve, for
an arbitrary n.

Besides conceptual elegance, what does the addition of package types
really achieve in terms of computational power? Without package types,
it is still possible to give a stratified implementation of Sieve, say as the
structure Sieve’ defined in Figure 7.7. Sieve’ uses an ordinary structure
Start for the initial state, a functor Next for computing state transitions,
and another functor Value for extracting the value from a state.

Using Sieve’, we can still calculate the nth-prime with the expression:
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module Sieve’ =
struct

module Start = struct
type state = int;
val start = 2;
val next = succ;
val value = λstate.state

end;
module Next = functor(S:Stream)

struct
type state = S.state;
val divisor = S.value S.start;
val filter = fix λfilter.

λstate. if (divides divisor (S.value state))
then (filter (S.next state))
else state;

val start = filter S.start;
val next = λstate.filter (S.next state);
val value = S.value

end;
module Value = functor(S:Stream)

struct val value = S.value (S.start) end
end

Figure 7.7: A stratified implementation Sieve’ of Sieve.
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signature Array =
sig type array: 1;

val init: ∀’a. ’a → (array ’a);
val sub: ∀’a. (array ’a) → int → ’a;
val update : ∀’a. (array ’a) → int → ’a → (array ’a)

end;

Figure 7.8: The signature Array specifies a structure implementing fixed-size
arrays.

(Sieve’.Value(Sieve’.Next(· · · Sieve’.Next(Sieve’.Start)· · · )))
.value

by chaining n applications of the functor Sieve’.Next. The problem is that
we can only do this for a fixed n. This means that it is impossible to derive
the function nthprime from Sieve’ because there is no way to iterate the
construction of Sieve’s intermediate states.

Remark 7.2.1. Of course, the Sieve of Eratosthenes can be implemented
directly in Core-ML using other means. The point is that, without package
types, we cannot use structures as a natural representation of streams.

Notice also that Sieve’, unlike Sieve, no longer matches the signa-
ture Stream, even though the states of Sieve’ do. Thus the implemen-
tation Sieve’ fails to capture the conceptualisation of Sieve as a stream
constructed from streams. In the stratified language, it is impossible to
capture this conceptualisation: if we use structures of signature Stream to
represent the state’s of the sieve, then the states of the structures may be
represented using Core-ML values of a Core-ML type, but the state’s of the
sieve must be represented by Modules values of a Modules type.

7.3 Another Example: Dynamically-Sized Func-
tional Arrays

With package types, it is perfectly possible to make the actual realisation
of an abstract type depend on the result of some Core-ML computation.
In this way, package types strictly extend the class of types that can be
defined in Core-ML with Higher-Order Modules alone. Since this feature is
not illustrated by our implementation of the Sieve of Eratosthenes, we will
give a different example exploiting it here.
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module ArrayZero=
struct

type array = Λ’a.’a;
val init = λx.x;
val sub = λa.λi.a;
val update = λa.λi.λx.x

end;

Figure 7.9: The structure ArrayZero implementing arrays of size 20.

module ArraySucc =
functor(A:Array)
struct

type array = Λ’a.(A.array ’a) * (A.array ’a);
val init = λx. pair (A.init x) (A.init x)
val sub = λa.λi.

ifzero (mod i 2)
(A.sub (fst a) (div i 2))
(A.sub (snd a) (div i 2));

val update = λa.λi.λx.
ifzero (mod i 2)

(pair (A.update (fst a) (div i 2) x) (snd a))
(pair (fst a) (A.update (snd a) (div i 2) x))

end;

Figure 7.10: The functor ArraySucc mapping an implementation of arrays
of size 2n to an implementation of arrays of size 2n+1.

val mkArray = fix (λmkArray.λn.
ifzero n
(pack ArrayZero as Array)
(open mkArray (+ n (-1)) as A:Array in

pack ArraySucc(A) as Array));

Figure 7.11: The function mkArray: applying mkArray to an integer n ≥ 0
returns an abstract implementation of arrays of size 2n.
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A familiar example of a type whose representation depends on the result
of some computation is the type of dynamically allocated arrays of size n > 0,
where n is a value that is computed at run-time. To keep our example simple,
we will implement functional arrays of size 2n, for arbitrary n ≥ 0.

Figure 7.8 defines the signature Array as a convenient abbreviation for
the specification of a structure implementing polymorphic arrays. This sig-
nature should be interpreted as the following specification. For a fixed n, the
type array u represents arrays containing 2n entries of type u. The function
init x creates an array that has its entries initialised to the value of x. The
function sub a i returns the value of the (i mod 2n)-th entry of the array.
The function update a i x returns an array that is equivalent to the array
a, except for the (i mod 2n)-th entry that is updated with the value of x.
Interpreting each index i modulo 2n ensures that a client of an array never
attempts to access or update a non-existent entry. We informally require
that the functions sub and update have worst-case time-complexity O(n);
i.e. that their execution takes time logarithmic in the size of the array.

The structure ArrayZero, defined in Figure 7.9, is a trivial implementa-
tion of arrays of size 20 = 1. An array is represented by the type of its sole
entry. The function init x returns the initial value x of its entry, viewed
as an array. Since (i mod 20) = 0, for any i, the function sub a i merely
returns the value of the entire array a, viewed as an entry. Similarly, the
function sub a i x updates the array a by simply returning the updated
entry x, viewed as an array.

The functor ArraySucc, defined in Figure 7.10, maps a structure A, im-
plementing arrays of size 2n, to a structure implementing arrays of size 2n+1.
The definition of ArraySucc assumes that Core-ML has been extended with
the cross product type, written u * u′, supporting pairing and projection:

pair : ∀’a ’b. ’a → ’b → (’a * ’b),

fst : ∀’a ’b. (’a * ’b) → ’a,

snd : ∀’a ’b. (’a * ’b) → ’b.

We additionally assume that the function div i j returns the largest integral
divisor of i by j; and that the function mod i j returns the integral remainder
of dividing i by j.

The functor ArraySucc represents an array of size 2n+1 as a pair of
arrays of size 2n. Entries with even indices are stored in the first component
of the pair. Entries with odd indices are stored in the second component of
the pair. The function init a returns a pair of arrays of size 2n, initialised
using the function A.init on arrays of size 2n. The function sub a i uses the
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parity of i to determine which component of the array to inspect, returning
its (div i 2)-th entry using the function A.sub on arrays of size 2n. The
function update a i x uses the parity of i to determine which component
of the array to update, returning the pair of the unaltered component and
the result of updating the other component using the function A.update on
arrays of size 2n. It is easy to see that sub and update are of time-complexity
O(n+ 1), provided A.sub and A.update are of complexity O(n).

Figure 7.11 shows the definition of the Core-ML function mkArray. When
applied to an integer n, it returns a package implementing arrays of size
2n (provided n ≥ 0). If n = 0, it simply returns the packaged structure
ArrayZero. If n 6= 0, it first creates a package of arrays of size 2n−1 by
recursion on n−1, and then uses this package to implement a package of ar-
rays of size 2n by a simple application of the functor ArraySucc. Notice that
the actual realisation of the type of arrays returned by mkArray depends on
the value of n. It is easy to reason that mkArray returns an implementation
whose sub and update functions have complexity 0(n).

7.4 Soundness and Package Elimination

The phrase pack m as S turns a module expression into a value expression
of the Core language. It is natural to expect this phrase to have a direct
inverse that turns a value expression of package type back into a module
expression. For instance, we might consider adding the module expression
unpack e as S, with the classification rule:

C ` e : <∃P .M> C ` S . ΛP .M
C ` unpack e as S : ∃P .M (?)

Unfortunately, combining this phrase with applicative functors is unsound.
Example 7.4.1. Consider the well-typed, but unsound counter-example in
Figure 7.12. In the definition of the functor F, by exploiting the phrase
unpack e as S we have made the implementation of the functor body
conditional on the value of its argument’s boolean component.

In particular, each branch of the conditional expression has package type:

<∃α0.(t = α,x : α,y : α → α)>.

The standard classification rule for conditionals allows us to derive that the
conditional expression also has this type. By unpacking this expression, we
can give the functor body the existential module type:

∃α0.(t = α,x : α,y : α → α).
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module F =
functor(X:sig val b:bool end)

unpack if X.b
then pack struct type t = int;

val x = 1;
val y = λx. -x

end
as sig type t:0;

val x:t;
val y:t → t

end
else pack struct type t = bool;

val x = true;
val y = λx.if x then false

else true
end

as sig type t:0;
val x:t;
val y:t → t

end
as sig type t:0;

val x:t;
val y:t → t

end;

module A = F (struct val b = true end);
module B = F (struct val b = false end);

val z = A.y B.x

Figure 7.12: Unpacking a Core value as a module is unsound.
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Now, because functors are applicative, the type derived for the functor ex-
pression is:

∃α0.∀∅.(b : bool) → (t = α,x : α,y : α → α).

This type is unsound. Intuitively, it expresses that the abstract type re-
turned by the functor is constant, i.e. that it returns the same type α ir-
respective of the value of its module argument. For this functor, this is
patently false, since the realisation of α is conditional on the actual value of
the functor argument.

To see how this can lead to a type violation, consider the remaining def-
initions in Figure 7.12. Because the definition of F eliminates the existential
quantifier in the type of the functor expression, the abstract types A.t and
B.t will be the same, causing the definition of z to type-check, even though
it leads to the sad attempt of applying integer negation (A.y) to a boolean
value (B.x).

In the functor introduction rule (Rule (H-18)), a functor is made applica-
tive by raising the existential quantification in its body’s type to a position
quantifying the type of the functor itself. The rule ensures that each oc-
currence of an existentially quantified variable is parameterised by the type
parameters of the functor. This skolemisation step is sound, provided the
actual realisation of these variables has the property that it depends at most
on the functor’s type parameters, but not on the value of its actual argu-
ment. For Higher-Order Modules, it can be shown that this property holds
as an invariant of the classification rules. Our example demonstrates how
the addition of the phrase unpack e as S can violate the invariant.

Intuitively, the weaker elimination phrase open e as X : S in e′ remains
sound because it manages to preserve the invariant. Since it only allows
us to eliminate a package type in the scope of another value expression,
its existentially quantified variables will never be skolemised by the functor
introduction rule.

Another way to look at this is to consider the difference in the interpre-
tation of the quantifiers in the judgements:

C ` m : ∃P .M,

C ` e : <∃P .M>.

In the first judgement, the module type ∃P .M hides a realisation of P
that can depend at most on the static interpretation of the type variables
occurring in C. In the second judgement, the package type <∃P .M> hides
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a realisation of P that can depend both on the static interpretation of the
type variables in C and on the dynamic interpretation of the module and
value identifiers in C. It is sound to treat a purely static realisation as
if it had a vacuous dynamic dependency. This forward direction justifies
the soundness of the package introduction rule. It is not sound to treat a
possibly dynamic realisation as if it were purely static. This explains why
the stronger elimination rule for unpack e as S is unsound.

7.4.1 Towards a Proof of Type Soundness

To demonstrate that the proposal in this chapter is sound, we need to define
a dynamic semantics for First-Class Modules and then prove that evaluating
well-typed module and value expressions does not lead to type violations.
Although a thorough treatment of the dynamic semantics takes us beyond
the scope of this thesis, in this section, we will give a brief sketch of how this
might be done. A fuller description may be found in Maharaj and Gunter’s
work on the definition of a dynamic semantics for higher-order Standard ML
Modules [MG93].

Suppose we adopt a call-by-value semantics for First-Class Modules. One
way to define such a semantics, akin to the formulation of the dynamic
semantics of Standard ML, is to define a set of core values v ∈ CoreVal,
that includes encapsulated module values <V> and function closures (whose
form we shall leave unspecified); and a set of module values V ∈ ModVal
including functor closures <X, E ,m> and structure values (whose form we
shall also leave unspecified). The component E in a closure is a dynamic
environment mapping module and value identifiers to values. We can then
define an evaluation relation relating value expressions to their core values:

E ` e ↓ v

...
E ` m ↓ V

E ` pack m as S ↓ <V>

E ` e ↓ <V> E [X = V] ` e′ ↓ v
E ` open e as X : S in e′ ↓ v

...

and Module expressions to their module values:
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E ` m ↓ V

...

E ` functor(X : S)m ↓ <X, E ,m>

E ` m ↓ <X, E ′,m′′> E ` m′ ↓ V′ E ′[X = V′] ` m′′ ↓ V′′

E ` m m′ ↓ V′′

...

To prove that the static semantics is sound for the dynamic semantics,
we can introduce a semantic classification judgement relating core values to
their simple types:

` v : u

...
Dom(ϕ) = P ` V : ϕ (M)

` <V> : <∃P .M>

...

and module values to their module types:

` V : M
...

∀ϕ.Dom(ϕ) = P ⊃
∀V.` V : ϕ (M) ⊃

∀V′.E [X = V] ` m ↓ V′ ⊃
` V′ : ϕ (M′)

` <X, E ,m> : ∀P .M→M′

...

We say that an environment E has type C, written ` E : C, if, and only
if, every module and value identifier declared with a type in the context C
is assigned a value in E that inhabits this type.

The type soundness property can then be stated as:
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Property 7.3 (Type Soundness).

• C ` e : u ⊃
` E : C ⊃

E ` e ↓ v ⊃
` v : u.

...

• C ` m : ∃P .M⊃
` E : C ⊃

E ` m ↓ V ⊃
∃ϕ. Dom(ϕ) = P ∧ ` V : ϕ (M).

Proof (Sketch). Now to prove Property 7.3, we need to prove the stronger
properties:

• C ` e : u ⊃
∀ψ, σ, E , v.

` E : ψ (σ(C)) ⊃
E ` e ↓ v ⊃

` v : ψ (σ(u)).

...

• C ` m : ∃P .M⊃
∃ϕ.Dom(ϕ) = P ∧

∀ψ, σ, E ,V.
` E : ψ (σ(C)) ⊃

E ` m ↓ V ⊃
` V : ψ (σ(ϕ (M))).

by simultaneous induction on the classification rules.
In both properties, ψ is a realisation of type variables and σ is a sub-

stitution for simple type variables. Quantifying over all ψ and σ allows us
to prove that the rules introducing type polymorphism and simple type poly-
morphism are sound. The second property tells us that the actual realisation
ϕ of the module’s abstract types P may vary uniformly with the static in-
terpretations ψ and σ of type variable in the context C, but not with the
dynamic interpretation E of C. Notice that this is strictly stronger than the
requirement on ϕ in Property 7.3: in Property 7.3, ϕ is quantified within
the scope of the dynamic environment E, permitting it to vary with E. The
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stronger property of ϕ is needed in order to show that the skolemisation of
existential types in the functor introduction rule (Rule (H-18)) is sound.

To give an indication of how the proof proceeds, we will give the proof
of type soundness for Rules (P-3) and (H-18). This proof remains a sketch
because we have not verified the other cases, nor have we formalised the
machinery necessary to do so.

P-3 By induction we may assume:

∀ψ, σ, E , v.
` E : ψ (σ(C)) ⊃

E ` e ↓ v ⊃
` v : ψ (σ(<∃P .M>)),

(1)

C ` S . ΛP .M, (2)

P ∩ FV(C) = ∅, (3)

∀ψ, σ, E , v.
` E : ψ (σ(C[X : M])) ⊃

E ` e′ ↓ v ⊃
` v : ψ (σ(u)),

(4)

P ∩ FV(u) = ∅. (5)

We need to show:

∀ψ, σ, E , v.
` E : ψ (σ(C)) ⊃

E ` open e as X : S in e′ ↓ v ⊃
` v : ψ (σ(u)).

Consider arbitrary ψ, σ, E and v such that:

` E : ψ (σ(C)), (6)

E ` open e as X : S in e′ ↓ v. (7)

We need to show:
` v : ψ (σ(u)).
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W.l.o.g. we can assume:

P ∩ (Inv(ψ) ∪ FV(σ)) = ∅. (8)

Inverting (7) by the evaluation rule for open e as X : S in e′ we must
have, for some module value V:

E ` e ↓ <V>, (9)

E [X = V] ` e′ ↓ v. (10)

By induction hypothesis (1) applied to ψ, σ, E, <V>, (6) and (9) we
obtain:

` <V> : ψ (σ(<∃P .M>)), (11)

which, by assumption(8), may be re-expressed as:

` <V> : <∃P .ψ (σ(M))>. (12)

Inverting (12) by the classification rule for encapsulated module values,
we must have some realisation ϕ such that:

Dom(ϕ) = P , (13)

` V : ϕ (ψ (σ(M))). (14)

Let ψ′ = ψ | ϕ. Then, by (13), (3) and (8), we have:

ψ′ (σ(C)) = ψ (σ(C)) . (15)

Moreover, by (13) and (8) we have:

ψ′ (σ(M)) = ϕ (ψ (σ(M))) . (16)

Combining (6) and (14) we can show:

` E [X = V] : (ψ (σ(C)))[X : ϕ (ψ (σ(M)))],

which, by (15) and (16), may be expressed as:

` E [X = V] : ψ′ (σ(C[X : M])). (17)
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By induction hypothesis (4) on ψ′, σ, E [X = V], v, (17) and (10) we
obtain:

` v : ψ′ (σ(u)). (18)

Now ψ′ (σ(u)) = ϕ (ψ (σ(u))) = ψ (σ(u)), where the first equation
follows by (13) and (8), and the second follows by (13) and (5).

Hence we can re-express (18) as

` v : ψ (σ(u)),

which is the desired result.

H-18 By induction we may assume:

C ` S . ΛP .M, (1)

P ∩ FV(C) = ∅, (2)

P = {ακ0
0 , . . . , α

κn−1

n−1 }, (3)

∃ϕ.Dom(ϕ) = Q ∧
∀ψ, σ, E ,V.

` E : ψ (σ(C[X : M])) ⊃
E ` m ↓ V ⊃

` V : ψ (σ(ϕ (M′))),

(4)

Q ′ ∩ (P ∪ FV(M) ∪ FV(∃Q .M′)) = ∅, (5)

[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}, (6)

Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}. (7)

We need to show:

∃ϕ′.Dom(ϕ′) = Q ′ ∧
∀ψ, σ, E ,V.

` E : ψ (σ(C)) ⊃
E ` functor(X : S)m ↓ V ⊃

` V : ψ (σ(ϕ′ (∀P .M→ [Q ′/Q ] (M′)))).
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By induction hypothesis (4) there is some ϕ such that:

Dom(ϕ) = Q , (8)

∀ψ, σ, E ,V.
` E : ψ (σ(C[X : M])) ⊃

E ` m ↓ V ⊃
` V : ψ (σ(ϕ (M′))).

(9)

Choose

ϕ′ = {βκ0→···κn−1→κ 7→ Λακ0
0 , . . . , α

κn−1

n−1 .ϕ (βκ) | βκ ∈ Q}.

Clearly, by (7), we have:

Dom(ϕ′) = Q ′. (10)

Moreover, by (3), (5) and our choice of ϕ′:

P ∩ Inv(ϕ′) = ∅. (11)

Consider arbitrary ψ, σ, E, V such that:

` E : ψ (σ(C)), (12)

E ` functor(X : S)m ↓ V. (13)

W.l.o.g. we can assume:

P ∩ (Inv(ψ) ∪ FV(σ)) = ∅. (14)

We need to show:

` V : ψ
(
σ(ϕ′

(
∀P .M→ [Q ′/Q ]

(
M′)))).

By assumption (14), our choice of ϕ′, (11) and (5), this can be re-
expressed as:

` V : ∀P .ψ (σ(M)) → ψ
(
σ(ϕ

(
M′))).

Inverting (13) by the evaluation rule for functors we must have:

V ≡ <X, E ,m>. (15)
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Thus it suffices to show:

` <X, E ,m> : ∀P .ψ (σ(M)) → ψ
(
σ(ϕ

(
M′))).

Inverting this goal by the classification rule for functor closures it suf-
fices to show:

∀δ.Dom(δ) = P ⊃
∀V′.` V′ : δ (ψ (σ(M))) ⊃
∀V′′.E [X = V′] ` m ↓ V′′ ⊃
` V′′ : δ (ψ (σ(ϕ (M′)))).

Consider an arbitrary δ such that:

Dom(δ) = P . (16)

Consider an arbitrary V′ such that:

` V′ : δ (ψ (σ(M))). (17)

Consider an arbitrary V′′ such that:

E [X = V′] ` m ↓ V′′. (18)

It remains to show:

` V′′ : δ
(
ψ

(
σ(ϕ

(
M′)))).

Let ψ′ = ψ | δ. Then, by (2), (14) and (16), we have:

ψ′ (σ(C)) = ψ (σ(C)) . (19)

Moreover, by (14) and (16), we also have:

ψ′ (σ(M)) = δ (ψ (σ(M))) . (20)

Combining (12) and (17) we can show:

` E [X = V′] : (ψ (σ(C)))[X : δ (ψ (σ(M)))],

which, by (19) and (20), may be expressed as:

` E [X = V′] : ψ′ (σ(C[X : M])). (21)
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By (9) (the second half of the induction hypothesis) applied to ψ′, σ,
E [X = V′], V′′, (21) and (18) we obtain:

` V′′ : ψ′
(
σ(ϕ

(
M′))), (22)

Now by assumption (11), (22) may be re-expressed as:

` V′′ : δ
(
ψ

(
σ(ϕ

(
M′)))).

which is the desired result.

We can now consider the effect that adding the phrase unpack e as S has
on our proof of Property 7.3. The counter-example in Figure 7.12 already
demonstrates that the proof must fail because the type soundness property
does not hold, but it is revealing to see where it goes wrong. The obvious
evaluation rule for the phrase unpack e as S is:

E ` e ↓ <V>
E ` unpack e as S ↓ V.

Unfortunately, the addition of the phrase means that we can no longer prove
the stronger property on module expressions used in the proof of Prop-
erty 7.3. In particular, we can no longer establish the induction hypothesis
needed to argue that the classification rule for applicative functors (Rule
(H-18)) is sound.

It is easy to see why the proof breaks down. Let’s attempt to prove the
new case corresponding to the classification rule of unpack e as S (Rule
(?)). According to this rule, the induction hypothesis on e tells us that

∀ψ, σ, E , v.` E : ψ (σ(C)) ⊃ E ` e ↓ v ⊃ ` v : ψ (σ(<∃P .M>)),

However, because unpack e as S is a module expression, we actually need
to prove that there is some ϕ such that:

Dom(ϕ) = P ,

∀ψ, σ, E ,V.
` E : ψ (σ(C)) ⊃

E ` unpack e as S ↓ V ⊃
` V : ψ (σ(ϕ (M))).

Notice that the realisation ϕ must be static: since it must hold for all
dynamic environments E , it cannot vary with the interpretation of E . Since
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there is no obvious candidate for ϕ, let’s delay making the choice of ϕ
to see if the induction hypothesis is of any help. Consider an arbitrary
ψ, σ, E , and V such that ` E : ψ (σ(C)) and E ` unpack e as S ↓ V.
W.l.o.g. we can assume P ∩ (Inv(ψ) ∪ FV(σ)) = ∅. Then, inverting the
evaluation rule for unpack e as S, we know that E ` e ↓ <V>. The
induction hypothesis applied to ψ, σ, E , and <V> tells us that ` <V> :
ψ (σ(<∃P .M>)), which, by our assumption on P , is equivalent to ` <V> :
<∃P .ψ (σ(M))>. Inverting the classification rule for encapsulated module
values we can establish that there is some realisation ϕ′ with Dom(ϕ′) = P
such that ` V : ϕ′ (ψ (σ(M))). Unfortunately, this realisation ϕ′ is of no use
in determining the static realisation ϕ because it depends on the dynamic
environment E . In short, adding the phrase unpack e as S violates the
invariant required to support applicative functors.

7.5 Conclusion

The addition of first-class modules extends the expressive power of both
Core-ML and Higher-Order Modules considerably. Although seductively
easy to define by the addition of a new form of simple type and corresponding
denotation, introduction and elimination rules, we need to tread carefully.
In particular, the equivalence of semantic simple types and the definition
of realisation and enrichment are now mutually dependent. Therefore, we
should not immediately presume that the algorithm for solving matching
problems remains well-behaved. We shall not investigate the meta-theory
of First-Class Modules any further in this thesis, leaving it to future work.
We will, however, touch upon First-Class Modules again briefly at the end
of Chapter 8. There, we will consider the practical problem of performing
Core-ML type inference in the presence of First-Class Modules and propose
a tentative solution.



Chapter 8

Type Inference for Core-ML
with Higher-Order and
First-Class Modules

The aim of this chapter is to design an algorithm that integrates Core-
ML type inference with Modules type checking. The primary motivation for
this work is that it paves the way for the correct integration of our proposals
with existing implementations of Standard ML. Although we take care to
present our algorithms with their intended correctness properties,
the verification of these properties is left to future work.

In previous chapters, we focused on Modules and took the Core language
for granted. In Chapter 5, we laid the foundations for type-checking Higher-
Order Modules by presenting a signature matching algorithm that termi-
nates and is sound and complete for the matching problems encountered
during module classification (Sections 5.6 and 5.7). Using these results, it is
straightforward to derive a type checking algorithm for Higher-Order Mod-
ules directly from the rules of the static semantics by replacing premises
requiring the existence of matching realisations by appeals to the signature
matching algorithm. The resulting algorithm has the following behaviour:
given as input a context C and a phrase p, the algorithm terminates with
one of two results: it either succeeds with a semantic object o as its output
or it fails. The algorithm is sound in the sense that if it succeeds with o,
and p is a type phrase, then the denotation judgement C ` p . o holds; if
p is a term phrase, then the classification judgement C ` p : o holds. The
algorithm is complete in the sense that, if it does fail, then this is because
there is no object o to which the phrase may be related: if p is a type phrase,

293
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it fails to denote; if p is a term phrase, it fails to be well-typed.
The soundness and completeness of this algorithm is predicated on the

existence of analogous type checkers for type and term phrases of the Core.
As an hypothesis concerning an arbitrary Core language, this simplifying
assumption is reasonable: a wide variety of strongly typed Core languages
admit type checking algorithms of this kind. Unfortunately, as we shall see,
Core-ML does not.

Core-ML, too, is a strongly typed language. But it differs from most
other such languages by being implicitly typed. As in ordinary ML, a func-
tion λi.e does not declare the type of its parameter i. Similarly, an occur-
rence of a polymorphic phrase vo gives no indication of the monomorphic
type at which it is used. In ML, the justification for omitting the type of
a λ-bound identifier is that it can be recovered in a principled manner by
examining both the ways in which the identifier is used within the body of
the function and the types of the arguments to which the function is ap-
plied. Similarly, the monomorphic instance of a polymorphic phrase can be
determined from both the phrase’s polymorphic type, and the way in which
this phrase is used. For ML, the magic that makes this possible is Milner’s
well known type inference algorithm, algorithm W (and its many variants).
Algorithm W satisfies its own form of soundness and completeness theorems
with respect to the static semantics of ML.

Given the similarities between Core-ML and ordinary ML, let us assume
for the moment that we can adapt W to provide type inference for Core-
ML. Unfortunately, we cannot just naively plug it into the type checker
for Higher-Order Modules to obtain a combined type inference and type
checking algorithm for the entire language. The problem is that W does
not belong to the family of generic Core type checkers from which we can
construct the type checker for Higher-Order Modules. It is easy to see this
by comparing the output and soundness properties that we assumed of the
generic Core’s type checker with the actual output and soundness property
of W. For the generic Core, we assumed that the input to the type checker
is a context C and a value expression e and that the successful output is a
value type v such that C ` e : v . The input to W is also a context C and
a value expression e. However, the successful output of W is not just a
type but a pair, consisting of both a type v and an inferred substitution σ,
mapping simple type variables to simple types. The soundness property of
W tells us not that C ` e : v but rather that σ(C) ` e : v . The substitution is
the necessary by-product of performing type inference instead of mere type
checking. It captures the minimal type information that needs to be inferred
about the original context to make the expression well-typed: σ(C) is the
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inferred context. Thus we encounter the first difficulty posed by integrating
Core-ML type inference with Modules type checking: the Core-ML type
inference algorithm does not meet the requirements of the Modules type
checking algorithm.

Unfortunately, the converse is also true: our type checking algorithm
for Modules does not satisfy the requirements of an W-style type inference
algorithm for Core-ML. Core-ML, because it must cater for Modules, ex-
tends the grammar of ordinary ML expressions with the phrase vo, where
vo ∈ ValOcc is a value occurrence. Value occurrences provide access to val-
ues defined in the context and within structures. In Higher-Order Modules,
the inclusion of value occurrences of the form m.x means that a Core-ML
expression can contain an arbitrary module expression as a subphrase. This
is also true in First-Class Modules, since it extends the grammar of Core-ML
expression with the phrase pack m as S, where m is a module expression.
This has considerable ramifications for both Core-ML type inference and
Modules type checking.

For instance, consider the type inference problem posed by a Core-ML
function of the form λi.e[m[i], i]1. For soundness, the type inferred for the
function parameter i must be consistent with every type at which i is used
within the function’s body e[m[i], i]. In particular, it must also be consistent
with each free occurrence of i in the enclosed module expression m[i]. It
should be clear that the algorithm for type checking the module expression
m[i] must be able to contribute to the result of the algorithm inferring the
type of the Core-ML function. Moreover, since the type of i may not be fully
determined before the inspection of m[i], the Modules type checker must be
able to proceed with only imperfect knowledge of the context. The type
checking algorithm of Chapter 5 falls short of these requirements and we
shall have to adapt it to support Core-ML type inference.

Finally, the static semantics of Modules places an additional requirement
on type inference that goes beyond those dictated by the static semantics of
ML: the Core-ML type inference algorithm must respect any side-conditions
on type variables imposed by the rules of the static semantics. A specific
example is the functor introduction rule that has a side-condition stipulating
that the functor’s type parameters do not occur free in the context. For
instance, to respect this side-condition when inferring the type of a Core-ML
function of the form λi.e[functor(X : sig type t : k end)m[i]], the algorithm
must ensure that the denotation of the type parameter X.t cannot appear

1The notation p[p1, . . . , pn] signifies that the subphrases p1, . . . , pn have some non-
overlapping occurrences in the phrase p.
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in the type inferred for i. Since the static semantics of ML does not impose
such side-conditions, algorithm W was not designed to respect them. To
adapt W to Core-ML requires a non-trivial extension of both W and its
underlying unification algorithm.

Section 8.1 provides some background: we review ML and its static
semantics, define substitution and unification and use these concepts to
present algorithm W. Section 8.2 gives examples illustrating the issues that
need to be addressed when designing a type inference algorithm for Core-
ML in the presence of Higher-Order Modules. In Section 8.3 we design
new unification and matching algorithms that can solve the more difficult
problems encountered in this setting, and then use these algorithms to design
a type inference algorithm for Core-ML with Higher-Order Modules. The
algorithm is similar in spirit to W. In Section 8.4 we briefly suggest how to
“tie the knot” to obtain a type inference algorithm for First-Class Modules
(Core-ML extended with package types). The existence of this algorithm
makes the proposals of Chapter 7 a little more concrete.

Section 8.5 closes with a brief assessment.

8.1 A Review of ML Type Inference

Figure 8.1 presents the grammar and semantic objects of ordinary ML, the
language originally proposed and studied by Milner [Mil78].

A brief comparison of ML with Core-ML is appropriate. The ML phrases
let x = e in e′ and x define and eliminate identifiers with polymorphic types.
Although easily incorporated, we omitted these phrases from Core-ML since
their roles are similar to the ones played by value definitions and value
occurrences. Also note that, because ML is implicitly typed, there is no
need for type phrases. Core-ML provides type phrases solely for the benefit
of Modules, where they are required in order to define and specify structure
components. Turning to the semantic objects, observe that ML’s simple
types u ∈ SimTyp are less complicated than their Core-ML counterparts.
Indeed, in ML the equivalence between simple types is purely syntactic. In
Core-ML, on the other hand, a simple type may consist of an application
ν(u0, . . . , uk−1) ∈ SimTyp of a type name ν ∈ TypNam and we need to
identify applications that are equivalent “up to” the equivalence of type
names.

Figure 8.2 defines the static semantics of ML. Our description of ML’s
static semantics and algorithm W is closer to Tofte’s equivalent, but more
modern, presentation of Milner’s work [Tof88].
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e ::= i monomorphic identifier
| λi.e λ-abstraction
| e e′ application
| x polymorphic identifier
| let x = e in e′ polymorphic definition

(a) Grammar

u ∈ SimTyp ::= ′a | u → u ′

v ∈ ValTyp ::= ∀′a0, . . . ,
′an−1.u polymorphic simple type

C ∈ Context def=

{
Ci ∪ Cx

∣∣∣∣∣ Ci ∈ CoreId fin→ SimTyp,

Cx ∈ ValId fin→ ValTyp

}
(b) Semantic Objects

Figure 8.1: ML’s Grammar and Semantic Objects

The classification judgement C ` e : u relates the expression e to a
monomorphic simple type u that it inhabits. The separate classification
judgement C ` e : v , on the other hand, relates e to a value type v , i.e.
a quantified simple type. Rule (ML-4) eliminates the polymorphism of an
identifier. The rule employs a generalisation relation � ∈ ValTyp ×
SimTyp that is defined as in Definition 3.27. Rule (ML-5) introduces a
polymorphic identifier by deriving a polymorphic type for its definition.
Rule (ML-6) derives a value type of an expression from a simple type of
that expression, by universally quantifying over every type variable that
occurs free in the simple type, without occurring free in the context. Notice
that none of the rules impose side-conditions on type variables, e.g. premises
of the form ′a 6∈ FTVS(C), but that similar conditions are ubiquitous in the
static semantics of Core-ML and Modules.

Observe that an expression may inhabit more than one simple type. For



298Type Inference for Core-ML with Higher-Order and First-Class Modules

Monomorphic Values C ` e : u

i ∈ Dom(C) C(i) = u
C ` i : u (ML-1)

C[i : u] ` e : u ′

C ` λi.e : u → u ′ (ML-2)

C ` e : u ′ → u C ` e′ : u ′

C ` e e′ : u (ML-3)

x ∈ Dom(C) C(x) = v v � u
C ` x : u (ML-4)

C ` e : v C[x : v ] ` e′ : u
C ` let x = e in e′ : u (ML-5)

Polymorphic Values C ` e : v

C ` e : u {′a0, . . . ,
′an−1} = FTVS(u) \ FTVS(C)

C ` e : ∀′a0, . . . ,
′an−1.u (ML-6)

Figure 8.2: Static Semantics of ML.
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instance, the identity function λi.i has types:

′a → ′a,
(′a → ′a) → (′a → ′a),
(′a → ′b) → (′a → ′b),

...

In fact, it can be assigned the type u → u, for any simple type u. By
using universal quantification over type variables, the static semantics of
ML can internalise this observation, assigning the identity the polymor-
phic value type ∀′a.′a → ′a. This particular value type is obtained by
quantifying over ′a in the identity’s simple type ′a → ′a. Notice, how-
ever, that the rules equally allow us to assign the less general value type
∀′a.(′a → ′a) → (′a → ′a), by quantifying over ′a in the identity’s more spe-
cific simple type (′a → ′a) → (′a → ′a).

Fortunately, among the value types that can be assigned to expressions,
there are some that are most general, according to a pre-order � ∈
ValTyp ×ValTyp on ML value types that is defined just as in Definition
3.28 of Core-ML:

Definition 8.1 (Principal Value Types).
A value type v is principal for e in C if, and only if, C ` e : v and v � v ′

whenever C ` e : v ′.

It can be shown that whenever an expression has a simple type in a given
context, then it also has a principal value type in that context.

It should be clear that the rules in Figure 8.2 do not describe an algorithm
for determining the principal type of an expression. The rule for typing an
abstraction λi.e is non-deterministic since it does not specify which simple
type u to assume for i. The rule for using a polymorphic value x of type
v does not uniquely determine which particular instance u of v to return.
Even the let-rule is non-deterministic, since it fails to indicate which value
type to assume for x.

This is where Milner’s algorithm W comes in. Given a context C and an
expression e, W returns the principal value type of e in a context derived
from C. The definition of W, which we shall shortly present, relies on the
more primitive concepts of substitution and unification.

Definition 8.2 (Substitution). A substitution σ is a finite map from
simple type variables to (semantic) simple types:
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σ ∈ Subst = SimTypVar fin→ SimTyp.

The operation of applying a substitution σ to a semantic object o, written
σ(o), is defined in the usual way, taking care to avoid capture of free variables
by binding constructs.

The composition of two substitutions, written σ2 ◦ σ1, is defined as the
essentially unique substitution, satisfying,

(σ2 ◦ σ1)(o) = σ2(σ1(o)),

for every semantic object o.
Given two substitutions σ and σ1, σ is more general than σ1 written

σ � σ1, if, and only if:
∃σ2. σ2 ◦ σ = σ1.

The substitution σ \ R, where R is a set of simple type variables, is
defined as the substitution that is equivalent to σ on the restricted domain
Dom(σ) \R, i.e. σ \R def= {′a 7→ σ(′a)|′a ∈ Dom(σ) \R}.

During its execution, W sets up tentative equations between pairs of
simple types containing type variables. Such equations must be solved by
finding substitutions that make them hold. Formally, we define:

Definition 8.3 (Unification Problems and Most General Unifiers).

• A unification problem is a pair of simple types u and u ′.

• A unifier of u and u ′ is a substitution σ such that σ(u) = σ(u ′). A
unifier of u and u ′ is a solution to the unification problem posed by u
and u ′.

• A most general unifier of u and u ′ is a unifier σ of u and u ′ such that,
for every other unifier σ1 of u and u ′, σ � σ1. A most general unifier
of u and u ′ is a principal solution to the unification problem posed by
u and u ′.

A particular unification problem may fail to have a unifier. However, if it
does have a unifier, then it also has a most general unifier. Figure 8.3 shows
a simple implementation of a deterministic algorithm that solves unification
problems, returning a most general unifier whenever one exists, and failing
otherwise. The side condition ′a 6∈ FTVS(u) on Rules (R-2) and (R-3) is
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Unification of Simple Types ` u = u ′ ↓ σ

` ′a = ′a ↓ ∅ (R-1)

′a 6∈ FTVS(u)
` ′a = u ↓ [u/′a] (R-2)

′a 6∈ FTVS(u) ∀′b ∈ SimTypVar .u 6≡ ′b
` u = ′a ↓ [u/′a] (R-3)

` u1 = u ′1 ↓ σ1 ` σ1(u2) = σ1(u ′2) ↓ σ2

` u1 → u2 = u ′1 → u ′2 ↓ σ2 ◦ σ1 (R-4)

Figure 8.3: Robinson’s Unification Algorithm.

known as the occur check and is used to rule out substitutions that assume
the existence of infinite types. The side condition ∀′b ∈ SimTypVar .u 6≡ ′b
on Rule (R-3) ensures that only Rule (R-2) applies in the special case that
both types are distinct variables. This implementation is based on Robin-
son’s original unification procedure [Rob65]. Its correctness is captured by
the following theorem:

Theorem 8.4 (Correctness of Unification). [Rob65]
For any simple types u and u ′:

Termination The appeal ` u = u ′ ↓ terminates either in success,
returning a substitution, or failure.

Soundness If ` u = u ′ ↓ σ then σ(u) = σ(u ′).

Completeness If σ1(u) = σ1(u ′) then, for some σ, ` u = u ′ ↓ σ with
σ � σ1.

Figure 8.4 presents Milner’s algorithm W as a collection of inference
rules. The algorithm takes a context and an expression as input, and outputs
a pair of a value type and substitution on type variables. At the heart of
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Monomorphic Values C ` e ↓ u, σ

i ∈ Dom(C) C(i) = u
C ` i ↓ u, ∅ (W-1)

′a fresh C[i : ′a] ` e ↓ u ′, σ
C ` λi.e ↓ σ(′a) → u ′, σ \ {′a} (W-2)

C ` e ↓ u, σ1

σ1(C) ` e′ ↓ u ′, σ2
′a fresh
` σ2(u) = u ′ → ′a ↓ σ3

C ` e e′ ↓ σ3(′a), (σ3 ◦ σ2 ◦ σ1) \ {′a} (W-3)

x ∈ Dom(C) C(x) = ∀′a0, . . . ,
′an−1.u ∀i ∈ [n].′ai fresh

C ` x ↓ u, ∅ (W-4)

C ` e ↓ v , σ1 σ1(C)[x : v ] ` e′ ↓ u, σ2

C ` let x = e in e′ ↓ u, σ2 ◦ σ1 (W-5)

Polymorphic Values C ` e ↓ v , σ

C ` e ↓ u, σ
{′a0, . . . ,

′an−1} = FTVS(u) \ FTVS(σ(C))

C ` e ↓ ∀′a0, . . . ,
′an−1.u, σ (W-6)

Figure 8.4: Milner’s algorithm W.
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algorithm W lies an appeal to unification (Rule (W-3)). Rules (W-2), (W-4)
and (W-3) employ side conditions, e.g. ′a fresh, stipulating the choice of a
new variable drawn from some infinite supply of currently unused variables.
For the moment, we shall follow Milner and Tofte [Mil78, Tof88] and be
vague about what it means to choose a “fresh” variable. We shall be more
precise about this in our own algorithms.

Algorithm W satisfies the following theorem:

Theorem 8.5 (Correctness of W). [Mil78, Dam85]
For every context C and expression e:

Termination The appeal C ` e ↓ , terminates either in success, returning
a value type and a substitution, or failure.

Soundness If C ` e ↓ v , σ, then σ(C) ` e : v.

Completeness If σ1(C) ` e : v1 then for some v, σ and σ2, C ` e ↓ v , σ
with σ2 ◦ σ = σ1 and σ2(v) � v1.

Indeed, the termination, soundness and completeness properties of W
are indirect consequences of the corresponding properties of the unification
algorithm.

How does W work? Consider the rules of the static semantics. For
each phrase, the type of that phrase, even though it may not be uniquely
determined, is at least constrained by three factors: the context, the types of
its subphrases, and the form of the phrase itself. For instance, Rule (ML-3),
classifying an application e e′, places an implicit equational constraint on
the types of its subphrases: e’s type must be equivalent to a function space;
moreover, the domain of this function space must be equivalent to the type
of the argument e′. Algorithm W proceeds by traversing the structure of
the given phrase. If the corresponding rule of the static semantics requires
the non-deterministic choice of a suitable type, then W introduces a “fresh”
type variable to represent that choice. The fact that the variable is fresh
ensures that the choice is initially unconstrained. If the rule also requires
an equation between types to hold, W attempts to solve the equation by
finding a most general substitution for the type variables that makes the
equation hold. Since all of the equational constraints between types must
hold simultaneously, these substitutions are propagated (i.e. applied to the
context) in recursive calls, and accumulated (i.e. composed) in the result.

For a less operational interpretation, we can first observe the following
key property of ML and its judgements:
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Property 8.6 (Closure under Substitution).

• v � u implies σ(v) � σ(u).

• C ` e : u implies σ(C) ` e : σ(u).

• C ` e : v implies σ(C) ` e : σ(v).

Since the classification rules of ML are syntax directed, the algorithm
merely attempts to construct the most general typing derivation in the given
context, directed by the syntax of the given phrase. At certain points, it
uses unification to determine the most general substitution that is necessary
in order to apply the corresponding rule from the static semantics. If the
phrase involves a recursive call followed by either a second recursive call, or
an appeal to unification, both of which return a substitution, then Property
8.6 ensures that the derivation constructed from the first call also gives rise
to a valid derivation under this additional substitution.

8.2 Type Inference Issues

Now that we have reviewed type inference for ML, let us consider the main
issues that arise when we attempt to adapt algorithm W to Core-ML with
Higher-Order Modules.

The Problem with Interleaving Core-ML Type Inference with
Modules Type Checking

At first glance, we might be tempted to think that the tasks of performing
type inference for Core-ML and type checking for Modules are orthogonal,
i.e. that we can get away with the simple-minded approach of interleav-
ing Core type inference and Modules type checking, alternating between (a
variant) of algorithm W and the type checker for Higher-Order Modules pre-
sented in Chapter 5. Such an algorithm would invoke type inference when
entering a Core expression, reverting back to type checking when entering
a Modules subphrase, and so on. The following examples demonstrate that
this approach cannot be made to work.

First, consider this perfectly legal function of type int → int:

λi.(struct val x = + i 1 end).x
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Here i must be assigned the simple type int for the example to type check.
Moreover, this type can only be inferred by examining the Core expression
+ i 1 within the module expression struct val x = + i 1 end. Clearly
the type checker responsible for the module expression must feed this infor-
mation back to the Core type inference algorithm.

Now suppose we adopt the interleaving algorithm. W proceeds by as-
signing a fresh type variable ′a to i and then calls the Modules type checker
to calculate the type of the projection (struct val x = + i 1 end).x.
The type checker descends into the module expression and ultimately calls
W on the expression + i 1. This returns the type int and substitution
[int/′a]. Since the type checker for Modules, by its very design, has no idea
what to do with this substitution let’s assume it just throws it away. It still
knows that x has type int and returns this as the type of the projection
(struct val x = + i 1 end).x. So far so good. However, because the
substitution was discarded, W reports the “principal” type of the complete
phrase as ∀′a.′a → int. Not only is this incorrect, it’s not even sound. We
can now apply this expression to an argument of arbitrary type: if we apply
it to another function, we obtain the sad example of trying to add a function
to an integer.

In this example, the approach of ignoring the inferred substitution is
flawed because it fails to ensure that the function’s domain is consistent
with (every) use of its argument. A sound algorithm cannot discard in-
ferred substitutions. Indeed, we will revise our type checking algorithm for
module expressions so that it not only checks that phrase are well-typed, but
also propagates and accumulates substitutions returned by recursive calls to
Core-ML type inference.

Unfortunately, this argument applies to all of the phrase classes of the
Modules language. For instance, consider the phrase:

λi.(struct type t = (struct type u = int; val x = + i 1 end).u;
val y = 1

end).y

Here, the type of i is determined by a Core-ML phrase occurring within the
type phrase (struct type u = int val x = + i 1 end).u. Clearly, the
algorithm used to determine the denotation of a type phrase must also be
modified to support type inference.
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functor(A:sig type a:0; val a:a end)
struct val x = λi.((functor(B:sig type b:0; val b:b end)

struct val y = λj. if true then i
else A.a

end)
struct type b = int; val b = 1 end).y

end

Figure 8.5:

Worse still, consider the phrase:

λi.(struct val x = i end \ sig val x:int end).x

It is easy to see that it has type int → int. However, the fact that
i must have type int is determined neither by the structure expression
struct val x = i end, nor by the signature sig val x:int end. In-
stead, it is forced by the requirement that the type of the module
struct val x = i end matches the signature sig val x:int end. Thus
the algorithm for computing matching realisations between module types
must also be modified to support type inference.

Remark 8.2.1. The previous examples all hinge on the use of generalised
projections to construct phrases in which a λ-bound Core-ML identifier,
whose type must be inferred, appears free in a module expression. It is
plausible that any measure taken to enforce the property that all module
expression are closed with respect to λ-bound identifiers will ensure that it is
safe to adopt the interleaving algorithm sketched above. Possibly one of the
simplest fixes is to syntactically restrict module projections to paths in the
sense of Leroy [Ler94, Ler95]. However, this restriction is too strong to be
acceptable in First-Class Modules, the extension of Core-ML with package
types, so we prefer to tackle the more general problem of inferring types
for module phrases containing free λ-bound identifiers directly. Finding a
solution to this problem will make it straightforward to adapt type-inference
to First-Class Modules.
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functor(A:sig type a:0; val a:a end)
struct val x = λi.((functor(B:sig type b:0; val b:b end)

struct val y = λj. if true then i
else B.b

end)
struct type b = int; val b = 1 end).y

end

Figure 8.6:

functor(A:sig type a:0; val a:a end)
struct val x = λi.((functor(B:sig type b:0; val b:b end)

struct val y = λj. if true then i
else j

end)
struct type b = int; val b = 1 end).y

end

Figure 8.7:

functor(A:sig type a:0; val a:a end)
struct val x = λi.((functor(B:sig type b:0; val b:b end)

struct val y =
λj. pair

(if true then i else j)
(if true then j else B.b)

end)
struct type b = int; val b = 1 end).y

end

Figure 8.8:
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Parameters and Scope

A separate issue concerns the need to ensure that type inference does not
violate the side conditions on type variables required by so many of the
static semantic rules of Modules.

Consider the type inference problems posed by the (contrived) examples
in Figures 8.5, 8.6, 8.7, and 8.8. The first three differ only in the branches
of the innermost conditional construct. We shall assume that a conditional
expression can be classified only if both of its branches have the same type.
Some of these phrases are well-typed, others are not. What is common to
all of the phrases is that the body of the outer functor must be parametric
in the type A.a, and the body of the inner functor must be parametric in
both the type A.a and the type B.b.

Suppose we are trying to construct classifications for these module ex-
pressions. Let α be the type parameter denoted by the type A.a, and β be
the one denoted by the type B.b. Let u and u ′ be the simple types that
need to be inferred for i and j, respectively. To ensure that the variables α
and β are really treated as parameters representing arbitrary types, the side
conditions on the functor introduction rule require that α does not occur in
the context of the outer functor, and that β does not occur in the context of
the inner functor. In particular, this means that we must ensure the condi-
tion β 6∈ FV(u), since the inner functor is in the scope of the declaration of
i. On the other hand, α may occur both in u and u ′, because i and j are
declared within the scope of A. Similarly, β may occur in u ′, since j is de-
clared within the scope of B. In each example, the difficulty lies in choosing
u and u ′ in a way that makes the conditional expression type-check, without
violating the side condition β 6∈ FV(u).

Example 8.5 can be classified since we can choose u = α and indepen-
dently choose an arbitrary type for u ′.

Example 8.6, on the other hand, cannot be classified since the conditional
expression requires u = β , violating β 6∈ FV(u). It should be rejected by a
sound typing algorithm.

Example 8.7 can be classified provided we choose u = u ′, for some choice
of u ′ such that β 6∈ FV(u ′): since u ′ is permitted but not required to contain
β , we are free to choose any such u ′.

Contrast this last example with Example 8.8. Although the first condi-
tional requires u = u ′, the second also requires that u ′ = β ; any attempt
to satisfy both equations violates the side condition that β 6∈ FV(u). This
phrase cannot be classified, and should be rejected by a sound typing algo-
rithm.
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Now suppose that we try to use algorithmW to infer the types of i and j.
Note that we carried out the above discussion using linguistic meta-variables
u and u ′, describing generic choices of u and u ′ as solutions to equations
between types. Algorithm W carries out a similar analysis using simple type
variables as syntactic meta-variables and computing most general solutions
to equations between types by unification. Unfortunately, we also had to
enforce side conditions on parameters but neither algorithm W, nor the
underlying unification algorithm, address this issue. In each of the examples,
W would simply assign “fresh” simple type variables ′a and ′b to i and j,
unify them as required, but fail to check the side condition on β . As a result,
it would deem that all of the examples above are well-typed, even though
some of them are not: algorithm W is not sound in this setting.

Note that type variables α ∈ TypVar are not the only kind of variable
that can play the role of parameters in typing derivations. The Core-ML
rules (C-4) and (C-5), relating, respectively, definable types and value types
to their denotations, both introduce simple type variables into derivations.
These variables, too, must be treated as parameters with definite scopes.
Moreover, they must never be confused with those simple type variables
used as meta-variables during type inference. In particular, they must be
prevented from occurring in the domain of any inferred substitution.

To respect the static semantics of Modules we will design a modified
unification algorithm that keeps track of the relative scopes of parameters
and meta-variables, using this information to ensure that any side-conditions
on parameters are never violated by unification. In turn, we will have to
design our Modules type checker and Core-ML type inference algorithm to
perform some additional bookkeeping, beyond that undertaken by algorithm
W: to set the scene for any appeals to unification, each algorithm will need
to record the scope and role of every type variable that is introduced during
its execution.

8.3 Type Inference for Core-ML with Higher-Order
Modules

In this section, we shall design a type inference algorithm for Core-ML with
Higher-Order Modules that addresses the issues identified in Section 8.2.
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8.3.1 Unification of Core-ML Simple Types

At a more abstract level, a class of unification problems is determined by
a set of terms supporting both a notion of substitution and an underlying
equivalence on terms. For a given class of problems, an instance of the
unification problem is a pair of terms drawn from the set of terms. The
unification problem is to construct a (preferably principal) substitution that
equates the terms according to the underlying equivalence, provided such a
substitution exists.

The class of unification problems encountered in algorithm W is partic-
ularly simple:

• The terms to be unified are simple types constructed from a reduced
grammar of first-order type variables and the function space between
types.

• The equivalence between simple types is purely syntactic.

• Every simple type variable occurring in a unification problem posed
by W is in fact a meta-variable that is game for substitution.

The simplicity means that it is possible to use Robinson’s [Rob65] algorithm
for first-order, syntactic unification.

In Core-ML, the class of unification problems is more difficult. The
difficulty arises from the additional structure in the notion of simple type,
and from the context dependent role and scope of type variables:

• The terms to be unified are simple types constructed from an extended
grammar including applications of type names ν ∈ TypNam , and, by
implication, definable types d ∈ DefTyp , and types τ ∈ Typ . Since
all of these may themselves contain free simple type variables, the
unification algorithm must be extended to these semantic objects.

• The equivalence between simple types is tempered by the equivalence
on type names. Unification must take into account the notions of
α, η-equivalence of type names, and, by implication, of definable types
and types.

• Certain simple type variables ′a ∈ SimTyp and all type variables α ∈
TypVar must be treated as parameters and cannot be affected, or their
scopes violated, by unification.
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Q ∈ Prefix ::= ε empty prefix
| Q∃′a simple type meta-variable

(provided ′a 6∈ V(Q))
| Q∀′a simple type parameter

(provided ′a 6∈ V(Q))
| Q∀α type parameter

(provided α 6∈ V(Q))

Figure 8.9: Prefixes

Although our class of unification problems is more complex than for al-
gorithm W, it remains within the family of first-order unification problems:
even though simple types may contain terms with higher-order structure,
the meta-variables that are actually game for substitution are restricted to
first-order variables ranging over simple types.

To respect the scope of parameters, we will use a first-order variant
of Miller’s more general algorithm for performing higher-order unification
under a mixed prefix of quantifiers [Mil92]. Our unification algorithm will
take one additional argument, called the prefix to the unification problem.
The prefix sets the scene for the unification algorithm by declaring the role
and scope of any variables occurring within the terms to be unified.

As in [Mil92], a prefix is simply a sequence of distinct universally and
existentially quantified variables:

Definition 8.7 (Prefixes). Figure 8.9 defines the set of prefixesQ ∈ Prefix .
All variables declared in a prefix are required to be distinct.

We let V(Q) ⊆ SimTypVar ∪ TypVar denote the set of all variables
declared in the prefix Q; E(Q) ⊆ SimTypVar denote the set of variables
declared existentially in Q; U(Q) ⊆ SimTypVar ∪TypVar denote the set of
variables declared universally in Q. Intuitively, E(Q) describes the set of
meta-variables in Q; U(Q) describes the set of parameters in Q.

We will often write a prefix in the form of a pattern Q∃′aQ′ denoting
the concatenation of two prefixes Q∃′a and Q′, for some unique Q and Q′.2

We will make similar use of the patterns Q∀′aQ′ and Q∀αQ′.
In the prefix Q∃′aQ′ (Q∀′aQ′, Q∀αQ′), Q′ is the scope of the declared

variable.

2This notation is unambiguous since a variable may be declared at most once in a
prefix.
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The notation Q∃̄{′a0, . . . ,
′an−1} abbreviates (Q∃′a0 · · · )∃′an−1 (in some

fixed enumeration of type variables). The abbreviations Q∀̄{′a0, . . . ,
′an−1}

and
Q∀̄{α0, . . . , αn−1} are analogous.

A semantic object o is Q-closed, written formally as Q ` o closed, if,
and only if, all of its free variables are declared in Q.

The informal meaning of a prefix as a declaration of variables is as fol-
lows. A universal quantifier declares that its bound variable is to be treated
as a “constant” that is not available for substitution. Because constants
do not usually have scope, we prefer to call universally bound variables
parameters. An existential quantifier declares that its bound variable is
a meta-variable and, unlike a parameter, available for substitution. Intu-
itively, if ′a is a meta-variable then any simple type u substituted for ′a
may contain any of the parameters in scope at the declaration of ′a but
none of the parameters declared within the scope of ′a. Concretely, if ′a
is declared in the prefix Q∃′aQ′, then any simple type u substituted for ′a
may contain any of the parameters declared to the left of ′a in Q but none
of the parameters declared to the right of ′a in Q′. There is no restriction
on the meta-variables that u may contain.

Example 8.3.1. For instance, the prefix ∀α∃′a∀β∃′b declares ′a and ′b as
meta-variables and α and β as parameters. A valid substitution term for ′a
may contain a free occurrence of α, but not of β ; a valid substitution term
for ′b may contain either. Notice that this prefix encodes the side-conditions
on parameters arising from the examples in Figures 8.5 through 8.8.

More formally, a prefix determines a set of allowable, or valid, substitu-
tions:

Definition 8.8 (Q-Substitutions). For a given prefixQ and a substitution
σ, we shall say that σ is a Q-substitution if, and only if, the relation Q `
σ valid, defined in Figure 8.10, holds.

It is possible to relate Q-substitutions, according to their generality:

Definition 8.9 (Q-Generality). For a fixed prefix Q, a Q-substitution σ
is more general than another Q-substitution σ1, written σ �Q σ1, if, and
only if,

∃σ2.σ2 ◦ σ = σ1.

We can now define our refined notion of unification problems and their
solutions:
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Q ` σ valid

ε ` σ valid (Q-1)

Q ` σ valid
Q∃′a ` σ valid (Q-2)

Q ` σ valid ′a 6∈ Dom(σ) ∀′b ∈ E(Q).′a 6∈ FTVS(σ(′b))
Q∀′a ` σ valid (Q-3)

Q ` σ valid ∀′b ∈ E(Q).α 6∈ FV(σ(′b))
Q∀α ` σ valid (Q-4)

Figure 8.10: The definition of Q ` σ valid.

Definition 8.10 (Q-Unification Problems and Q-Unifiers).

A Q-unification problem is a triple consisting of a prefix Q and two Q-closed
semantic objects, o and o ′, drawn from the same set of semantic objects. In
particular, we assume that either o, o ′ ∈ SimTyp, o, o ′ ∈ DefTypk, o, o ′ ∈
TypNamκ, or o, o ′ ∈ Typκ, i.e. that o and o ′ must have the same kind.

• A Q-unifier of o and o ′ is a Q-substitution σ such that σ(o) = σ(o ′).
A Q-unifier of o and o ′ is a solution to the Q-unification problem
posed by o and o ′.

• A most general Q-unifier of o and o ′ is a Q-unifier σ of o and o ′

such that, for every other Q-unifier σ1 of o and o ′, σ �Q σ1. A most
general Q-unifier of o and o ′ is a principal solution to the Q-unification
problem posed by o and o ′.

A Q-Unification Algorithm

In this section we will present a deterministic algorithm for constructing
a most general Q-unifier for a given Q-unification problem. The input to
the algorithm is a valid Q-unification problem, presented as a triple con-
sisting of a prefix Q and two appropriate Q-closed semantic objects o and
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o ′. The output, if any, is a most general Q-unifier for the problem. This
algorithm is designed to satisfy the following property (cf. Theorem 8.4),
whose verification is left to future work:

Property 8.11 (Correctness of Q-Unification). Provided Q, o and o′

define a valid Q-unification problem then:

Termination The appeal Q ` o = o ′ ↓ terminates either in success,
returning a substitution, or failure.

Soundness If Q ` o = o ′ ↓ σ then Q ` σ valid and σ(o) = σ(o ′).

Completeness If σ1(o) = σ1(o ′) with Q ` σ1 valid, then, for some σ,
Q ` o = o ′ ↓ σ with σ �Q σ1.

To express the algorithm, we need to define an additional operation that
updates a prefix Q to take into account the effect of applying an intermediate
Q-substitution:

Definition 8.12 (Substitution in a Prefix).

( ) ∈ (Prefix × Subst) → Prefix

σ(ε) def= ε

σ(Q∃′a) def= (σ(Q))∃̄(FTVS(σ(′a)) \ V(σ(Q)))

σ(Q∀′a) def= (σ(Q))∀′a

σ(Q∀α) def= (σ(Q))∀α

Intuitively, if σ is a Q-substitution then σ(Q) is a prefix that declares
the same set of parameters, and in the same relative order, as Q. Moreover,
any variable ′a that is not a parameter of Q, but occurs in the image under
σ of a meta-variable of Q, is declared as a meta-variable in σ(Q) with the
following properties: (a) for every meta-variable ′b of Q such that ′a ∈
FTVS(σ(′b)), the scope of ′a in σ(Q) contains all of the parameters originally
declared within the scope of ′b in Q; (b) ′a is declared within the scope of as
many parameters as possible without violating property (a). Syntactically
speaking, this means that (a) for every meta-variable ′b of Q such that
′a ∈ FTVS(σ(′b)), ′a is existentially quantified to the left of any parameters
originally declared to the right of ′b; (b) ′a is existentially quantified as far
to the right as possible without violating (a).

The formal motivation for defining substitution in a prefix is the following
lemma:
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Lemma 8.13 (Composition). Let σ1 be a Q-substitution. Then, for any
other substitution σ2, σ2 ◦ σ1 is a Q-substitution if, and only if, σ2 is a
σ1(Q)-substitution.

The forward direction of this lemma can be used to prove the soundness
of our unification algorithm: namely, that the composite substitutions re-
turned by the algorithm are valid for the original prefix of the unification
problem. The reverse direction can be used to prove completeness: updating
the prefix in recursive calls does not exclude valid unifiers.

The following properties allow us to show that the unification algorithm
only invokes itself on valid unification problems in recursive calls; and that
it returns a valid substitution for the original prefix in rules that extend the
current prefix with new parameters.

Properties 8.14 (Closure and Weakening).

1. If Q ` o closed, Q ` σ valid, and ∀′a ∈ E(Q).FV(σ(′a)) ⊆ U(Q)
then σ(Q) ` σ(o) closed.

2. If Q∀′a ` σ valid then Q ` σ valid.

3. If Q∀α ` σ valid then Q ` σ valid.

We can now present our unification algorithm:

Unification of Simple Types Q ` u = u ′ ↓ σ

Q∀′aQ′ ` ′a = ′a ↓ ∅ (U-1)

Q∃′aQ′ ` ′a = ′a ↓ ∅ (U-2)

(U-1),(U-2) A simple type variable, whether a parameter or a meta-variable,
unifies with itself under the empty substitution.

Q∃̄E(Q′) ` u closed
Q∃′aQ′ ` ′a = u ↓ [u/′a] (U-3)

Q∃̄E(Q′) ` u closed ∀′b ∈ E(QQ′).u 6≡ ′b
Q∃′aQ′ ` u = ′a ↓ [u/′a] (U-4)
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(U-3),(U-4) The rules are almost symmetric. Assuming that u is Q∃′aQ′-
closed, the premise Q∃̄E(Q′) ` u closed merely requires that none of
the parameters declared within the scope of the meta-variable ′a occur
free in u, and that ′a does not occur free in u. The former ensures that
[u/′a] is a Q∃′aQ′-substitution as well as a unifier. The latter is just
the occur check that we already encountered in Rules (R-2) and (R-3)
of Robinson’s algorithm. The side condition ∀′b ∈ E(QQ′).u 6≡ ′b on
Rule (U-4) ensures that only Rule (U-3) applies in the special case
that both types are distinct meta-variables. This side condition plays
the same role as the second side condition of Rule (R-3).

Q ` u1 = u ′1 ↓ σ1 σ1(Q) ` σ1(u2) = σ1(u ′2) ↓ σ2

Q ` u1 → u2 = u ′1 → u ′2 ↓ σ2 ◦ σ1 (U-5)

(U-5) To unify two function spaces, we first attempt to unify their domains
to obtain aQ-substitution σ1. Provided this succeeds, we then attempt
to unify σ1(u2) and σ1(u ′2) with respect to the updated prefix σ1(Q).
Note that revising the prefix ensures that σ2 is a σ1(Q)-substitution
and thus that σ2 ◦ σ1 is a Q-substitution (cf. Lemma 8.13 (Composi-
tion)).

Q ` ν = ν ′ ↓ σ
∀i ∈ [k].

(
σ̄(Q) ` σ̄(ui) = σ̄(u ′i) ↓ σi where σ̄ ≡ (σ(i−1) ◦ . . . σ0 ◦ σ)

)
Q ` ν(u0, . . . , u(k−1)) = ν ′(u ′0, . . . , u

′
(k−1)) ↓ σ(k−1) ◦ . . . σ0 ◦ σ

(U-6)

(U-6) To unify two type name applications, we first attempt to unify their
type names, and then iteratively attempt to unify their corresponding
arguments. Each subsequent appeal to the algorithm must take into
account the substitutions returned by previous appeals. The rule only
applies when the two type names both have the same number of argu-
ments and are thus of the same kind (unification must fail otherwise).

Unification of Definable Types Q ` d = d ′ ↓ σ

∀i ∈ [k].′ai 6∈ V(Q) ∪ {′a0, . . . ,
′a(i−1)}

Q∀̄′a0, . . . ,
′a(k−1) ` u = {′bi 7→ ′ai|i ∈ [k]} (u ′) ↓ σ

Q ` Λ(′a0, . . . ,
′a(k−1)).u = Λ(′b0, . . . ,

′b(k−1)).u ′ ↓ σ (U-7)
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(U-7) To unify two definable types, we first rename the formal arguments
of one to coincide with the formal arguments of the other and declare
them as fresh parameters in the prefix. The premise

∀i ∈ [k].′ai 6∈ V(Q) ∪ {′a0, . . . ,
′a(i−1)}

together with the assumption that Λ(′b0, . . . ,
′b(k−1)).u ′ is Q-closed

ensures that this renaming does not capture any free variables of
Λ(′b0, . . . ,

′b(k−1)).u ′. We then unify the bodies in the extended prefix.
Observe that, because the parameters are declared to the right of any
meta-variable in Q, the parameters are prevented from occurring in
the image of any meta-variable under σ. Moreover, being parameters,
they cannot occur in the domain of σ. It is easy to reason that, under
these conditions, if σ is a unifier of u and {′bi 7→ ′ai|i ∈ [k]} (u ′) then σ
is also a unifier of Λ(′a0, . . . ,

′a(k−1)).u and Λ(′b0, . . . ,
′b(k−1)).u ′. Note

also that the rule applies only when the two definable types take the
same number of arguments and are thus of the same kind (unification
must fail otherwise).

Unification of Type Names Q ` ν = ν ′ ↓ σ

Q∀αQ′ ` α = α ↓ ∅ (U-8)

(U-8) A type variable must be declared as a parameter. It unifies with itself
under the empty substitution.

ν, ν ′ ∈ TypNamκ

Q ` ν = ν ′ ↓ σ1

σ1(Q) ` σ1(τ ) = σ1(τ ′) ↓ σ2

Q ` ν τ = ν ′ τ ′ ↓ σ2 ◦ σ1 (U-9)

(U-9) To unify two type applications we proceed essentially as in rule (U-6).
However, we need to first ensure that the type names in the left and
right hand sides are of the same kind (unification must fail if they are
not).

Unification of Types Q ` τ = τ ′ ↓ σ

α 6∈ V(Q) Q∀α ` τ = [α/β ] (τ ′) ↓ σ

Q ` Λα.τ = Λβ.τ ′ ↓ σ (U-10)
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(U-10) In a manner similar to Rule U-7, to unify two type abstractions, we
first rename the formal argument of one to coincide with the argument
of the other and declare it as a fresh parameter in the prefix. The
premise α 6∈ V(Q) together with the assumption that Λβ.τ ′ is Q-
closed ensures that this renaming does not capture any free variables
of Λβ.τ ′. We then unify the bodies in the extended prefix. Declaring
the parameter to the right of any meta-variables in Q prevents it from
occurring in their image under σ. Under these conditions, it is easy to
reason that if σ is a unifier of τ and [β/α] (τ ′) then σ is also a unifier
of Λα.τ and Λβ.τ ′.

Q ` ν = ν ′ ↓ σ

Q ` ν = ν ′ ↓ σ (U-11)

(U-11) If both types are type names, we simply unify the type names.

α 6∈ V(Q) Q∀α ` τ = ν α ↓ σ

Q ` Λα.τ = ν ↓ σ (U-12)

α 6∈ V(Q) Q∀α ` ν α = τ ↓ σ

Q ` ν = Λα.τ ↓ σ (U-13)

(U-12),(U-13) These rules are symmetric. If one of the types is an ab-
straction, but the other is a type name, then unification does not
immediately fail, for there may be a unifier that makes the two terms
η-equivalent. (Recall that Definition 5.2 requires that we identify any
type of the form Λα.ν α ∈ TypNamκ→κ′ with its η-contraction ν , pro-
vided α 6∈ FV(ν) and ν ∈ TypNamκ→κ′ .) Note that, provided ν is
Q-closed, the first premise ensures that α does not occur in FV(ν).
Hence Λα.ν α is an η-expansion of ν . Our algorithm proceeds in the
recursive call by declaring the shared parameter and unifying the body
of the original abstraction with the body of the η-expansion. This trick
for dealing with η-equivalence is inspired by Coquand’s algorithm for
testing conversion in Type Theory [Coq91].

Q ` d = d ′ ↓ σ

Q ` d = d ′ ↓ σ (U-14)

(U-14) If both types are definable types, we simply unify the definable types.



8.3 Type Inference for Core-ML with Higher-Order Modules 319

Q ` d = η(ν) ↓ σ

Q ` d = ν ↓ σ (U-15)

Q ` η(ν) = d ↓ σ

Q ` ν = d ↓ σ (U-16)

(U-15),(U-16) These rules are symmetric and similar to Rules (U-12) and
(U-13). If one of the types is a definable type, but the other is a type
name, then unification does not immediately fail, for there may be a
unifier that makes the two terms η-equivalent. (Recall that Definition
5.2 requires that we identify any type name with its η-expansion as a
definable type.) In the recursive call, we first η-expand the type name
to obtain a definable type, and then unify the two definable types.

Example 8.3.2. For example, consider the problem of finding a most general
∀α∃′a∀β∃′b-unifier of ′a → ′b and ′b → ′a. The corresponding appeal to
the algorithm:

∀α∃′b ` ′b closed
∀α∃′a∀β∃′b ` ′a = ′b ↓ [′b/′a]

(U-3)
∀α∃′b∀β ` ′b = ′b ↓ ∅

(U-2)

∀α∃′a∀β∃′b ` ′a → ′b = ′b → ′a ↓ [′b/′a]
(U-5)

returns the substitution [′b/′a]. It is easy to see that [′b/′a] is a ∀α∃′a∀β∃′b-
unifier of ′a → ′b and ′b → ′a, since

[′b/′a](′a → ′b) = ′b → ′b = [′b/′a](′b → ′a)

and β 6∈ FV([′b/′a](′a)). To see that it is a most general unifier, consider
any other ∀α∃′a∀β∃′b-unifier σ1 of ′a → ′b and ′b → ′a. Then we must
have σ1(′a) = σ1(′b) with β 6∈ FV(σ1(′a)). Let σ2 = σ1, then it is easy to
see that σ2 ◦ [′b/′a] = σ1, i.e. [′b/′a] �∀α∃′a∀β∃′b σ1.

Example 8.3.3. For another example, consider the problem of finding a most
general ∀α∃′a∀β∃′bunifier of ′a → ′b and ′b → β . The corresponding appeal
to the algorithm:

∀α∃′b ` ′b closed
∀α∃′a∀β∃′b ` ′a = ′b ↓ [′b/′a]

(U-3)
∀α ` β closed fails
∀α∃′b∀β ` ′b = β ↓

(U-3)

∀α∃′a∀β∃′b ` ′a → ′b = ′b → β ↓
(U-5)

fails to return a substitution, because the condition ∀α ` β closed does not
hold at the root of the rightmost recursive call. But this is fine, since there
is no ∀α∃′a∀β∃′b-unifier of ′a → ′b and ′b → β . Suppose, to the contrary,
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that there was such a unifier σ. Then we must have σ(′a → ′b) = σ(′b → β)
with β 6∈ FV(σ(′a)). This just means that σ(′a) = σ(′b) and σ(′b) = β .
But then FV(σ(′a)) = {β} which contradicts β 6∈ FV(σ(′a)).

8.3.2 Value Type Enrichment modulo Unification

In Rule (M -4) of the signature matching algorithm (Definition 5.25), we
implicitly assumed the existence of a decidable test for determining whether
one value type enriches another, i.e. for checking whether the relation v � v ′

holds between two value types of the generic Core language. For Core-ML,
Definition 3.28 defines v � v ′ to hold if, and only if, “every simple type
generalised by v ′ is also generalised by v”. This definition is intuitive, but the
infinitary condition prevents it from directly yielding a decision procedure.

Fortunately, it can be shown that v enriches v ′ if, and only if, v gener-
alises a generic instance of v ′ [Tof88]. Formally, let v ≡ ∀′a0, . . . ,

′a(m−1).u
and v ′ ≡ ∀′b0, . . . ,

′b(n−1).u ′. Provided that {′b0, . . . ,
′b(n−1)} ∩ FTVS(v) =

∅ then v � v ′ if, and only if, v � u ′, i.e. there exists a substitution σ with
Dom(σ) = {′a0, . . . ,

′a(m−1)} such that σ(u) = u ′.

Moreover, since we can w.l.o.g. also assume that
{′a0, . . . ,

′a(m−1)} ∩ FTVS(u ′) = ∅, we can easily decide whether v � u ′

by looking for a unifier σ with Dom(σ) = {′a0, . . . ,
′a(m−1)} such that

σ(u) = σ(u ′) = u ′. Thus the test for v � v ′ can be posed as the following
Q-unification problem. Set Q to be the prefix that declares all the free vari-
ables of v and v ′ as parameters. Then v � v ′ if, and only if, u and u ′ have a
Q∀̄{′b0, . . . ,

′b(n−1)}∃̄{′a0, . . . ,
′a(m−1)}-unifier. Clearly, this can be decided

by a corresponding appeal to our unification algorithm.

It is not difficult to argue that, in the more general case, whereQ declares
some of the simple type variables free in v and v ′, not as parameters, but
as meta-variables, then the successful appeal

Q∀̄{′b0, . . . ,
′b(n−1)}∃̄{′a0, . . . ,

′a(m−1)} ` u = u ′ ↓ σ

can be used to obtain a most general Q-substitution σ′ such that σ′(v) �
σ′(v ′), by choosing σ′ = σ \ {′a0, . . . ,

′a(m−1)}.
This idea is embodied in the following algorithm which we shall need

shortly.
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Value Type Matching Q ` v � v ′ ↓ σ

∀i ∈ [n].′bi 6∈ V(Q) ∪ {′b0, . . . ,
′b(i−1)}

∀i ∈ [m].′ai 6∈ V(Q) ∪ {′b0, . . . ,
′b(n−1)} ∪ {′a0, . . . ,

′a(i−1)}
Q∀̄{′b0, . . . ,

′b(n−1)}∃̄{′a0, . . . ,
′a(m−1)} ` u = u ′ ↓ σ

Q ` ∀′a0, . . . ,
′a(m−1).u � ∀′b0, . . . ,

′b(n−1).u ′ ↓ σ \ {′a0, . . . ,
′a(m−1)}

(V-1)
It is designed to satisfy the following property, whose verification is left

to future work:

Property 8.15 (Correctness of Value Type Matching). For any prefix
Q and Q-closed value types v and v ′:

Termination The appeal Q ` v � v ′ ↓ terminates either in success,
returning a substitution, or failure.

Soundness If Q ` v � v ′ ↓ σ then Q ` σ valid and σ(v) � σ(v ′).

Completeness If σ1(v) � σ1(v ′) with Q ` σ1 valid, then, for some σ,
Q ` v � v ′ ↓ σ with σ �Q σ1.

Example 8.3.4. Unlike the rules of the unification algorithm, that can at
most declare additional parameters in recursive calls, the algorithm for value
type matching can declare additional meta-variables before invoking unifi-
cation. For instance, consider the derivation:

Q∃̄E(Q′∃′c1∃′c2) ` ′c1 → ′c2 closed
∀′d ∈ E(QQ′∃′c1∃′c2).′c1 → ′c2 6≡ ′d

Q∃′aQ′∃′c1∃′c2 ` ′c1 → ′c2 = ′a ↓ [′c1 → ′c2/
′a]

(U-4)

Q∃′aQ′ ` ∀′b1,
′b2.

′b1 → ′b1 � ∀∅.′a ↓ [′c1 → ′c2/
′a]

(V-1)

The recursive call to unification extends the prefix with two new meta-
variables ′c1 and ′c2. This derivation is sound because:

[′c1 → ′c2/
′a](∀′b1,

′b2.
′b1 → ′b2) ≡ ∀′b1,

′b2.
′b1 → ′b2

� ∀∅.′c1 → ′c2

≡ [′c1 → ′c2/
′a](∀∅.′a)

Notice that updating the original prefixQ∃′aQ′ by the resulting substitution
[′c1 → ′c2/

′a] returns the modified prefix Q∃′c1∃′c2Q′ that declares not one
but two fresh meta-variables ′c1 and ′c2, whose declarations replace the
single declaration of ′a.
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8.3.3 Matching modulo Unification

In Chapter 5 we presented an algorithm for “matching” one module type
against another. Provided suitable conditions hold of the inputs P , R, O
and O′, the appeal ∀P .∀R ` O � O′ ↓ produces as output a unique
matching realisation ϕ if, and only if, O � ϕ (O′). In the context of Core-ML
type inference, we can encounter matching problems in which both O and
O′ contain meta-variables, introduced by the type inference algorithm. In
this situation, the matching problems we need to solve are more general. In
particular, the typical matching problem will be to find both a substitution σ
and a realisation ϕ such σ(O) � ϕ (σ(O′)). Clearly, the algorithm ∀P .∀R `
O � O′ ↓ as it stands is not appropriate. Fortunately, we can adapt it to
the more general setting.

Our generalised matching algorithm, that combines the search for a sub-
stitution with the construction of a matching realisation, is derived from the
matching algorithm in Chapter 5. Successful appeals to the algorithm have
the form Q.∀R ` O � O′ ↓ σ, ϕ. The four arguments Q, R, O and O′

play essentially the same role as in the original algorithm, except that the
first has been generalised from a set of type variables P to a prefix Q. The
algorithm outputs both a substitution σ and, as before, a realisation ϕ. In-
tuitively, the matching algorithm constructs a most general Q-substitution
σ and realisation ϕ such that σ(O) � ϕ (σ(O′)) (provided they exist).

In the original algorithm, the first argument P merely records the set
of type variables, other than R, allowed to occur free in the objects O and
O′. In the generalised algorithm, Q subsumes the role of P . Like P , Q
records the set of type variables, other than R, allowed to occur free in both
objects O and O′, by declaring these variables as parameters. However, it
also sets the scene for any unification problems encountered during matching
by declaring the role and scope of any simple type variable occurring free in
O and O′.

To see how the algorithm is derived from the algorithm in Chapter 5 we
shall compare the original rule, Rule (M -2):

t ∈ Dom(S) S(t) = τ ∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � t = τ ,S ′ ↓ ϕ
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with its generalisation, Rule (M-2):

t ∈ Dom(S)
S(t), τ ∈ Typκ

Q∀̄R ` τ closed
Q ∀̄R ` S(t) = τ ↓ σ1

σ1(Q).∀R ` σ1(S) � σ1(S ′) ↓ σ2, ϕ

Q.∀R ` S � t = τ ,S ′ ↓ σ2 ◦ σ1, ϕ

In the generalised rule, the original test for type equivalence, S(t) = τ , has
been replaced by a test for unifiability, expressed by the three premises:

S(t), τ ∈ Typκ

Q∀̄R ` τ closed

Q ∀̄R ` S(t) = τ ↓ σ1

Of these, the first premise merely states that the two type components are of
the same kind, which is a necessary precondition on the inputs to the unifi-
cation algorithm3. The second premise ensures that the type τ is closed with
respect to the variables allowed to occur free in S(t). This premise discrimi-
nates between applications of this rule and Rule (M-3)4. The third premise,
the appeal to the unification algorithm, is the generalisation proper of the
original premise S(t) = τ . If the components can be unified, the unifier σ1

is applied to the structures S and S ′ before proceeding with the recursive
call. The result, if any, is a second substitution σ2 and matching realisation
ϕ such that σ2(σ1(S)) � ϕ (σ2(σ1(S))). The most general substitution for
the original problem is obtained by composing σ2 and σ1. The matching
realisation is just the realisation ϕ.

The only other rule that can actually contribute to the final substitution
returned by matching, rather than merely propagating substitutions ob-
tained from recursive calls, is Rule (M-4), the generalisation of Rule (M -4).
The rule determines whether the corresponding value component of the left-
hand structure enriches the value component of the right-hand structure,
modulo some most general substitution. This is decided by an appeal to the
algorithm Q ` v � v ′ ↓ of the preceding section.

3In the original rule, this premise is implicit because Definition 5.2 stipulates that type
equivalence is only defined on types of the same kind.

4In the original rule, this premise is implicit because two types can only be equivalent
if they contain the same free variables.
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The remaining rules are straightforward adaptations of the correspond-
ing originals: each rule has been altered to propagate the additional substi-
tution from the output of one recursive call to the inputs of the next, and to
return the appropriate composite substitution and realisation, taking care
to apply any intervening substitution to a previously computed component
of this realisation. (The result of applying a substitution to a realisation is
defined in the obvious way: σ(ϕ) def= {α 7→ σ(ϕ (α)) | α ∈ Dom(ϕ)}.)

Structure Matching Q.∀R ` S � S ′ ↓ σ, ϕ

Q.∀R ` S � εS ↓ ∅, ∅ (M-1)

t ∈ Dom(S)
S(t), τ ∈ Typκ

Q∀̄R ` τ closed
Q ∀̄R ` S(t) = τ ↓ σ1

σ1(Q).∀R ` σ1(S) � σ1(S ′) ↓ σ2, ϕ

Q.∀R ` S � t = τ ,S ′ ↓ σ2 ◦ σ1, ϕ (M-2)

α 6∈ V(Q) ∪ R
t ∈ Dom(S)
S(t), (α β0 · · · βn−1) ∈ Typκ

FV(S(t)) ∩ R ⊆ {βi|i ∈ [n]}
Q.∀R ` S � [Λβ0 · · ·βn−1.S(t)/α] (S ′) ↓ σ, ϕ

Q.∀R ` S � t = α β0 · · · βn−1,S ′ ↓ σ, (σ([Λβ0 · · ·βn−1.S(t)/α]) | ϕ)
(M-3)

x ∈ Dom(S)
Q ∀̄R ` S(x) � v ↓ σ1

σ1(Q).∀R ` σ1(S) � σ1(S ′) ↓ σ2, ϕ

Q.∀R ` S � x : v ,S ′ ↓ σ2 ◦ σ1, ϕ (M-4)

X ∈ Dom(S)
Q.∀R ` S(X) �M ↓ σ1, ϕ
σ1(Q).∀R ` σ1(S) � ϕ (σ1(S ′)) ↓ σ2, ϕ

′

Q.∀R ` S � X : M,S ′ ↓ σ2 ◦ σ1, (σ2(ϕ) | ϕ′) (M-5)
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Functor Matching Q.∀R ` F � F ′ ↓ σ, ϕ

N ∩ (V(Q) ∪ R ∪M ) = ∅
M ∩ (V(Q) ∪ R) = ∅
(Q ∀̄R ∪M ).∀∅ ` MM �MN ↓ σ1, ϕ

′

σ1(Q).∀R ∪M ` ϕ′ (σ1(M′
N )) � σ1(M′

M ) ↓ σ2, ϕ

Q.∀R ` ∀N .MN →M′
N � ∀M .MM →M′

M ↓ σ2 ◦ σ1, ϕ (M-6)

Module Matching Q.∀R ` M �M′ ↓ σ, ϕ

Q.∀R ` S � S ′ ↓ σ, ϕ

Q.∀R ` S � S ′ ↓ σ, ϕ (M-7)

Q.∀R ` F � F ′ ↓ σ, ϕ

Q.∀R ` F � F ′ ↓ σ, ϕ (M-8)

The generalised matching algorithm is designed to satisfy the follow-
ing property (cf. Theorems 5.26 (Termination), 5.32 (Soundness) and 5.33
(Completeness)), whose verification is left to future work:

Property 8.16 (Correctness of Matching). On inputs Q, R, O and
O′, where P ≡ U(Q) ∩ TypVar and for any Q such that ∀P ∪ R ` O Gnd,
∀P .∃Q .∀R ` O′ Slv, Q∀̄Q ∪ R ` O closed and Q∀̄Q ∪ R ` O′ closed, the
matching algorithm has the following properties:

Termination The appeal Q.∀R ` O � O′ ↓ , terminates either in
success, returning a substitution and realisation, or failure.

Soundness If Q.∀R ` O � O′ ↓ σ, ϕ then Q∀̄Q ∪ R ` σ valid,
Dom(ϕ) = Q and σ(O) � ϕ (σ(O′)).

Completeness If σ1(O) � ϕ1 (σ1(O′)), where Q∀̄Q ∪ R ` σ1 valid,
Dom(ϕ1) = Q and Reg(ϕ1) ∩ R = ∅, then, for some σ, ϕ and σ2,
Q.∀R ` O � O′ ↓ σ, ϕ with σ2 ◦ σ = σ1 and σ2(ϕ) = ϕ1.

8.3.4 A Type Inference Algorithm

With suitable algorithms for unification and matching in hand, we can now
present the type inference algorithm for Core-ML with Higher-Order Mod-
ules.

Our algorithm has essentially the same form as W, except that it takes
an additional argument, the current prefix Q. Intuitively, given a prefix Q,
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a Higher-Order Modules context C, and a phrase p, the algorithm, if it suc-
ceeds, returns a pair consisting of a semantic object o and a Q-substitution
σ. If p is a term phrase, then o is the principal classification of the phrase
in the most general, inferred context σ(C). Similarly, if p is a type phrase,
then o is the denotation of the phrase in the most general, inferred context
σ(C).

To ease the presentation, we shall first define the inference judgements
for Core-ML and then for Higher-Order Modules. Although the intended
correctness properties of the inference judgements are stated separately, they
must, of course, be proven simultaneously, since the judgements are defined
by mutual induction.

Type Inference for Core-ML

The inference judgements for Core-ML are designed to satisfy the following
property (cf. Theorem 8.5), whose verification is left to future work:

Property 8.17 (Correctness of Core-ML Type Inference).
For any prefix Q and context C such that ` C Gnd and Q ` C closed:

Termination:

• The appeal Q.C ` u ↓ , terminates either in success, returning
a simple type and substitution, or failure.

• The appeal Q.C ` d ↓ , terminates either in success, returning
a definable type and substitution, or failure.

• The appeal Q.C ` v ↓ , terminates either in success, returning
a value type and substitution, or failure.

• The appeal Q.C ` e ↓ , to monomorphic type inference termi-
nates either in success, returning a simple type and substitution,
or failure.

• The appeal Q.C ` e ↓ , to polymorphic type inference termi-
nates either in success, returning a value type and substitution,
or failure.

Soundness:

• If Q.C ` u ↓ u, σ, then Q ` σ valid and σ(C) ` u . u.

• If Q.C ` d ↓ d , σ, then Q ` σ valid and σ(C) ` d . d .

• If Q.C ` v ↓ v , σ, then Q ` σ valid and σ(C) ` v . v.
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• If Q.C ` e ↓ u, σ, then Q ` σ valid and σ(C) ` e : u.

• If Q.C ` e ↓ v , σ, then Q ` σ valid and σ(C) ` e : v.

Completeness:

• If σ1(C) ` u . u1 with Q ` σ1 valid then for some u, σ and σ2,
Q.C ` u ↓ u, σ with σ2 ◦ σ = σ1 and σ2(u) = u1.

• If σ1(C) ` d . d1 with Q ` σ1 valid then for some d , σ and σ2,
Q.C ` d ↓ d , σ with σ2 ◦ σ = σ1 and σ2(d ) = d1.

• If σ1(C) ` v . v1 with Q ` σ1 valid then for some v, σ and σ2,
Q.C ` v ↓ v , σ with σ2 ◦ σ = σ1 and σ2(v) = v1.

• If σ1(C) ` e : u1 with Q ` σ1 valid then for some u, σ and σ2,
Q.C ` e ↓ u, σ with σ2 ◦ σ = σ1 and σ2(u) = u1.

• If σ1(C) ` e : v1 with Q ` σ1 valid then for some v, σ and σ2,
Q.C ` e ↓ v , σ with σ2 ◦ σ = σ1 and σ2(v) = v1.5

Denotation Inference Rules

The rules for inferring the denotations of Core-ML type phrases are straight-
forward adaptations of their counterparts in the static semantic of Core-ML
(cf. Section 3.2.3). Each rule has been altered to propagate the additional
substitution from the output of one recursive call to the inputs of the next,
and to return the appropriate denotation and composite substitution, tak-
ing care to apply any intervening substitution to a previously computed
component of the denotation.

Simple Types Q.C ` u ↓ u, σ

C(′a) = u
Q.C ` ′a ↓ u, ∅ (C-1)

Q.C ` u ↓ u, σ1 σ1(Q).σ1(C) ` u′ ↓ u ′, σ2

Q.C ` u → u′ ↓ σ2(u) → u ′, σ2 ◦ σ1 (C-2)

5 The reason that we can state σ2(v) = v1 rather than just σ2(v) � v1, as in the
completeness property for algorithmW (Theorem 8.5), is because the Core-ML judgement
σ1(C) ` e : v1 already requires that the derived type v1 is principal for e in σ1(C) (cf. Rule
(C-10)), while the corresponding ML judgement σ1(C) ` e : v1 does not (cf. Rule (ML-6)).
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Q.C ` do ↓ d , σ
∀i ∈ [k]. (σ(i−1) ◦ . . . σ0 ◦ σ)(Q).(σ(i−1) ◦ . . . σ0 ◦ σ)(C) ` ui ↓ ui, σi

σ(k−1) ◦ . . . σ0(d ) ≡ Λ(′a0, . . . ,
′ak−1).u

σ̄ ≡ {′ai 7→ σ(k−1) ◦ . . . σ(i+1)(ui) | i ∈ [k]}
Q.C ` do(u0, . . . ,uk−1) ↓ σ̄ (u), σ(k−1) ◦ . . . σ0 ◦ σ

(C-3)
The denotations of definable types and value types are inferred in a sim-

ilar manner: fresh simple type variables are chosen to represent the bound
variables of the phrase. These are declared as parameters in the current pre-
fix Q before inferring the denotation of the body. Declaring the parameters
within the scope of all variables in Q (and, by implication, in C) ensures
that these variables remain fresh for the inferred context σ(C), respecting
the side-conditions of Rules (C-4) and (C-5).

Definable Types Q.C ` d ↓ d , σ

∀i ∈ [k].′ai 6∈ V(Q) ∪ {′a0, . . . ,
′ai−1}

Q∀̄{′a0, . . . ,
′ak−1}.C[′a0 = ′a0] · · ·[′ak−1 = ′ak−1] ` u ↓ u, σ

Q.C ` Λ(′a0, · · · , ′ak−1).u ↓ Λ(′a0, · · · , ′ak−1).u, σ (C-4)

Value Types Q.C ` v ↓ v , σ

∀i ∈ [n].′ai 6∈ V(Q) ∪ {′a0, . . . ,
′ai−1}

Q∀̄{′a0, . . . ,
′an−1}.C[′a0 = ′a0] · · ·[′an−1 = ′an−1] ` u ↓ u, σ

Q.C ` ∀′a0, · · · , ′an−1.u ↓ ∀′a0, · · · , ′an−1.u, σ (C-5)

Classification Inference Rules

The rules for inferring the monomorphic types of Core-ML phrases closely
follow the rules of algorithm W. The main difference is this: where our
presentation ofW employed the informal notion of generating “fresh” simple
type variables, without specifying how fresh is actually fresh enough, we use
the current prefix to determine adequate “freshness”.

Monomorphic Values Q.C ` e ↓ u, σ

C(i) = u
Q.C ` i ↓ u, ∅ (C-6)
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′a 6∈ V(Q) Q∃′a.C[i : ′a] ` e ↓ u ′, σ
Q.C ` λi.e ↓ σ(′a) → u ′, σ \ {′a} (C-7)

Q.C ` e ↓ u, σ1

Q′ ≡ σ1(Q)∃̄(FTVS(u) \ V(σ1(Q)))
Q′.σ1(C) ` e′ ↓ u ′, σ2

Q′′ ≡ σ2(Q′)∃̄(FTVS(u ′) \ V(σ2(Q′)))
′a 6∈ V(Q′′)
Q′′∃′a ` σ2(u) = u ′ → ′a ↓ σ3

Q.C ` e e′ ↓ σ3(′a), (σ3 ◦ σ2 ◦ σ1) \ {′a} (C-8)

Q.C ` vo ↓ ∀′a0, . . . ,
′an−1.u, σ

∀i ∈ [n].′ai 6∈ V(σ(Q)) ∪ {′a0, . . . ,
′ai−1}

Q.C ` vo ↓ u, σ (C-9)

In Rule (C-7), inferring the type of a function λi.e, we represent the un-
known type of the formal argument i as a variable ′a that is chosen to be
fresh for the current prefix Q (cf. the premise ′a fresh in Rule (W-2)). Be-
fore inferring the type of the function body, ′a is recorded as a meta-variable
that is declared within the scope of all the variables in the current prefix Q.
In this way, any parameter declared within the scope of ′a, while inferring
the type of the body, will be prevented from occurring in the inferred con-
text σ(C[i : ′a]) ≡ σ(C)[i : σ(′a)]. On the other hand, any parameter that
already occurs in the context, and therefore cannot have a side-condition
that prevents it from occurring in the additional assumption . . .[i : σ(′a)] ,
is free to do so.

A minor complication of our algorithm, that is not apparent in the in-
formal description of W,6 stems from the need to keep track of any fresh
meta-variables that may appear in the inferred type of a subexpression, with-
out having been declared in the prefix used to check that expression. These
variables arise as the result of eliminating polymorphism. The generation of
fresh meta-variables is particularly evident in Rule (C-9), classifying a value
occurrence, but also arises from the inherent polymorphism of λ-abstraction
and function application. To illustrate the phenomenon, let’s just consider
Rule (C-9). Much like Rule (W-4) that eliminates the polymorphism of
an identifier in algorithm W, this rule generates new meta-variables by re-
turning a “fresh” instance of the value occurrence’s polymorphic type. The

6precisely because it is implicit in the informal notion of generating “fresh” variables.
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problem is that, although these variables are chosen to be fresh with respect
to the current prefix Q, we have no explicit means of recording this fact in
the output of the rule. The trick is to leave this book-keeping step not to the
rule itself, but to any rule that might have invoked it in a recursive call. Rule
(C-8) illustrates the idea. After inferring the pair u and σ1 for the function
e, but before inferring the type of the argument e′, any simple type variable
that occurs free in u but is not already declared in the updated prefix σ1(Q)
is assumed to be a “fresh” meta-variable, introduced within the scope of all
variables in σ1(Q). These fresh variables are first collected and then declared
in the extended prefix Q′ ≡ σ1(Q)∃̄(FTVS(u) \ V(σ1(Q))). Only then does
the algorithm proceed with the second recursive call, using the updated pre-
fix and the modified context σ1(C) to infer the type u ′ of the argument e′.
Similar bookkeeping steps are need to account for any fresh meta-variables
in u ′. These are recorded in Q′′, before continuing with the final appeal to
unification. As in Rule (W-3), the appeal to unification ensures that the
domain of the function e is equivalent to the type of the argument e′. How-
ever, unlike Rule (W-3), the most general unifier that equates these types
must also respect the side conditions on parameters encoded in the prefix.

Finally, the principal value type of an expression is obtained by quanti-
fying over all those variables that remain “fresh” for the prefix σ(Q) in the
inferred simple type u:

Polymorphic Values Q.C ` e ↓ v , σ

Q.C ` e ↓ u, σ
{′a0, . . . ,

′an−1} ≡ FTVS(u) \ V(σ(Q))

Q.C ` e ↓ ∀′a0, . . . ,
′an−1.u, σ (C-10)

Type Inference for Higher-0rder Modules

The inference judgements for Higher-Order Modules are designed to satisfy
the following correctness property, whose verification is left to future work:

Property 8.18 (Correctness of Higher-Order Modules Type Infer-
ence).

For any prefix Q and context C such that ` C Gnd and Q ` C closed:

Termination:

• The appeal Q.C ` B ↓ , terminates either in success, returning
a signature and a substitution, or failure.
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• The appeal Q.C ` S ↓ , terminates either in success, returning
a signature and a substitution, or failure.

• The appeal Q.C ` do ↓ , terminates either in success, returning
a definable type and a substitution, or failure.

• The appeal Q.C ` b ↓ , terminates either in success, returning
an existential module type and a substitution, or failure.

• The appeal Q.C ` m ↓ , terminates either in success, returning
an existential module type and a substitution, or failure.

• The appeal Q.C ` vo ↓ , terminates either in success, returning
a value type and a substitution, or failure.

Soundness:

• If Q.C ` B ↓ L, σ, then Q ` σ valid and σ(C) ` B . L.

• If Q.C ` S ↓ L, σ, then Q ` σ valid and σ(C) ` S . L.

• If Q.C ` do ↓ d , σ, then Q ` σ valid and σ(C) ` do . d .

• If Q.C ` b ↓ X , σ, then Q ` σ valid and σ(C) ` b : X .

• If Q.C ` m ↓ X , σ, then Q ` σ valid and σ(C) ` m : X .

• If Q.C ` vo ↓ v , σ, then Q ` σ valid and σ(C) ` vo : v.

Completeness:

• If σ1(C) ` B . L1 with Q ` σ1 valid then for some L, σ and σ2,
Q.C ` B ↓ L, σ with σ2 ◦ σ = σ1 and σ2(L) = L1.

• If σ1(C) ` S . L1 with Q ` σ1 valid then for some L, σ and σ2,
Q.C ` S ↓ L, σ with σ2 ◦ σ = σ1 and σ2(L) = L1.

• If σ1(C) ` do . d1 with Q ` σ1 valid then for some d , σ and σ2,
Q.C ` do ↓ L, σ with σ2 ◦ σ = σ1 and σ2(d ) = d1.

• If σ1(C) ` b : X1 with Q ` σ1 valid then for some X , σ and σ2,
Q.C ` b ↓ X , σ with σ2 ◦ σ = σ1 and σ2(X ) = X1.

• If σ1(C) ` m : X1 with Q ` σ1 valid then for some X , σ and σ2,
Q.C ` m ↓ X , σ with σ2 ◦ σ = σ1 and σ2(X ) = X1.

• If σ1(C) ` vo : v1 with Q ` σ1 valid then for some v, σ and σ2,
Q.C ` vo ↓ v , σ with σ2 ◦ σ = σ1 and σ2(v) = v1.
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The rules for inferring the denotations and classifications of Modules
phrases are straightforward adaptations of their counterparts in the static
semantic of Higher-Order Modules (cf. Section 5.5). Each rule has been
altered to propagate the additional substitution from the output of one re-
cursive call to the inputs of the next, and to return the appropriate seman-
tic object and composite substitution, taking care to apply any intervening
substitution to a previously computed component of the semantic object.
Whenever a static semantic rule requires the introduction of type variables
that are fresh for the inferred context, the corresponding inference rule sim-
ply generates variables that are fresh with respect to the current prefix,
records them as parameters declared within the scope of all currently de-
clared variables and then proceeds with type inference. The only inference
rules that can make a genuine contribution to the substitution returned,
rather than merely propagating the results of recursive calls, are those that
require an appeal to the generalised signature matching algorithm, i.e. the
rules for functor application (Rule (H-19)), curtailment (Rule (H-20)) and
abstraction (Rule (H-21)).

Remark 8.3.1. Observe that the denotation rule for functor signatures (
Rule (H-7)) is ambiguous in the sense that it does not uniquely determine
the enumeration of the functor’s ∀-bound type variables, but the choice of
enumeration affects the order in which the signature’s Λ-bound type vari-
ables are parameterised by the functor’s ∀-bound type variables. A similar
observation applies to the classification rule for functors (Rule (H-18)): it
does not uniquely determine the enumeration of the functor’s ∀-bound type
variables, but the choice of enumeration affects the order in which the func-
tor body’s ∃-bound abstract types are skolemised by the functor’s ∀-bound
type variables. These ambiguities are inconsequential, since the choice of
enumeration does not alter the functional dependencies captured by the pa-
rameterised and skolemised variables. The source of the ambiguity is our
design decision that semantic objects ΛP .M, ∀P .M→ X , and ∃P .M bind
finite sets of type variables that, being sets, do not admit fixed enumerations.
We could easily remove the ambiguity by replacing the use of finite sets of
variables in these binding constructs by the use of finite lists of variables,
so long as we revise the static semantics accordingly. Rather than reformu-
late the static semantics, we let type inference Rules (H-7) and (H-18) be
just as non-deterministic in the enumeration of bound type variables, so that
any static semantic derivation that exploits a particular enumeration admits
a corresponding type inference derivation that exploits the same enumera-
tion. This allows us to give a simple statement of the completeness of type
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inference. The type inference rules are deterministic in all other respects.

Denotation Inference Rules

Signature Bodies Q.C ` B ↓ L, σ

Q.C ` d ↓ d , σ1 σ1(Q).(σ1(C))[t = d ] ` B ↓ ΛP .S, σ2

P ∩ FV(σ2(d )) = ∅ t 6∈ Dom(S)

Q.C ` type t = d;B ↓ ΛP .t = σ2(d ),S, σ2 ◦ σ1 (H-1)

Q∀αk.C[t = ακ] ` B ↓ ΛP .S, σ αk 6∈ V(Q) ∪ P t 6∈ Dom(S)
Q.C ` type t : k; B ↓ Λ{αk} ∪ P .t = αk,S, σ (H-2)

Q.C ` v ↓ v , σ1 σ1(Q).σ1(C)[x : v ] ` B ↓ ΛP .S, σ2

P ∩ FV(σ2(v)) = ∅ x 6∈ Dom(S)

Q.C ` val x : v; B ↓ ΛP .x : σ2(v),S, σ2 ◦ σ1 (H-3)

Q.C ` S ↓ ΛP .M, σ1

P ∩ V(σ1(Q)) = ∅ (σ1(Q)∀̄P).(σ1(C))[X : M] ` B ↓ ΛP ′.S, σ2

P ′ ∩ (P ∪ FV(σ2(M))) = ∅ X 6∈ Dom(S)

Q.C ` module X : S;B ↓ ΛP ∪ P ′.X : σ2(M),S, σ2 ◦ σ1

(H-4)

Q.C ` εB ↓ Λ∅.εS , ∅ (H-5)

Signature Expressions Q.C ` S ↓ L, σ

Q.C ` B ↓ L, σ
Q.C ` sig B end ↓ L, σ (H-6)

Q.C ` S ↓ ΛP .M, σ1

P ∩ V(σ1(Q)) = ∅ P = {ακ0
0 , . . . , α

κn−1

n−1 }
(σ1(C)∀̄P).(σ1(C))[X : M] ` S′ ↓ ΛQ .M′, σ2

Q ′ ∩ (P ∪ FV(σ2(M)) ∪ FV(ΛQ .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}

Q.C ` funsig(X:S)S′ ↓ ΛQ ′.∀P .σ2(M) → [Q ′/Q ] (M′), σ2 ◦ σ1 (H-7)
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Type Occurrences Q.C ` do ↓ d , σ

t ∈ Dom(C) C(t) = τ

Q.C ` t ↓ η̂(τ ), ∅ (H-8)

Q.C ` m ↓ ∃P .S, σ t ∈ Dom(S) S(t) = τ P ∩ FV(τ ) = ∅
Q.C ` m.t ↓ η̂(τ ), σ (H-9)

Classification Inference Rules

Structure Bodies Q.C ` b ↓ X , σ

Q.C ` d ↓ d , σ1 σ1(Q).(σ1(C))[t = d ] ` b ↓ ∃P .S, σ2

P ∩ FV(σ2(d )) = ∅ t 6∈ Dom(S)

Q.C ` type t = d; b ↓ ∃P .t = σ2(d ),S, σ2 ◦ σ1 (H-10)

Q.C ` e ↓ v , σ1 σ1(Q).(σ1(C))[x : v ] ` b ↓ ∃P .S, σ2

P ∩ FV(σ2(v)) = ∅ x 6∈ Dom(S)

Q.C ` val x = e; b ↓ ∃P .x : σ2(v),S, σ2 ◦ σ1 (H-11)

Q.C ` m ↓ ∃P .M, σ1 P ∩ V(σ1(Q)) = ∅
(σ1(Q)∀̄P).σ1(C)[X : M] ` b ↓ ∃P ′.S, σ2

P ′ ∩ (P ∪ FV(σ2(M))) = ∅ X 6∈ Dom(S)

Q.C ` module X = m; b ↓ ∃P ∪ P ′.X : σ2(M),S, σ2 ◦ σ1 (H-12)

Q.C ` m ↓ ∃P .M, σ1 P ∩ V(σ1(Q)) = ∅
(σ1(Q)∀̄P).σ1(C)[X : M] ` b ↓ ∃P ′.S, σ2 P ′ ∩ P = ∅

Q.C ` local X = m in b ↓ ∃P ∪ P ′.S, σ2 ◦ σ1 (H-13)

Q.C ` εb ↓ ∃∅.εS , ∅ (H-14)
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Module Expressions Q.C ` m ↓ X , σ

X ∈ Dom(C) C(X) = M
Q.C ` X ↓ ∃∅.M, ∅ (H-15)

Q.C ` m ↓ ∃P .S, σ X ∈ Dom(S) S(X) = M
Q.C ` m.X ↓ ∃P .M, σ (H-16)

Q.C ` b ↓ X , σ
Q.C ` struct b end ↓ X , σ (H-17)

Q.C ` S ↓ ΛP .M, σ1

P ∩ V(σ1(Q)) = ∅ P = {ακ0
0 , . . . , α

κn−1

n−1 }
(σ1(Q)∀̄P).(σ1(C))[X : M] ` m ↓ ∃Q .M′, σ2

Q ′ ∩ (P ∪ FV(σ2(M)) ∪ FV(∃Q .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}

Q.C ` functor(X : S)m ↓ ∃Q ′.∀P .σ2(M) → [Q ′/Q ] (M′), σ2 ◦ σ1

(H-18)

Q.C ` m ↓ X , σ1

σ1(Q).σ1(C) ` m′ ↓ ∃P ′.M′′, σ2

σ2(X ) ≡ ∃P .∀Q .M′ →M
P ∩ V(σ2 ◦ σ1(Q)) = ∅
P ′ ∩ (V(σ2 ◦ σ1(Q)) ∪ P) = ∅
Q ∩ (V(σ2 ◦ σ1(Q)) ∪ P ∪ P ′) = ∅
((σ2 ◦ σ1(Q))∀̄(P ∪ P ′)).∀∅ ` M′′ �M′ ↓ σ3, ϕ

Q.C ` m m′ ↓ ∃P ∪ P ′.ϕ (σ3(M)), σ3 ◦ σ2 ◦ σ1 (H-19)

Q.C ` m ↓ X , σ1

σ1(Q).σ1(C) ` S ↓ ΛP ′.M′, σ2

σ2(X ) ≡ ∃P .M
P ∩ P ′ = ∅
(P ∪ P ′) ∩ V(σ2 ◦ σ1(Q)) = ∅
((σ2 ◦ σ1(Q))∀̄P).∀∅ ` M �M′ ↓ σ3, ϕ

Q.C ` m � S ↓ ∃P .ϕ (σ3(M′)), σ3 ◦ σ2 ◦ σ1 (H-20)
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Q.C ` m ↓ X , σ1

σ1(Q).σ1(C) ` S ↓ ΛP ′.M′, σ2

σ2(X ) ≡ ∃P .M
P ∩ P ′ = ∅
(P ∪ P ′) ∩ V(σ2 ◦ σ1(Q)) = ∅
((σ2 ◦ σ1(Q))∀̄P).∀∅ ` M �M′ ↓ σ3, ϕ

Q.C ` m \ S ↓ ∃P ′.σ3(M′), σ3 ◦ σ2 ◦ σ1 (H-21)

Value Occurrences Q.C ` vo ↓ v , σ

x ∈ Dom(C) C(x) = v
Q.C ` x ↓ v , ∅ (H-22)

Q.C ` m ↓ ∃P .S, σ x ∈ Dom(S) S(x) = v P ∩ FV(v) = ∅
Q.C ` m.x ↓ v , σ (H-23)

8.4 Type Inference for Core-ML with First-Class
Modules

Let us briefly consider adapting the algorithms of the preceding section to
First-Class Modules, the extension of Core-ML with package types presented
in Chapter 7. There are two issues we need to address:

1. the extension of the Q-unification algorithm to deal correctly with
the unification of package types <∃P .M> ∈ SimTyp, in a way that
respects the equivalence in Definition 7.1.

2. the extension of the Core-ML type inference judgements to handle the
additional Core-ML phrases for specifying, introducing and eliminat-
ing values with package types.

Fortunately, all of the machinery we shall need has already been defined.

8.4.1 Extending the Unification Algorithm

Our unification algorithm must be able to unify simple types up to the
equivalence in Definition 7.1. Recall that this definition essentially identifies
package types up to re-orderings of components.
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Given a unification problem defined by Q, u and u ′, we need only con-
sider the additional case where either one or both of the simple types is a
package type. If only one is a package type, and the other is anything but
a meta-variable, then unification must fail. If the other is a meta-variable,
then the case is already covered by the algorithm’s existing rules (Rule (U-3)
or Rule (U-4)).

The only case that remains is the one where u and u ′ are both package
types. Let u ≡ <∃P .M> and u ′ ≡ <∃P ′.M′>. We want to construct the
most general Q-substitution σ such that σ(<∃P .M>) and σ(<∃P ′.M′>)
are equal “up to” the equivalence of Definition 7.1.

Intuitively, in the special case where the two package types contain none
of the meta-variables in Q, then unification reduces to a test for equivalence
that, expanding Definition 7.1, can be checked by verifying the conditions:

• P ′ ∩ FV(∃P .M) = ∅ and M′ � ϕ (M) for some ϕ with Dom(ϕ) = P ;
and symmetrically:

• P ∩ FV(∃P ′.M′) = ∅ and M � ϕ′ (M′) for some ϕ′ with Dom(ϕ′) =
P ′.

In other words, the two package types are equivalent if, and only if,
each is a generic instance of the signature determined by the other. In
the sketched proof of Conjecture 7.2, we argued that these conditions could
be verified by two symmetric appeals to our original matching algorithm
of Chapter 5. (Recall that the well-formedness condition on package types
ensures that the corresponding signatures ΛP .M and ΛP ′.M′ are both solv-
able ( ` ΛP .M Slv and ` ΛP ′.M′ Slv).)

In the more general case, where <∃P .M> and <∃P ′.M′> may con-
tain meta-variables declared in Q, this argument suggests that we can per-
form a test for equivalence modulo unification using our generalised match-
ing algorithm. Assuming that <∃P .M> and <∃P ′.M′> are Q-closed, we
want to obtain a most general Q-substitution σ such that σ(<∃P .M>) and
σ(<∃P ′.M′>) are equivalent. Without loss of generality we may also as-
sume that (P ∪ P ′) ∩ V(Q) = ∅ and P ∩ P ′ = ∅. Given that <∃P .M> and
<∃P ′.M′> are Q-closed, these conditions ensure that
P ′ ∩ FV(∃P .M) = ∅ and P ∩ FV(∃P ′.M′) = ∅. In the first appeal to
the generalised matching algorithm, we treat variables in P ′ as generic pa-
rameters and determine the most general Q∀̄(P ′ ∪ P)-substitution σ1 and
realisation ϕ such that σ1(M′) � ϕ (σ1(M)) with Dom(ϕ) = P . In a second
appeal, we determine the most general σ1(Q)∀̄(P ∪ P ′)-substitution σ2 and
realisation ϕ′, such that σ2(σ1(M)) � ϕ′ (σ2(σ1(M′))) with Dom(ϕ′) = P ′.
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Since enrichment is closed under substitution, applying σ2 to the first rela-
tion we obtain σ2(σ1(M′)) � σ2(ϕ (σ1(M))). Since σ2 is a σ1(Q)∀̄(P ∪ P ′)-
substitution and σ1(M) is σ1(Q)∀̄(P ∪ P ′)-closed, we can express the rela-
tion σ2(σ1(M′)) � σ2(ϕ (σ1(M))) as σ2 ◦ σ1(M′) � ϕ′′ (σ2 ◦ σ1(M)), where
ϕ′′ is the realisation ϕ′′ def= σ2(ϕ). By the definition of σ2 ◦ σ1, σ2(σ1(M)) �
ϕ′ (σ2(σ1(M′))) can be re-expressed as σ2 ◦ σ1(M) � ϕ′ (σ2 ◦ σ1(M′)). We
can then verify the conditions of Definition 7.1 to show that<∃P .σ2 ◦ σ1(M)>
is equivalent to <∃P ′.σ2 ◦ σ1(M′)>. Since the parameters in P and P ′ can-
not occur in the images of σ1 and σ2, it follows that σ2 ◦ σ1(<∃P .M>) =
σ2 ◦ σ1(<∃P ′.M′>), i.e. that σ2◦σ1 is a Q-unifier of u and u ′. Furthermore,
it is not difficult to reason that σ2 ◦ σ1 is a most general Q-unifier of u and
u ′; and that if either of the above appeals to matching fails, then u and u ′

do not have a Q-unifier.
This idea is captured by extending the unification algorithm with the

following rule:

Q ` u = u ′ ↓ σ

(P ∪ P ′) ∩ V(Q) = ∅
P ∩ P ′ = ∅
Q∀̄P ′.∀∅ ` M′ �M ↓ σ1, ϕ
(σ1(Q))∀̄P .∀∅ ` σ1(M) � σ1(M′) ↓ σ2, ϕ

′

Q ` <∃P .M> = <∃P ′.M′> ↓ σ2 ◦ σ1 (H-24)

Remark 8.4.1. Clearly, adding this rule means that the proofs of termina-
tion, soundness and completeness of our unification and matching algorithms
must now be carried out simultaneously. Even though it is easy to motivate
and describe the extension, it is by no means obvious that the properties of
the original, stratified, algorithms are preserved: we have tied the knot and
made them mutually recursive.

For instance, one of the challenges is to devise a decreasing measure on
unification problems that establishes termination. The measure tradition-
ally used for first-order unification relies on the fact that the unification
algorithm cannot introduce new meta-variables during its execution. This
property no longer holds in the extended algorithm since it may indirectly
invoke Rule (V-1) and, in Example 8.3.4, we demonstrated how this rule can
increase the set of new meta-variables.
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8.4.2 Extending the Type Inference Algorithm

It remains to extend the inference judgements of Core-ML with the three
additional inference rules dealing with package types. Rules (P-1), (P-2) and
(P-3) are straightforward adaptations of the corresponding static semantic
rules, Rules (P-1), (P-2) and (P-3):

Denotation Inference Rules Q.C ` u ↓ u, σ

Q.C ` S ↓ ΛP .M, σ

Q.C ` <S> ↓ <∃P .M>, σ (P-1)

Inferring the denotation of the type phrase <S> is easy: we simply infer
the denotation of the signature S, derive the corresponding package type
and propagate the substitution from the recursive call.

Classification Inference Rules Q.C ` e ↓ u, σ

Q.C ` m ↓ X , σ1

σ1(Q).σ1(C) ` S ↓ ΛP .M, σ2

σ2(X ) ≡ ∃P ′.M′

P ′ ∩ V(σ2 ◦ σ1(Q)) = ∅
P ∩ (V(σ2 ◦ σ1(Q)) ∪ P ′) = ∅
((σ2 ◦ σ1(Q))∀̄P ′).∀∅ ` M′ �M ↓ σ3, ϕ

Q.C ` pack m as S ↓ <∃P .σ3(M)>, σ3 ◦ σ2 ◦ σ1 (P-2)

Inferring the classification of the phrase pack m as S requires an appeal
to the matching algorithm, and is similar to inferring the classification of an
abstraction (Rule (H-21)).

Q.C ` e ↓ u, σ1

Q′ ≡ σ1(Q)∃̄(FTVS(u) \ V(σ1(Q)))
Q′.σ1(C) ` S ↓ ΛP .M, σ2

σ2(Q′) ` u = <∃P .M> ↓ σ3

σ3(<∃P .M>) ≡ <∃P ′.M′> P ′ ∩ V(σ3 ◦ σ2(Q′)) = ∅
(σ3 ◦ σ2(Q′)∀̄P ′).(σ3 ◦ σ2 ◦ σ1)(C)[X : M′] ` e′ ↓ u ′, σ4

P ′ ∩ FV(u ′) = ∅
Q.C ` open e as X : S in e′ ↓ u ′, σ4 ◦ σ3 ◦ σ2 ◦ σ1 (P-3)

In Rule (P-3), we can observe that the presence of the explicit signature
in the elimination phrase open e as X : S in e′ means that the simple type
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of e is uniquely determined up to unifiability with <∃P .M>. Since this is
the only phrase that eliminates package types, the type inference algorithm
never needs to make uneducated guesses about the encapsulated, higher-
order type structure of value expressions that are actually used as packages.
We conjecture that this explicitly typed elimination construct preserves the
principal typing property, i.e. that every typable expression has a principal
type.

8.5 Conclusion

In this chapter, we took a detailed look at the problem of combining type
inference for Core-ML and type checking of Higher-Order Modules. After
reviewing ML type inference, we gave counter-examples that illustrated how
the naive approach of interleaving ML’s type inference algorithmW with the
Modules type checker of Chapter 5 fails to be sound. We used these examples
to motivate the design of an integrated algorithm, similar in spirit to W
but, by necessity, more complex. Although we stated the key correctness
properties that the algorithms are designed to satisfy, the proof of these
properties must be left to future work. The main obstacle to proving these
properties is simply the sheer number of cases to consider.

To alleviate this deficiency, we have aimed for a clear presentation of the
concepts underlying the algorithms, building on the more solid foundations
of Chapter 5 and taking inspiration from the well-known properties of ML
and its type inference algorithm. This leaves us in the unsatisfactory but
probably unavoidable situation of relying on our engineering judgement to
assess the correctness of the algorithms.

However, empirical evidence does support our claim of correctness. The
algorithms, including the extension to First-Class Modules, are implemented
in the prototype interpreter accompanying this thesis [Rus98a]. The algo-
rithms behave correctly on a small but representative range of tests that
includes all of the examples in this thesis.



Chapter 9

Conclusion

We conclude this thesis with a summary of our achievements (Section 9.1),
a comparison with related research (Section 9.2), and directions for further
work (Section 9.3).

9.1 Summary

The Standard ML Modules language has been both the subject and the
source of much of the recent research into the type-theoretic foundations
of module languages. Despite these efforts, a proper type-theoretic under-
standing of the static semantics of Modules has not emerged. Such an un-
derstanding offers two potential benefits: Type Theory provides us with a
rational basis for analysing existing features of the language, and for syn-
thesising new features by generalisation.

In Chapter 2, we reviewed how the existing type-theoretic accounts of
Standard ML, based on a syntactic reduction to standard constructs from
Type Theory, are largely unsatisfactory. The more successful type-theoretic
alternatives to Standard ML Modules (cf. Section 2.3.3), although extending
its capabilities considerably, have resorted to introducing non-standard con-
structs with unpleasant meta-theoretic properties. We consequently could
discern no distinct advantage in abandoning the existing semantics of Stan-
dard ML, provided its main aspects could be explained and extended directly
by analogy with Type Theory.

Thus we undertook the work in this thesis with two main objectives. The
first was to provide a better, more type-theoretic formulation of the existing
static semantics of Modules. The second was to use this formulation as the
rational basis for designing proper extensions of Modules.

341
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In Chapter 3 we gave a stylised presentation of the existing static se-
mantics of Standard ML. We took great pains to separate the semantics of
the Core and Modules, distilling the essence of Modules and making pre-
cise the extent to which each of Core and Modules depends on the other.
This effort was motivated by the desire to ensure that both the syntax and
semantics of Modules were more amenable to generalisation, and to per-
mit applications of Modules to different Core languages. Examining the
semantics we found no evidence to support the often made claim that a
type-theoretic model of Modules requires first-order dependent types. Aside
from the operational use of the state of type variables to implement type
generativity, the type structure of Modules is easily explained by resorting
to the simpler, second-order notions of type parameterisation (for signa-
tures), universal quantification over types (for functors), and subtyping (for
enrichment).

In Chapter 4 we presented a new, more declarative static semantics for
Modules, based on classifying structures using existentially quantified types.
Our main objective was to first explain and then eliminate the state of type
variables maintained by the generative classification judgements of Chap-
ter 3. By proving the equivalence of the two semantics, we showed that
type generativity is nothing more than a procedural implementation of ex-
istential quantification over types. In presenting the new semantics, we also
adopted some clarifying notational changes, stressing the role of signatures
as parameterised types, and functors as polymorphic functions.

In Chapter 5, we extended the Modules language of Chapter 3 to higher-
order, using the revised semantics in Chapter 4 as our starting point. Func-
tors were given the status previously enjoyed only by structures: they could
now be defined as components of structures, specified as functor arguments
and returned as functor results. We were able to present the semantics
of Higher-Order Modules as a natural generalisation of the definitions un-
derlying the first-order language of the preceding chapters. The crucial
ideas of introducing higher-order realisations and of generalising the en-
richment relation to functors, by combining polymorphic subsumption with
contravariant enrichment, were adapted and reworked from the original pro-
posals of Biswas [Bis95]. The applicative semantics for functor generativity
was inspired by our own results in Chapter 4. We also addressed the prac-
tical concern of type-checking Modules by providing, and proving correct,
a sound and complete algorithm for signature matching. The algorithm is
similar to, but simpler than, the one proposed by Biswas.

In Chapter 6 we briefly discussed the foundations of a separate compi-
lation system for Modules. Using our revised semantics, we were able to
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analyse why the traditional approach to separate compilation in Standard
ML fails. We managed to identify an alternative notion of compilation unit
that satisfies the requirements of separate compilation. Although acceptable
in practice, from a theoretical perspective this solution is only partial. After
analysing the problem, we suggested appropriate modifications to the syntax
and semantics, and formalised these ideas in a skeletal higher-order modules
calculus. We sketched a proof of the adequacy of these modifications.

In Chapter 7 we turned our attention to a particular Core language,
Core-ML, and relaxed the stratification between Core and Modules. We
obtained a language with first-class modules and gave examples of programs
exploiting them. Our approach is novel in maintaining the distinction be-
tween Core and Modules. Instead of amalgamating the features of both in
a single language, we provide constructs for packing Module values as Core
values and opening Core values as Module values, allowing programs to al-
ternate between Modules and Core level computation. Our ability to define
a simple notion of first-class module directly contradicts the claims made
by Harper and Mitchell [HM93]: their analysis implies that Standard ML is
incompatible with first-class modules.

In Chapter 8 we considered the type inference problem posed by Core-ML
in the presence of both higher-order and first-class modules. We reviewed the
classical, unification-based type inference algorithm for ML, the language on
which Core-ML is founded. We discussed why a naive combination of the
type checker for Modules with the traditional type inference algorithm for
ML is inadequate. We designed a suitably generalised unification algorithm,
and presented a derived, hybrid type inference algorithm that integrates type
checking of Modules with type inference for Core-ML. We stated correctness
properties of these algorithms but left their verification to future work.

Throughout this thesis, our approach has been to use concepts from type
theory as a guideline for reformulating and generalising the existing seman-
tics of Modules. An important practical benefit of this approach is that
our extensions to the language can readily be integrated with the existing
definition and implementations of Standard ML.

9.2 Comparison with Related Work

9.2.1 The Adequacy of MacQueen’s Type-Theoretic Anal-
ogy

The existing type-theoretic accounts of Standard ML Modules are rooted
in an informal analogy, due originally to MacQueen, relating structures to
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nested pairs, signatures to dependent products, functors to functions, and
functor signatures to dependent function spaces. This analogy was first
expressed in MacQueen’s language DL [Mac86], elaborated in Harper and
Mitchell’s XML [HM93], and ultimately refined to account for the phase
distinction in Harper, Mitchell and Moggi’s HML [HMM90]. Certain aspects
of this analogy, in particular the reliance on first-order dependent types,
can still be found in the type-theoretic alternatives to Standard ML, namely
Leroy’s Modules [Ler94, Ler96b, Ler95], Harper and Lillibridge’s translucent
sums calculus [HL94] and its descendants [Lil97, SH96, HS97].

Having familiarised ourselves with the static semantics of Modules, we
are now in a good position to assess the adequacy of MacQueen’s analogy.
Fundamental to MacQueen’s argument is the tenet that signatures are the
types of structures. In MacQueen’s interpretation, the specification of a type
component within a signature binds an existentially quantified type variable,
while the definition of a type component within a structure introduces an
existential quantifier. This is consistent with MacQueen’s tenet, since it
means that the type of a structure is indeed a signature. To account for
the transparency of type definitions, MacQueen argues that the existential
quantifier must have the strong interpretation of Section 2.2.6. In this way,
Standard ML’s ability to project the actual type component from a structure
is interpreted as the ability to project the type witness from a term of strong
existential type, i.e. the dot-notation is modeled by existential elimination.

Remark 9.2.1. Before we start with our examples, we should point out that
MacQueen uses pairing instead of naming to group components into struc-
tures. For the examples of this section, we shall ignore this discrepancy,
since it isn’t central to the argument.

Example 9.2.1. Let’s illustrate MacQueen’s analogy with an example. We
will use the informal notation [[p]] to denote MacQueen’s interpretation of
the Modules phrase p. For instance, the signature:

S def= sig type t : 0;val x : t end

is interpreted as the strong existential type:

[[S]] def= Σα:0.α

According to the static semantics of Modules, the denotation of the
signature S is:

` S . Λ{α}.(t = α,x : α).
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Let’s define L to abbreviate this semantic signature:

L def= Λ{α}.(t = α,x : α).

Let’s compare S’s denotation L with MacQueen’s interpretation [[S]].
From L we can see that the function of the type specification in S is not to
declare a quantified type component: instead, it simultaneously introduces a
new type parameter α, and declares a type component t = α denoting this
parameter. Notice that the denotation of this type component, although
represented by a formal type variable, is explicit in the body (t = α,x : α)
of L. On the other hand, in the type [[S]] the existential quantifier ensures
that the denotation of the type component is hidden: [[S]] tells us only the
first component of a pair of type [[S]] is some type of kind 0, without revealing
which type.

Despite these differences, let’s continue to develop MacQueen’s analogy.
The structure:

s def= struct type t = int;val x = 1 end

is interpreted as pairing the type int with the term 1 to introduce a value
of existential type, for instance:

[[s]] def= 〈int, 1〉 as Σα:0.α.

Notice that the type of this pair is indeed the existential type [[S]], since

` 〈int, 1〉 as Σα:0.α : Σα:0.α

we have:
` [[s]] : [[S]],

which is consistent with MacQueen’s interpretation of signatures as types.
According to the static semantics of Modules, the semantic object of the

structure s is:
` s : ∃∅.(t = int,x : int).

Let’s define X to abbreviate the semantic object of s:

X def= ∃∅.(t = int,x : int)

Now let’s compare the type [[S]] of [[s]] with the semantic object X of the
structure s. The empty existential quantifier of X is irrelevant. What is
pertinent is that the denotation of the type component, i.e. int, is apparent
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in the semantic object X , while it is hidden in the type [[S]]. This distinction
is crucial because it means that the denotation of s’s type component can
be determined by simple inspection of the semantic object X :

` s : ∃∅.(t = int,x : int)
t ∈ Dom(t = int,x : int)
(t = int,x : int)(t) = int

` s.t . int

On the other hand, to determine the denotation of [[s]]’s type component,
accessed using the first projection Fst [[s]], we have to inspect the term [[s]]
itself, not just its type [[S]]. Only by expanding the definition of [[s]] can we
derive:

` Fst (〈int, 1〉 as Σα:0.α) : 0
` Fst (〈int, 1〉 as Σα:0.α) = int : 0

and hence:
` Fst ([[s]]) = int : 0.

At first, this difference seems insignificant, since X must also be ob-
tained by “inspecting” (i.e. classifying) s. However, suppose the structure
expression s is not in the canonical form of a structure body, but, for the
sake of argument, a functor application. Then we can still determine its
semantic object and the denotation of its type component statically without
dynamically reducing the functor application. In MacQueen’s approach, the
functor application in s is interpreted as a corresponding function applica-
tion in [[s]]. Now, because the function application [[s]] is not in the canonical
form of a pair, the application must first be dynamically reduced to a pair
to discover its type component. Although the effect of having a transparent
type component is similar in both cases, the mechanisms used to achieve
this effect are clearly completely different: static typing on the one hand,
dynamic reduction on the other.

MacQueen’s interpretation of functors as functions is an extension of the
interpretation of signatures as types: because the argument signature of a
functor is interpreted as a type, it makes sense that the functor itself be
modeled as a function on elements of this type. The need to type functions
using first-order universal quantification, i.e. dependent function spaces, fol-
lows from the fact that the argument signature may contain existentially
quantified, and thus opaque, type components. To see why, consider a func-
tion defined with respect to a formal argument whose type is a strong exis-
tential. The type of the function’s body may mention the argument’s type
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component, expressed as a projection from the argument. However, because
the argument is merely formal, i.e. a variable, it cannot be reduced to a
pair and the dependency of the function’s range on its argument cannot be
eliminated. The only way to account for the dependency in the function’s
type is to use first-order universal quantification of the function’s argument
over its range.

Example 9.2.2. Continuing Example 9.2.1, consider the functor:

F def= functor(X : S)struct val y = X.x end

≡ functor(X : sig type t : 0;val x : t end)struct val y = X.x end.

In MacQueen’s interpretation, this corresponds to a λ-abstraction, tak-
ing a term of existential type as an argument, and projecting its second
component.

[[F]] def= λX:[[S]].Snd X
≡ λX:(Σα:0.α).Snd X.

The body of this function has type:

X : Σα:0.α ` Snd X : Fst X

Moreover, since X is canonical, but not in the form of a pair, the type
Fst X may not be simplified any further. Hence the dependency of the
body’s type on the term X cannot be removed and the function must be
given the first-order universally quantified type:

` λX:(Σα:0.α).Snd X : ∀X:(Σα:0.α).Fst X,

i.e.
` [[F]] : ∀X:[[S]].Fst X.

Let’s compare the type of [[F]] with the semantic object that is assigned
to the functor F according to the static semantics of Modules:

` F : ∃∅.∀{α}.(t = α,x : α) → (y : α).

Again, the existential quantification is irrelevant. What is pertinent is
that the range of the functor shows no first-order dependency on the functor
argument: instead, it has a second-order dependency on a universally quan-
tified type variable. What MacQueen interprets as a dependent function on
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a dependent domain, can be understood as a polymorphic, non-dependent
function on a non-dependent domain.

It is revealing to compare the derivation of the function’s type:

X:[[S]] ` Snd X : Fst X
` λX:[[S]].Snd X : ∀X:[[S]].Fst X

with the derivation of the functor’s semantic object:

` S . Λ{α}.(t = α,x : α)
X : (t = α,x : α) ` struct val y = X.x end : ∃∅.(y : α)

` functor(X : S)struct val y = X.x end :
∃∅.∀{α}.(t = α,x : α) → (y : α)

Contrast the classification of the function body with the classification of the
functor body. Unlike the specified type [[S]] of the function argument, neither
the signature S, nor its denotation Λ{α}.(t = α,x : α), is used directly as
the type of the functor argument. Instead, the signature is used in an
ancillary role, to specify the family of argument types Λ{α}.(t = α,x : α),
indexed by α. The functor’s term argument X is assumed to have the
type (t = α,x : α), which is a generic member of this family. Intuitively,
discharging the functor’s term parameter X yields a monomorphic function
of type (t = α,x : α) → (y : α). Discharging the functor’s type parameter
α yields a polymorphic function of type ∀{α}.(t = α,x : α) → (y : α). The
derivation combines both these steps into one.

We can also see the difference between dependent functions and functors
by comparing how they are applied. For example, the type of the application
of the function [[F]] to the actual argument [[s]] is obtained by a first-order
substitution, substituting the term [[s]] for the quantified term variable X in
the range of [[F]]:

` [[F]] : ∀X:[[S]].Fst X ` [[s]] : [[S]]
` [[F]] [[s]] : [[[s]]/X] (Fst X).

On the other hand, consider the classification of the corresponding functor
application according to the static semantics of Modules:

` F : ∃∅.∀{α}.(t = α,x : α) → (y : α)
` s : ∃∅.(t = int,x : int)
(t = int,x : int) � [int/α] (t = α,x : α)

` F s : ∃∅.[int/α] (y : α).
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The semantic object of the application is obtained by a second-order sub-
stitution, substituting the type int for the quantified type variable α in the
functor range. Conceptually, this derivation implicitly combines the fol-
lowing two steps. We first choose an appropriate instance of the polymor-
phic functor, obtaining a monomorphic function of type (t = int,x : int) →
(y : int). We then apply the monomorphic function to an argument in its
domain, returning a result of type (y : int).

Finally, in MacQueen’s interpretation a structure containing a substruc-
ture is modeled as a nested pair of terms. The type of a pair is a cross-
product. Again, the need to type pairs using first-order existential quantifi-
cation, i.e. dependent cross products, follows from the fact that the first com-
ponent of a product may contain existentially quantified, and thus opaque,
type components. For instance, consider wanting to express a function tak-
ing a pair, whose first component is a pair of a type and a term, and whose
second component is a term of this type. Note that the first component
corresponds to a substructure with a type component. We need to express
the domain of our function as a cross product of a strong existential and
some second type. Since the strong existential type does not reveal the
identity of its type component, the only way to express this second type is
by projection from the term inhabiting the strong existential. This means
that the second component of a cross product must be allowed to depend
on the term inhabiting its first component. Thus we need dependent cross
products, i.e. first-order existential quantification over terms.

Example 9.2.3. Suppose we are trying to write a functor with the argument
signature:

S′ def= sig structure Y : S;val y : Y.t end

≡ sig structure Y : sig type t : 0;val x : t end;val y : Y.t end.

Notice how the type of y is specified in terms of the type component of the
substructure Y.

To be consistent with MacQueen’s interpretation of signatures as types,
this signature must correspond to the type of a nested pair, consisting of a
term Y of type [[S]], itself pairing a type with a term, together with another
term of this type. Because the implementation of Y’s type component is
hidden in [[S]], the only way to refer to it is by projection from the term Y,
yielding the first-order existential type:

[[S′]] def= ∃Y:[[S]].Fst Y
≡ ∃Y:(Σα:0.α).Fst Y
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Let’s compare this type with the actual denotation of the signature S′:

` sig structure Y : S;val y : Y.t end . Λ{α}.(Y : (t = α,x : α),y : α).

Observe that the apparent first-order dependency of the type of y on the
term Y has been eliminated in favour of a second-order dependency on the
type parameter α: since α explicitly represents the denotation of Y’s type
component, we can express the type of y without referring to Y.

In summary, by examining the actual semantics of Modules, we can see
little evidence to support the claim that Standard ML’s type structure is
based on first-order dependent types.

9.2.2 Leroy’s Modules and Harper and Lillibridge’s Translu-
cent Sums

In a sense, Leroy’s module calculi [Ler94, Ler96b, Ler95], Harper and Lillib-
ridge’s translucent sums calculus [HL94] and its descendants [Lil97, SH96,
HS97] are refinements of the analogy proposed by MacQueen. While aban-
doning MacQueen’s use of the strong existential, they still interpret sig-
natures as types. Moreover, because signatures can declare opaque type
components, they also need to resort to the use of first-order dependent
types. We will focus on Leroy’s work, but the other systems are similar, and
the comments in this section apply to all of them.

In MacQueen’s approach, the type of a structure cannot reveal the de-
notations of its type components: the transparency of the structure’s type
components is achieved by inspection of the structure itself, violating the
phase distinction. Like MacQueen, Leroy interprets signatures as the types
of structures. However, by enriching the notion of signature to allow a mix-
ture of opaque and manifest type declarations, Leroy can account for trans-
parency, while preserving the phase distinction. Type components with
opaque declarations are abstract. Type components with manifest decla-
rations are transparent. In this way, the denotation of a structure’s type
component can be determined by inspection of the structure’s signature, as
long as the component has a manifest declaration in that signature.

Remark 9.2.2. Leroy use syntactic type phrases, not semantic objects, to
classify term phrases. For instance, the classification judgement for module
expressions has the form C ` m : S, relating the module expression m to
a syntactic signature, where C is a context mapping identifiers to syntactic
type phrases. Because our syntax of type phrases is almost identical to
Leroy’s, we shall employ it when presenting examples in his semantics.
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Example 9.2.4. Continuing with Example 9.2.1, in Leroy’s calculus, the
structure s is assigned the signature:

` s : sig type t = int;val x : int end.

Observe that t is declared to be manifestly equal to int in the type of s.

Leroy defines a context-dependent subtyping relation on signatures, writ-
ten C ` S ⊆ S′, that, in a sense, combines our separate notions of enrichment
and realisation in a single relation.

Example 9.2.5. In Leroy’s semantics, one can derive:

` sig type t = int;val x : int end ⊆ sig val x : int end,

reflecting the fact that, in our semantics, any semantic structure matching
(the denotation of) the signature on the left also matches (the denotation
of) the signature on the right by virtue of enrichment.

Furthermore, in Leroy’s semantics, one can also derive:

` sig type t = int;val x : int end ⊆ sig type t : 0;val x : t end,

reflecting the fact that, in our semantics, any semantic structure matching
the signature on the left also matches the signature on the right by virtue of
a realisation. Notice, however, that the realisation is left implicit in Leroy’s
subtyping judgement.

Using his subtyping relation, Leroy can interpret Standard ML’s abstrac-
tion phrase s \ S as a coercion to a supertype.

Example 9.2.6. For instance, combining the typing judgement:

` s : sig type t = int;val x : int end,

with the subtyping judgement:

` sig type t = int;val x : int end ⊆ sig type t : 0;val x : t end,

one can derive the signature of the abstraction:

` s \ sig type t : 0;val x : t end : sig type t : 0;val x : t end.

It’s interesting to compare this with the semantic object of the abstraction
in our semantics:

` s \ sig type t : 0;val x : t end : ∃{α}.(t = α,x : α).
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In Leroy’s semantics, the abstract type is represented by the opaque type
component t, consequently the type of x depends on the component t. In
our semantics, the abstract type has an independent representation as a
quantified type variable, the denotation of t is apparent, and there is no
dependency of x’s type on the identifier t. We will shortly see why the ex-
istence of an independent representation for the abstract type is significant.

Unfortunately, having combined the notions of enrichment and realisa-
tion into a single subtyping relation, Leroy can no longer account for the
effect of merely curtailing a structure by a signature, forcing him to aban-
don the curtailment phrase. Recall that the semantics of abstraction and
curtailment differ only in the treatment of the matching realisation. In an
abstraction, the actual realisation is effectively forgotten and may be left
implicit. In a curtailment, however, the actual realisation is required since
it must be preserved. The problem with Leroy’s definition of subtyping is
that it leaves realisations implicit, accommodating abstractions, but ruling
out a direct semantics for curtailment phrases.

Leroy needs dependent function spaces (i.e. functor signatures) to de-
scribe the types of functors. As in MacQueen’s DL, the need for dependent
function spaces arises from the use of signatures as types, coupled with the
fact that signatures can contain opaque type components.

Example 9.2.7. In Leroy’s system the body of the functor F from Example
9.2.2 has the signature:

X : sig type t : 0;val x : t end ` struct val y = X.x end :
sig val y : X.t end.

Since the type component of X is declared opaquely in the context, the type
occurrence X.t cannot be simplified any further. Hence the dependency
of the body’s type on the term X cannot be removed, and the functor F
must be given a dependent type that is conveniently expressed using the
dependent syntax of functor signatures1:

` F : funsig(X:sig type t : 0;val x : t end)sig val y : X.t end.

Although functors have dependent types, Leroy must avoid perform-
ing first-order substitution when typechecking functor applications; this is
because the syntax of types is not closed under the substitution of mod-
ule expressions for module identifiers. He does this by adopting a novel

1Note that, although their syntax is the same, functor signatures play a different role
in Leroy’s semantics: in Leroy’s semantics, a functor signature is a type classifying terms;
in our system, a functor signature denotes a parameterised type.
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elimination rule: a functor may only be applied if it can first be given a
non-dependent supertype using a covariant subtyping rule.
Example 9.2.8. In Leroy’s system, to type the application F s we first need
to determine a supertype for F that is both non-dependent and has the type
of s as its domain. To this end, we can show that the original, dependent
functor signature:

funsig(X:sig type t : 0;val x : t end)sig val y : X.t end

is a subtype of the non-dependent supertype:

sig type t = int;val x : int end → sig val y : int end

by the following reasoning. First, observe that the domain of the supertype
is a subtype of the original domain:

` sig type t = int;val x : int end ⊆ sig type t : 0;val x : t end.

Second, under the more informative assumption that X belongs to this sub-
domain, we can show that the original range is a subtype of the supertype’s
range:

X : sig type t = int;val x : int end ` sig val y : X.t end ⊆
sig val y : int end.

Note that to establish this last judgement we need to exploit the fact that,
in the subdomain, X’s type component is manifestly equal to int. Finally,
combining these two facts, the subtyping rule for functor signatures derives:

` funsig(X:sig type t : 0;val x : t end)sig val y : X.t end ⊆
sig type t = int;val x : int end → sig val y : int end.

By the subsumption rule, we can now derive that F also has the non-
dependent type:

` F : sig type t = int;val x : int end → sig val y : int end.

Clearly, the structure s is in F’s domain, since:

` s : sig type t = int;val x : int end.

Moreover, because the range of F no longer depends on the element of F’s
domain, the application F s can be assigned the result signature:

` F s : sig val y : int end,

using the standard elimination rule for non-dependent functions, i.e. without
having to substitute the term s into F’s range.
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Unfortunately, using the subtyping trick to eliminate dependencies doesn’t
always work well, and sometimes doesn’t work at all. The success of the trick
relies crucially on the pre-condition that every abstract type, declared in the
domain of the functor and propagated to its range, is declared manifestly in
the signature of the actual argument.

Example 9.2.9. Here’s an example in which the trick works, but with a
counter-intuitive result. Consider the application F (s \ S). Recall that its
argument has an opaque signature:

` (s \ S) : sig type t : 0;val x : t end.

Now the only applicable, non-dependent supertype that we can find for the
functor is:

` F : sig type t : 0;val x : t end → sig end.

Applying F with this type yields:

` F (s \ S) : sig end.

Observe that the value component y has disappeared from the result. Now
compare this signature with the semantic object assigned to the term:

` F (s \ S) : ∃α.(y : α)

In our semantics, the value component is still available. Of course, in this
example, the value component is useless because there are no operations
that can manipulate this value. However, it is easy to construct larger
examples where the result is a full-blown abstract data type together with
useful operations.

We can explain this difference in behaviour as follows. In Leroy’s cal-
culus, the only way to represent an abstract type is as a reference to an
opaque type component of a structure, i.e. either as a type identifier, or as
the projection of a type identifier from a path of structure identifiers de-
clared in the context. The problem with the functor application above is
that it propagates an abstract type from the context of the functor body, in
which it has a syntactic representation, to the context of the functor appli-
cation, in which it does not. Consequently, any reference to the anonymous
abstract type in the result type must be removed. In this case, the reference
is removed by forgetting the y-component of the result.
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In our semantics, an abstract type, whether denoted by a type compo-
nent or not, retains an independent semantic representation as an existen-
tially quantified type variable. Indeed, examining the semantic object of
the application we can see that the existentially quantified variable does not
appear as the denotation of a type component. However, we can still use it
to describe the type of the value component y. Of course, for the reasons we
discussed in Chapter 6, the type of the application fails to have a syntactic
description in our semantics, causing problems with separate compilation.
In Leroy’s system, the type of the application does have a complete syntactic
description, but the type is less informative.

Example 9.2.10. Here is an example where the trick doesn’t work at all.
Let’s define the curried functor:

G ≡ functor(X : sig type t : 0;val x : t end)
functor(Y : sig val y : X.t end)struct end,

with type:

` G : funsig(X:sig type t : 0;val x : t end)
funsig(Y:sig val y : X.t end)sig end.

The problem arises when we try to type the partial application G (s \ S).
In the previous example, the application of F to (s \ S), we could remove
the dependency of F’s range on its domain by forgetting the y-component
evincing the dependency. We could do this because the declaration of y
occurs in a covariant position in F’s range. However, in the application of
G, the dependency cannot be removed because the declaration of y occurs in
a contravariant position in G’s range. In Leroy’s semantics, the application
is rejected as ill-typed.

We would argue that this behaviour is counter-intuitive: the application
cannot be typed, even though the signature of the actual argument is a
subtype of the functor’s domain. Indeed, in our semantics, the application
does have a type:

` G (s \ S) : ∃{α}.∀∅.(y : α) → ().

Again, notice how the existentially quantified type variable is used to rep-
resent an abstract type that, being anonymous, cannot be accounted for in
Leroy’s system.

Even if we accept the behaviour in the previous examples, there is a
more serious problem with Leroy’s approach. In some situations, a functor
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may have too many non-dependent supertypes, without a principled way
to choose between them. Leroy’s semantics lacks the principal typing prop-
erty. From a practical perspective, this means that a programmer cannot
always rely on the type-checker determining a type commensurate with her
expectations.

Example 9.2.11. This example illustrates the absence of principal types.
Let’s define the higher-order functor:

H ≡ functor(X : sig type t : 0;val x : t end)
functor(Y : sig type u : 1 end)struct type v = Y.u(X.t) end,

which has type:

` H : funsig(X:sig type t : 0;val x : t end)
funsig(Y:sig type u : 1 end)sig type v = Y.u(X.t) end

Now consider the partial application of H to the abstraction (s \ S). As
in the previous examples, to type this application we need to remove the
dependency of H’s range on the identifier X. In other words, we need to
find a supertype of

funsig(Y:sig type u : 1 end)sig type v = Y.u(X.t) end, (?)

that doesn’t mention X. The contra-variant subtyping rule gives us two
ways in which to proceed.

The obvious solution is to replace the range of the functor signature by
a supertype not depending on X:

funsig(Y:sig type u : 1 end)sig type v = Y.u(X.t) end

⊆ funsig(Y:sig type u : 1 end)sig type v : 0 end.

The less obvious solution is to replace the domain of the functor signature
by a subtype that enables us to eliminate the dependency in the range. In
particular, if we choose some definable type Λ′a.u, such that neither X nor
′a occur in u, then we can replace the opaque declaration of u by a manifest
declaration equating u with Λ′a.u. Exploiting this equation then allows us
to remove the dependency in the range:

funsig(Y:sig type u : 1 end)sig type v = Y.u(X.t) end

⊆ funsig(Y:sig type u = Λ′a.u end)sig type v = Y.u(X.t) end

≡ funsig(Y:sig type u = Λ′a.u end)sig type v = u end.
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module F = F;

module X = struct type t = int;val x = 1 end;
module Y = X;
module Z = struct type t = int;val x = 2 end;
module U = struct type t = bool;val x = true end;

module A1 = F X;
module A2 = F X;
module B = F Y;
module C = F Z;
module D = F U;

Figure 9.1: An example illustrating the difference between our notion of
applicative functors and Leroy’s.

The problem is that these solutions are totally unrelated: neither is a
subtype of the other, nor is there a non-dependent supertype of (?) that is
a subtype of both. So which do we choose?

In our semantics, the application is given the unique and thus principal
type:

` H (s \ S) : ∃{α}.∀{β}.(u = β) → (v = (β α)).

Notice how the anonymous abstract type is represented by the type variable
α. In Leroy’s system, the anonymous type can’t be represented and must
be eliminated. Recast in our system, the first solution we gave corresponds
to preserving the functor’s polymorphism but narrowing its range; while the
second solution corresponds to restricting the functor’s polymorphism but
preserving its range.

9.2.3 Leroy’s applicative functors

In Chapter 5 we gave a semantics for applicative functors. The terminology
is borrowed from Leroy, who has proposed an applicative version of his
own module calculus [Ler95]. Although similar in spirit, the two notions of
applicative functor are subtly different.

Roughly speaking, in our semantics, functors are applicative in the sense
that two different applications of the same functor at the same realisation
yield equivalent abstract types. In Leroy’s semantics, two different applica-
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module b
∀{β}.(t=β,x:β)→(t=(α β),x:(α β))
F = F;

module b
(t=int,x:int)
X = struct type t = int;val x = 1 end;

module b
(t=int,x:int)
Y = X;

module b
(t=int,x:int)
Z = struct type t = int;val x = 2 end;

module b
(t=bool,x:bool)
U = struct type t = bool;val x = true end;

module b
(t=(α int),x:(α int))
A1 = F X;

module b
(t=(α int),x:(α int))
A2 = F X;

module b
(t=(α int),x:(α int))
B = F Y;

module b
(t=(α int),x:(α int))
C = F Z;

module b
(t=(α bool),x:(α bool))
D = F U;

Figure 9.2: The example of Figure 9.1, annotated with semantic objects
according to our applicative semantics of Chapter 5.
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module b
funsig(X:sig type t:0;val x:t end)sig type t:0;val x:t end
F = F;

module b
sig type t = int;val x:int end
X = struct type t = int;val x = 1 end;

module b
sig type t = int;val x:int end
Y = X;

module b
sig type t = int;val x:int end
Z = struct type t = int;val x = 2 end;

module b
sig type t = bool;val x:bool end
U = struct type t = bool;val x = true end;

module b
sig type t = (F X).t;val x:t end
A1 = F X;

module b
sig type t = (F X).t;val x:t end
A2 = F X;

module b
sig type t = (F Y).t;val x:t end
B = F Y;

module b
sig type t = (F Z).t;val x:t end
C = F Z;

module b
sig type t = (F U).t;val x:t end
D = F U;

Figure 9.3: The example of Figure 9.1, annotated with types according to
the applicative semantics of Leroy.
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tions of the same functor path to the same argument path yield equivalent
abstract types.

The consequences of this difference in semantics are best illustrated by
example. Let’s define the following functor:

F def= functor(X : sig type t : 0;val x : t end)
X \ sig type t : 0;val x : t end.

Observe that F introduces an abstract type in its body.
In our applicative semantics, F has the following semantic object:

` F : ∃{α}.∀{β}.(t = β,x : β) → (t = (α β),x : (α β)),

where α represents the abstract argument-result type dependency of F. In-
tuitively, α represents this dependency as a function of the argument’s type
component. If we bind the module expression F to a module identifier F,
then the existential quantifier is eliminated, and the type of F is recorded
in the context as the assumption:

. . . ,F : ∀{β}.(t = β,x : β) → (t = (α β),x : (α β)), . . .

for a fixed, but abstract, dependency α.
In Leroy’s applicative semantics, the type of F is:

` F : funsig(X:sig type t : 0;val x : t end)sig type t : 0;val x : t end.

If we bind this module expression to a module identifier F, then its type is
simply recorded in the context as the assumption:

. . . ,F :
funsig(X:sig type t : 0;val x : t end)

sig type t : 0;val x : t end
, . . .

However, each occurrence of the module identifier F will be given the same
strengthened type:

. . . ` F : funsig(X:sig type t : 0;val x : t end)
sig type t = (F X).t;val x : t end.

Intuitively, the projection (F X).t denotes the argument-result type depen-
dency of F as a function of its entire argument, X, not merely as a function
of X’s type component. Note that Leroy’s strengthening operation corre-
sponds to a form of existential elimination.
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In Figure 9.1, we define such a functor F, some sample argument struc-
tures X, Y, Z and U, and the structures A1, A2, B, C and D resulting
from the application of F to these arguments. The difference between our
notion of applicative functor and Leroy’s is illustrated by the equalities that
hold between the type components of A1, A2, B, C and D.

In our semantics, the set of type components:

{A1.t,A2.t,B.t,C.t,D.t}

is partitioned into two disjoint equivalence classes:

{A1.t,A2.t,B.t,C.t} {D.t}

corresponding, respectively, to the representative denotations (α int) and
(α bool).

Figure 9.2 clearly shows why this is the case. In the definitions of A1,
A2, B, and C, the parameter β of F is realised by the same type int,
because each actual argument of F implements the type component t as
int. Consequently, in each definition, the resulting type component receives
the same denotation (α int). In the definition of D, on the other hand, the
functor must be applied with a different realisation (β is realised by bool),
and the resulting type component receives the distinct denotation (α bool).

In Leroy’s semantics, the set is partitioned into four disjoint equivalence
classes:

{A1.t,A2.t} {B.t} {C.t} {D.t}

corresponding, respectively, to the representative type projections (F X).t,
(F Y).t, (F Z).t, and (F U).t.

Figure 9.3 shows why this the case, by revealing the types assigned to
each module identifier in Leroy’s semantics. The type components of A1
and A2 are equivalent because, in both definitions, the functor F is applied
to the same path X (in a generative semantics, the type components of A1
and A2 would be distinct). The remaining type components are all distinct,
because in every case, the functor is applied to a different path.

This raises the question of which behaviour is preferable. One argument
in favour of Leroy’s semantics, and against ours, is that the type C.t should
be distinct from A1.t (as well as A2.t and B.t) because the arguments of
the applications F X and F Z differ on their implementation of the value
component x. This behaviour can be important if the interpretation of
the abstract type returned by F depends on the value of its argument’s x-
component. For instance, if F returned an abstract data type of finite sets,



362 Conclusion

where each set is represented uniquely as a sorted list of elements, and x
is the comparison function used to sort the elements, then it is desirable
that different choices of x result in distinct abstract types. An opposing
argument, against Leroy’s semantics and in favour of ours, is that applying
a functor to a structure on one occasion, and a renaming of that structure
on another, shouldn’t affect the compatibility of the resulting types. Note
that Y is merely a renaming of X, but the abstract types returned by F X
and F Y are distinct in Leroy’s semantics; they are equivalent in ours.

9.3 Further Research

We close by considering some directions for further research.
In order to simplify the presentation of Modules, we have chosen to omit

Standard ML’s facility for defining signature identifiers abbreviating (the
denotations) of signature expressions. For our theoretical study of Modules,
this omission is insignificant, since an occurrence of a signature identifier can
always be replaced by an in-line expansion of its definition. However, for pro-
gramming convenience, signature abbreviations should be supported, since
they drastically reduce syntactic clutter. With the introduction of signa-
ture definitions, it also makes sense to consider adding syntactic support for
qualifying a signature expression’s denotation by further instantiation and
coalescing of its type parameters. Signature abbreviations and a form of
signature qualification are supported in our implementation [Rus98a]. Both
can be described as simple extensions of the syntax and static semantics
presented in this thesis.

One obvious omission of this thesis is the definition of a dynamic seman-
tics for Modules. It is straightforward to define an untyped, call-by-value
semantics in the style of Standard ML [MTH90, MTH96, MG93]. A dynamic
semantics would enable us to state and attempt to prove a type soundness
theorem for the language: that well-typed programs do not “go wrong”.
Most importantly, this work would complete the semantic justification for
First-Class Modules that we sketched in Section 7.4.1.

We need to develop a proof of correctness for the type inference and
unification algorithms of Chapter 8. In the absence of a proof, what jus-
tification do we have for believing in their correctness? Strictly speaking,
none. However, we have striven to obtain a declarative description of the
algorithms that clearly reveals their roots in the verified algorithms for ML
type inference and the verified algorithms of Chapter 5. This should at least
increase our confidence in the algorithms. What’s more, empirical evidence
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gained with our prototype implementation supports the conjecture that the
algorithms are correct, but also suggests that a more efficient implementa-
tion is required. One benefit of our declarative description is that it should
make the verification task easier, at least in principle. In practice, the ma-
jor obstacle for a human prover is the number of cases to be considered; for
a mechanical prover, the number of details to be formalised. Finally, we
should point out that we expect the termination proof for the unification
algorithm to be more difficult in the presence of first-class modules: the need
to perform matching on value types causes the introduction of new unifica-
tion variables during unification, foiling the measure traditionally used to
establish termination of ordinary first-order unification.

From the perspective of Type Theory, it would be nice to give a more
conclusive demonstration that Modules can be understood without resorting
to dependent types. We strongly believe that it is possible to use the ideas
in this thesis to define a type-directed translation from Modules (especially
with Core-ML as a core language) into a standard type theory based on
the simply-typed λ-calculus with higher-order parameterised types, univer-
sal and existential quantification over types, and records. Since the standard
type theories combining all of these features are explicitly typed, the main
difficulty will lie in defining a translation that makes the implicit manipu-
lation of quantifiers and modules subtyping explicit, in a coherent manner.
The problem is exacerbated by the applicative semantics of higher-order
functors, since the implicit skolemisation of existential types requires the
equivalent of an axiom of choice.

One distinguishing aspect of our work is that it maintains the distinction
between syntactic type phrases and semantic objects. Although this can be
criticised as ugly, it also offers an advantage: our framework is readily com-
patible with the extension to Standard ML’s original notion of structure
generativity and structure sharing. Although this feature has been removed
in the revised semantics of Standard ML, it is still of interest, since sharing
of structures is a stronger property than mere sharing of types: it provides a
static guarantee of the identity of values. Indeed, the existing semantics of
structure generativity is closely related to the semantics of type generativity.
We believe that our explanation of type generativity can be adapted to give
a treatment of structure generativity as existential quantification over static
structure names. Moreover, the idea of adopting an applicative semantics
of type generativity to support higher-order functors should carry over to
structure generativity as well, promising a treatment of structure genera-
tivity in the higher-order case. Traditionally, the major difficulty presented
by the semantics of structure sharing lies in determining the principal de-
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notation of a signature that is qualified by structure sharing constraints.
However, this problem is very similar to the one encountered in determin-
ing the principal denotation of a signature that is qualified by type sharing
constraints. In the latter case, it is known that the problem of ensuring
principality becomes trivial if type sharing constraints are abandoned in
favour of definitional type specifications in signatures. It is very plausible
that structure sharing constraints may also be replaced by a simpler form
of specification that eliminates the principality problem.

Finally, in order to make our results widely available we need to transfer
them to both the full definition of Standard ML and to an existing imple-
mentation. Unfortunately, Standard ML’s Core is a much richer language
than Core-ML. Moreover, the actual semantics of Standard ML does not sep-
arate the treatment of Modules and Core as rigorously as we do. The main
difficulty in transferring our results to Standard ML’s semantics lies in sep-
arating the essential from the non-essential interactions between Standard
ML’s Core and Modules. Non-essential interactions are those that succumb
to alternative treatments directly in the semantics of the Core. The facility
for defining mutually recursive types and mutually recursive functions fall
in this class, since these can be accounted for by other means using n-ary
fixed-point operators. Other interactions may require proper extensions to
the Modules language presented here. The distinction between definable
types admitting equality and ordinary definable types may be one such fea-
ture. While the distinction itself can be encoded in the notion of Core kind,
Standard ML also permits a definable type admitting equality to be regarded
as one that does not. Accommodating this form of subsumption requires a
notion of subkinding on definable types, which we have not addressed.
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Epilogue

After I completed my thesis [Rus98b], Don Sannella gave me the opportunity
to adapt my extensions to full Standard ML (SML) and implement them in
an existing compiler. I chose Sergei Romanenko and Peter Sestoft’s excel-
lent Moscow ML[RRS00], mainly for its popularity, portability and simple
architecture. Moscow ML is a bytecode compiler that offers a separate com-
pilation model similar to the one discussed in Chapter 6. My starting point,
Moscow ML V1.44, only supported the Core language of SML. It used flat
structures as compilation units, with cut-down signatures describing their
interfaces, but the other features of Modules such as nested structures and
SML’s functors were not yet implemented. I spent my first two months
editing the sources of the Definition of Standard ML [MTH96], adapting my
extensions to the full language. At the same time, I took the opportunity
to rationalise the existing definition. With a preliminary design document
in hand, it took me another ten months to implement the extended Mod-
ules language on top of Moscow ML. Moscow ML compiles to an untyped
intermediate language based on an extended lambda-calculus. This could
easily be used to implement Modules as well as Core language constructs,
and meant that most of my coding effort was concentrated on the front-end
of the compiler, i.e. parsing and type-checking. I never intended to develop
more than a prototype, but Peter Sestoft kindly invited me to Denmark to
discuss my modifications. Much to my surprise, Peter adopted the changes;
they were integrated into the official sources and released to an unsuspecting
public as Moscow ML Version 2.00. This collaborative work with Peter and
Ken Friis-Larsen, another co-developer of Moscow ML, has been by far the
most rewarding aspect of my thesis work.

Although rooted in the proposals of this thesis, the SML extensions avail-
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able in Moscow ML differ slightly in design and generality. The purpose of
this epilogue is to informally motivate and document these differences, relat-
ing them to Mini-SML where possible. A formal definition of the extensions
that I used as my design document is available on request [Rus00c]. The
publicly available Moscow ML documentation [RRS00] defines the precise
syntax of the extensions; this syntax is used here for any code examples.

10.1 Moscow ML’s Extensions to Standard ML

In brief, the Moscow ML Modules language extends the SML Modules lan-
guage with the following features:

• higher-order functors: a functor may be defined within a structure,
passed as an argument to another functor, or returned as the result of
a functor (Section 10.1.1);

• applicative as well as standard generative functors (Section 10.1.2);

• transparent and opaque functor signatures (Sections 10.1.3 and 10.1.4);

• generalised projections of types from arbitrary, statically checked but
unevaluated, module expressions (see Section 10.1.5);

• first-class modules: structures and functors may be packed and then
handled as Core language values, which may then be unpacked as
structures or functors again using a more natural and expressive elim-
ination construct than the one described in Chapter 7 (Section 10.1.6);

• recursive modules: structures and signatures may be recursively de-
fined supporting cross-module recursion of both (data)types and values
(Section 10.1.7);

• minor relaxations of miscellaneous SML restrictions; (Section 10.1.8).

My primary design goal of the Moscow ML Modules language was that it
should be a conservative extension of SML: all programs that are accepted
by SML are accepted by Moscow ML, with the same static and dynamic
semantics. Because I have relaxed unnecessary restrictions in the SML se-
mantics, the converse is not true: Moscow ML accepts some syntactically
valid SML programs that would be rejected under the SML static seman-
tics, despite being perfectly type safe. The design goal has had a number
of minor consequences on the syntax of the extensions, which deviates from
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the presentation in earlier chapters to avoid introducing new keywords and
grammatical ambiguities. More significantly, it has forced me to generalise
the semantics of higher-order functors described in Chapter 5 to accommo-
date standard generative functors as well as non-standard applicative ones.
I have also taken the opportunity to revise the semantics of first-class mod-
ules slightly, making their use more convenient for programmers, especially
those working in interactive sessions [Rus00a, Rus00b]. Recursive modules
are an entirely new extension, built on the foundations of this thesis, but
introduced only briefly here; see [Rus01] for a complete formalisation in the
spirit of Mini-SML.

10.1.1 Higher-Order Modules

In Chapter 5, when moving from first-order to higher-order functors, we took
the liberty of making functors applicative rather than generative, arguing
that applicative functors provide better support for higher-order modules
programming. Be that as it may, adopting this change in Standard ML
would occasionally, and confusingly, contravene an existing programmer’s
expectations, by identifying more types than the generative semantics. In
Moscow ML, instead of switching to an exclusively applicative semantics, I
decided to support both the existing generative semantics, with the same
syntax, as well as the novel applicative semantics, using new syntax.

In SML Modules, structures and functor bodies cannot declare functors.
In Moscow ML Modules, they can:

functor F1(S : sig type t val x: t end) =
struct functor G(T : sig type u val y: u end) =

struct val pair = (S.x, T.y) end
end

structure R11 = F1(struct type t=int val x=177 end)
structure R12 = R11.G(struct type u=string val y="abc" end)
val (a, b) = R12.pair

For compatibility with SML, Moscow ML retains the distinction between
functor and structure bindings, instead of using the more uniform module-
bindings of higher-order Mini-SML. Moreover, in keeping with SML, struc-
ture and functor identifiers continue to reside in separate namespaces.

A functor that returns a functor can, of course, be curried, avoiding the
creation of an intermediate structure:

functor F2(S:sig type t val x : t end)
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(T:sig type u val y : u end) =
struct val pair = (S.x, T.y) end

structure R2 =
F2(struct type t=int val x=177 end)

(struct type u=string val y="abc" end)
val (a, b) = R2.pair

The definition of F2 above is syntactic sugar for binding F2 to an anony-
mous functor:

functor F2 =
functor(S : sig type t val x : t end) =>

functor(T : sig type u val y : u end) =>
struct val pair = (S.x, T.y) end

A functor may be declared to take another functor as an argument, whose
type is specified using a functor signature:

(* G is a functor signature *)

signature G = functor(X:sig type t=int val x: t end)->
sig type u val y : u end

(* F3 takes the functor F as an argument, and applies it *)

functor F3(F:G) = F(struct type t=int val x=177 end)

(* R3 is the result of F3 applied to an anonymous functor *)

structure R3 =
F3(functor(X:sig type t=int val x:t end)=>

struct type u = X.t * X.t val y= (X.x,X.x) end)

As expected, wherever a functor of a certain type is required, one can
instead supply a functor that has more a general type, that is, one which
is more polymorphic, expects a less general argument, or produces a more
general result:

(* F3 is applied to a more general functor than it requires *)

structure R4 =
F3(functor(X:sig type t end)=>

struct type u = X.t val y = 1 val z = [] end)

SML’s separation of the name spaces for functors and structures means
that it is perfectly legal to re-use the same name for both a structure and a
functor, without one hiding the other:
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structure M = struct end
functor M() = struct end
structure N1 = M (* structure N1 bound to structure M *)

functor N2 = M (* functor N1 bound to functor M *)

structure N3 = M(M) (* functor M applied to structure M *)

However, in Moscow ML, when another functor, say P, simply returns the
identifier M, as in:

functor P () = M

then it is not clear whether M refers to the structure M or the functor M.
In this ambiguous case, Moscow ML always interprets M, on its own, as a
structure, but one can explicitly write op M to refer to the functor M instead:

functor P () = M (* P returns the structure M *)

functor Q () = op M (* Q returns the functor M *)

The keyword op has no effect in unambiguous contexts, namely bindings,
functor applications and the bodies of explicit signature constraints, where
the expected module type of the identifier resolves the syntactic ambiguity.

10.1.2 Generative and Applicative Functors

In SML Modules, all functors are generative. If the body of a generative
functor FG declares a datatype or opaque type t, then two applications of FG
will create two structures SG1 and SG2 with distinct types SG1.t and SG2.t:

(* FG is generative *)

functor FG (S : sig end) = struct datatype t = C end
structure SG1 = FG() and SG2 = FG()
val res = if true then SG1.C else SG2.C (* ill-typed *)

Recall that a conditional expression requires both branches to have equiva-
lent types, so the last declaration above is well-typed only if the type SG1.t
is equivalent to SG2.t.

If functors had an applicative, not generative, semantics, the two types
would be equivalent. Moscow ML Modules allows the declaration of applica-
tive functors1 as well as generative functors. An applicative version FA of
the above functor is declared the same way, except that the formal functor
argument S : sig end is not enclosed in parentheses2:

1similar to Objective Caml [Ler97] but based on our semantics in Chapter 5.
2this subtle syntactic distinction is in poor taste, but it avoids the addition of any new

keywords and integrates well with Standard ML’s syntax for functor definitions.
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(* FA is applicative *)

functor FA S : sig end = struct datatype t = C end
structure SA1 = FA() and SA2 = FA()
val res = if true then SA1.C else SA2.C (* well-typed *)

More generally, if a type in an applicative functor’s body depends on a
datatype or opaque type of the functor’s formal argument, then the types re-
turned by separate applications of the applicative functor will be equivalent,
provided the functor is applied to equivalent type arguments:

(* GA is applicative, but u depends on S.t *)

functor GA S : sig type t end =
struct datatype u = C of S.t end

structure TA1 = GA(type t = int)
structure TA2 = GA(type t = bool)
structure TA3 = GA(type t = int)
val res = if true then TA1.C 1 else TA3.C 1 (* well-typed *)

val res = if true then TA1.C 1 else TA2.C true (* ill-typed *)

Moscow ML’s simultaneous support of both generative and applicative
functors is surprisingly easy to formalise in Mini-SML. Let us assume the fol-
lowing syntax for (anonymous) generative and applicative functors in Mini-
SML:

m ::= · · ·
| functor (X : S) ⇒ m generative functor
| functor X : S ⇒ m applicatve functor
| m m′ functor application

We now extend the definition of higher-order semantic functors F ∈ Fun
from Figure 5.16 to have, not just bare semantic modules, but existentially
quantified modules in their range, accommodating generative types:

F ∈ Fun ::= ∀P .M→ X functor

The elaboration rules for these new constructs are straightforward:

C ` S . ΛP .M P ∩ FV(C) = ∅ C[X : M] ` m : ∃Q .M′

C ` functor (X : S) ⇒ m : ∃∅.∀P .M→ ∃Q .M′ (H-1)
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(H-1) Similar to Rule (T-17) of the generative, first-order semantics given
in Chapter 4, but the conclusion of this rule introduces an empty exis-
tential quantifier over the entire module type (the semantic functor).
Note that the existential types, Q , of the functor body are simply pre-
served in the range of the functor signature. Contrast this behaviour
with that of the applicative Rule (H-18), that skolemises the existen-
tial types in Q on the functor’s type parameters, P . This module type
states that the functor does not, in itself, introduce any new types,
but its applications might.

C ` S . ΛP .M `M applicative
P ∩ FV(C) = ∅ P = {ακ0

0 , . . . , α
κn−1

n−1 }
C[X : M] ` m : ∃Q .M′

Q ′ ∩ (P ∪ FV(M) ∪ FV(∃Q .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}

C ` functor X : S ⇒ m : ∃Q ′.∀P .M→ ∃∅.[Q ′/Q ] (M′) (H-2)

(H-2) Similar to Rule (H-18) of the purely applicative semantics in Chapter
5, but the conclusion of this rule introduces an additional empty ex-
istential quantifier in the range of the generalised semantic functor to
ensure the type is well-formed. This module type states that the func-
tor itself may introduce new skolemised types, but its applications will
not. The unfamiliar side condition on the type of functor argument,
` M applicative, is there to prevent a nasty type insecurity intro-
duced by opaque functor signatures; its role is explained in Section
10.1.4.

C ` m : ∃P .∀Q .M′ → X
C ` m′ : ∃P ′.M′′ P ∩ (P ′ ∪ FV(M′′)) = ∅
P ′ ∩ FV(∀Q .M′ → X ) = ∅ M′′ � ϕ (M′)
Dom(ϕ) = Q ϕ (X ) ≡ ∃Q ′.M Q ′ ∩ (P ∪ P ′) = ∅

C ` m m′ : ∃P ∪ P ′ ∪Q ′.M (H-3)

(H-19) This rule combines the actions of both Rule (T-21) of Chapter 4 and
Rule (H-19) of Chapter 5. Note that the functor m is an anonymous
module so its type may be existentially quantified. In addition, since
functors support generativity, the range of the functor is an existen-
tial module X (as in the generative semantics of Chapter 4), not just a
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bare semantic module (as in the applicative semantics of Chapter 5).
To classify the application, we first eliminate the existential quantifiers
in both the type of functor and the type of the argument, yielding the
semantic functor ∀Q .M′ → X , and semantic module M′′. We now
choose a realisation ϕ of the functor’s type parameters Q such that
M′′ enriches the realised domain ϕ (M′). We then propagate this re-
alisation through the range X of the functor yielding the result type
ϕ (X ) ≡ ∃Q ′.M. However, because the type ∃Q ′.M may mention the
eliminated existential variables P and P ′, we need to ensure that they
cannot escape their scope. So we re-introduce an existential quan-
tifier that hides both P and P ′ in the final type of the application
∃P ∪ P ′ ∪Q ′.M.

10.1.3 Opaque and Transparent Functor Signatures

In Moscow ML, the types of functors are specified using functor signatures.
Similar to the distinction between generative and applicative functor expres-
sions, functor signatures may be opaque or transparent. Whether a functor
signature is opaque or transparent affects the interpretation of any datatype
or opaque type specifications in its range signature.

Consider the opaque functor signature:

(* GO is opaque *)

signature GO =
functor(X:sig type t val x:t end)->sig type u val y:u end

GO specifies the type of those functors that, when applied to an actual
argument matching the domain signature sig type t val x:t end, return
a result matching the range signature sig type u val y:u end, for some
unknown implementation of the type u (possibly depending on X.t).

In Moscow ML, a transparent version, GT, of the functor signature GO
is written in the same way, except that the formal functor argument X:sig
type t val x:t end is not enclosed in parentheses:

(* GT is transparent *)

signature GT =
functor X:sig type t val x:t end -> sig type u val y:u end

This functor signature specifies the family of functor types that, for
a given implementation of the result type u (possibly depending on X.t),
map structures matching the domain signature sig type t val x:t end
to structures matching the range signature sig type u val y:u end.
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In practice, when writing a functor H that takes a functor F as an ar-
gument, the choice between specifying that argument using an opaque or
transparent signature will affect the amount of type information that is
propagated whenever H is applied to an actual functor. For instance, con-
sider the four functors:

functor F1 (X:sig type t val x:t end) =
struct type u = X.t val y = X.x end

functor F2 (X:sig type t val x:t end) =
struct type u = int val y = 1 end

functor HO(F:GO) = F(struct type t = string val x = "abc" end)
functor HT(F:GT) = F(struct type t = string val x = "abc" end)

Functor F1 returns a renamed version of its argument, and functor F2
just ignores its argument and returns the same structure regardless. The
two higher-order functors HO and HT apply the supplied F to the same ar-
gument (in which x is a string), but assume, respectively, an opaque and a
transparent signature for F.

Since functor HO uses the opaque signature GO, its formal argument F is
assumed to return some new unknown type u whenever it is applied, so that
the two applications of HO return new abstract types RO1.u and RO2.u:

structure RO1 = HO(F1)
structure RO2 = HO(F2)
val resO1 = if true then RO1.y else "def" (* ill-typed *)

val resO2 = if true then RO2.y else 1 (* ill-typed *)

Functor HT, on the other hand, uses the transparent signature GT. This
ensures that, no matter what the actual dependency of the result type u on
the argument type t, HT may be applied to any functor F whose type matches
GT, with the actual definition of u reflected in the result of the application.
In particular, the two applications of HT return the same definitions for type
u as would the substitution of F1 and F2 directly into the body of HT. That
is, the types RT1.u and RT2.u are equivalent to string and int:

structure RT1 = HT(F1) and RT2 = HT(F2)
val resT1 = if true then RT1.y else "def" (* well-typed *)

val resT2 = if true then RT2.y else 1 (* well-typed *)
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Another way to look at this is that HO’s formal argument has a generative
specification, so that its application in HO’s body returns a new type, while
HT’s formal argument has an applicative specification, so that its application
in HT’s body returns the same type as HT’s actual argument.

Why does Moscow have two notions of functor signature, while the
Higher-Order Modules of Chapter 5 only offered one? The functor signa-
tures of Chapter 5 are designed to capture the types of applicative functors;
unfortunately, because there is no way for them to specify the existentially
quantified types in the range of a semantic functor, they are not appropri-
ate for specifying the types of generative functors. To see this, consider the
generative (identity) functor:

functor (X : sig type t : k end) ⇒ (X \ sig type t : k end)

which, according to our rule, has type:

∃∅.∀{α}.(t = α) → ∃{β}.(t = β)

Now consider the superficially appropriate functor signature:

funsig(X:sig type t : k end)sig type t : k end

which, according to the obvious generalisation of Rule (H-7), denotes:

Λ{γ}.∀{δ}.(t = δ) → ∃∅.(t = γ δ)

The scoping of β ensures that there is no realisation of δ that could make
the type of the generative functor enrich the body of the realised signature.
Unfortunately, if we want to use the generative functor in a higher-order way
(passing it to another functor say), then we need some way to specify its
type, using a different kind of functor signature. It is for these higher-order
uses of generative as well as applicative functors that Moscow ML introduces
the distinction between opaque and transparent functor signatures. The in-
terpretation of the above signature assumes that the type specified in the
range has a fixed functional dependency on the type parameter of the argu-
ment, which is modelled by parameterising γ on δ . The generative functor
cannot match this signature because it always returns a new type β , rather
than a fixed type that depends on α. The signature is transparent in the
sense that matching a concrete semantic functor against this signature will
reveal this dependency via the higher-order realisation of γ . For instance,
the (non-generative) semantic functor ∃∅.∀{α}.(t = α) → ∃{}.(t = α → α),
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matches this signature, and the fact that γ is realised by Λα.α → α will be
apparent after matching.

Suppose that, instead of parameterising and raising the type parameter
of the range, we simply used it to indicate the generativity of the functor
body, so that the same syntactic signature denotes:

Λ∅.∀{δ}.(t = δ) → ∃{γ}.(t = γ)

The type of the generative functor now matches this signature, because the
functor’s range ∃{β}.(t = β) matches the signature’s range ∃{γ}.(t = γ)
(eliminating the first existential quantifier, we can existentially quantify
over β in (t = β) to obtain the range ∃{γ}.(t = γ)). This signature is
opaque in the sense that matching a concrete semantic functor against
the signature will hide the actual realisation of any type parameters in
the signature’s range. For instance, the (non-generative) semantic func-
tor ∃∅.∀{α}.(t = α) → ∃{}.(t = α → α), also matches this signature, but
the fact that γ is realised by α → α is not apparent after matching, because
the realisation is hidden by the existential quantification of γ .

Let us assume the following syntax for (anonymous) generative and ap-
plicative functors in Mini-SML.

m ::= · · ·
| functor (X:S) → S′ opaque functor signature
| functor X:S → S′ transparent functor signature

As before, the denotations of opaque and transparent functor signatures
are just parameterised semantic functors. The difference between the two
constructs is the way in which they treat the parameters of the range sig-
nature S′: an opaque functor signature merely uses these parameters to
determine the existential quantifier of the range of the semantic functor; the
transparent functor signature uses the parameters to determine the higher-
order parameters of the entire signature, capturing any functional depen-
dencies of the type components in the range on the type components in the
domain.

The elaboration rules for these constructs are straightforward:

C ` S . ΛP .M P ∩ FV(C) = ∅ C[X : M] ` S′ . ΛQ .M′

C ` functor (X:S) → S′ . Λ∅.∀P .M→ ∃Q .M′ (H-4)

(H-4) The rule is similar to Rule (H-1) that relates generative functors to
their types. Unlike Rule (H-7) of the purely applicative semantics in
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Chapter 5, this rule introduces an empty set of parameters over the
entire module type (the semantic functor). Note that the parametersQ
of the range signature, S, simply determine the existentially quantified
variables of the semantic functor’s range; in particular, they are not
replaced by new higher-order variables that encode dependencies on
the type parameters in P(the behaviour of Rule (H-7)).

C ` S . ΛP .M
P ∩ FV(C) = ∅ P = {ακ0

0 , . . . , α
κn−1

n−1 }
C[X : M] ` S′ . ΛQ .M′

Q ′ ∩ (P ∪ FV(M) ∪ FV(ΛQ .M′)) = ∅
[Q ′/Q ] = {βκ 7→ βκ0→···κn−1→κ α0 · · · αn−1|βκ ∈ Q}
Q ′ = {βκ0→···κn−1→κ|βκ ∈ Q}
C ` functor X:S → S′ . ΛQ ′.∀P .M→ ∃∅.[Q ′/Q ] (M′) (H-5)

(H-5) This rule is similar to Rule (H-7), for functors in the purely applica-
tive semantics, but introduces an additional empty existential quan-
tifier in the range of the semantic functor to ensure the type is well-
formed.

All that remains is to extend the definition of the enrichment relation
for higher-order Mini-SML to cater for our generalised notion of semantic
functor with existentially quantified range. This, too, is straightforward.
Informally, we modify the relevant clauses of Specification 5.12 as follows:

Specification 10.1 (Enrichment).

F � F ′ Given two functors F and F ′, F enriches F ′, written F � F ′,
if, and only if, every instance of F ′ is an instance of F , i.e. for any
modules M and X , F ′ >M→ X implies F >M→ X .

X � X ′ Given two existential modules X and X ′, X enriches X ′, written
X � X ′, if, and only if, X ≡ ∃P .M and X ′ ≡ ∃P ′.M′, and for some
realisation ϕ with Dom(ϕ) = P ′, M � ϕ (M′), where P ∩ FV(X ′) =
∅.

F >M→ X A functor instance M → X is the type of a monomorphic
function on modules.

Given functor F ≡ ∀P .MP → XP , M → X is an instance of F ,
written F > M→ X , if, and only if, for some realisation ϕ with
Dom(ϕ) = P, M� ϕ (MP ) and ϕ (XP ) � X .
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The enrichment relation on existential modules types merely requires
that, eliminating the existential quantifier from the more general module
type ∃P .M, there is some realisation ϕ of the existential variables P ′ of the
second module type ∃P ′.M′ that allows the more general type M to enrich
the realised, less general type ϕ (M′).

Just like Specification 5.12 this intuitive specification cannot serve as a
proper definition of the enrichment relations. Instead, we can define them
formally as follows:

Definition 10.2 (Enrichment).

The enrichment relations between structures, functors and modules are
defined as the least relations � ∈ Str × Str , � ∈ Fun × Fun, and
� ∈ Mod ×Mod closed under the rules in Figure 10.1.

Generalising the higher-order signature matching algorithm (Definition
5.25) to handle generative functors requires a simple modification, shown
in Figures 10.2 and 10.3. The only interesting new rule of this generalised
matching algorithm is Rule (M -9). The first side condition on N ensures
that the existentially quantified variables of the lesser existential module are
treated as fresh hypothetical types. In particular, these types are distinct
from the free (and bound) variables of the more general existential module.
Note that the realisation ϕ′, returned by the recursive call in the premise,
is allowed to realise variables in M , (as well as any others variables not in
P ∪ R ∪N ). In ϕ, the realisation of these existentially quantified variables
is hidden by restricting the domain of ϕ′ outside M . The second side con-
dition on N ensures that the hypothetical types cannot escape their scope
by appearing in the range of ϕ. It does not, however, prevent them from
occurring in the range of ϕ′, as they may occur in the realisation of the
existential variables in M (which is correct because M and N are quantified
at the same position).
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Structure Enrichment S � S ′

Dom(S) ⊇ Dom(S ′)
∀t ∈ Dom(S ′).S(t) = S ′(t)
∀x ∈ Dom(S ′).S(x) � S ′(x)
∀X ∈ Dom(S ′).S(X) � S ′(X)

S � S ′ ( � -1)

Functor Enrichment F � F ′

MQ � ϕ (MP ) ϕ (XP ) � XQ

Dom(ϕ) = P Q ∩ FV(∀P .MP → XP ) = ∅
∀P .MP → XP � ∀Q .MQ → XQ ( � -2)

Module Enrichment M�M′

S � S ′
S � S ′ ( � -3)

F � F ′

F � F ′ ( � -4)

Existential Module Enrichment X � X ′

MP � ϕ (Q) Dom(ϕ) = Q P ∩ FV(∃Q .MQ) = ∅
∃P .MP � ∃Q .MQ ( � -5)

Figure 10.1: An inductive definition of enrichment for Higher-Order Modules
with generative functors.
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Structure Matching ∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � εS ↓ ∅ (M -1)

t ∈ Dom(S) S(t) = τ ∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � t = τ ,S ′ ↓ ϕ (M -2)

α 6∈ P ∪ R
t ∈ Dom(S)
S(t), (α β0 · · · βn−1) ∈ Typκ

FV(S(t)) ∩ R ⊆ {β i | i ∈ [n]}
∀P .∀R ` S � [Λβ0 · · ·βn−1.S(t)/α] (S ′) ↓ ϕ

∀P .∀R ` S � t = α β0 · · · βn−1,S ′ ↓ ([Λβ0 · · ·βn−1.S(t)/α] | ϕ) (M -3)

x ∈ Dom(S) S(x) � v ∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � x : v ,S ′ ↓ ϕ (M -4)

X ∈ Dom(S) ∀P .∀R ` S(X) �M ↓ ϕ ∀P .∀R ` S � ϕ (S ′) ↓ ϕ′

∀P .∀R ` S � X : M,S ′ ↓ (ϕ | ϕ′)
(M -5)

Figure 10.2: A generalised algorithm for matching, suitable for both trans-
parent and opaque functor signatures. Subject to certain constraints, we
have ∀P .∀R ` O � O′ ↓ ϕ if, and only if, O � ϕ (O′).
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Functor Matching ∀P .∀R ` F � F ′ ↓ ϕ

N ∩ (P ∪ R ∪M ) = ∅
M ∩ (P ∪ R) = ∅
∀P ∪ R ∪M .∀∅ ` MM �MN ↓ ϕ′

∀P .∀R ∪M ` ϕ′ (XN ) � XM ↓ ϕ

∀P .∀R ` ∀N .MN → XN � ∀M .MM → XM ↓ ϕ (M -6)

Module Matching ∀P .∀R ` M �M′ ↓ ϕ

∀P .∀R ` S � S ′ ↓ ϕ

∀P .∀R ` S � S ′ ↓ ϕ (M -7)
∀P .∀R ` F � F ′ ↓ ϕ

∀P .∀R ` F � F ′ ↓ ϕ (M -8)

Existential Module Matching ∀P .∀R ` X � X ′ ↓ ϕ

N ∩ (P ∪ R ∪M ) = ∅
M ∩ (P ∪ R) = ∅ ∀P ∪N .∀R ` MN �MM ↓ ϕ′

ϕ = {α 7→ ϕ′ (α) |α ∈ Dom(ϕ′) \M } N ∩
⋃

α∈Dom(ϕ) FV(ϕ (α)) = ∅
∀P .∀R ` ∃N .MN � ∃M .MM ↓ ϕ

(M -9)

Figure 10.3: (continuation of Figure 10.2.)
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10.1.4 Closing the Loopholes

It was recently discovered that the naive combination of generative and
applicative functors, as implemented in Moscow ML 2.00 is, in fact, unsound
[DCH02]. A simple counter-example, adapted from [DCH02] but similar to
the one in Figure 7.12, reveals the type loophole:

signature S = sig type t val x: t val f: t -> int end

(* App is an applicative functor

... with a generative functor argument F *)

functor App F:functor (X:sig end)->S = F()

functor G (X:sig end) = struct
type t = int
val x = 0
val f = fn y => y+1

end
functor H (X: sig end) = struct

type t = int -> int
val x = fn x => x
val f = fn y => y 1

end
structure X = App(G)
structure Y = App(H)

(* since App is applicative X.t = Y.t *)

val wrong = Y.f (X.x) (* applies 0 to 1, a run-time error *)

The root of the problem is the applicative functor App. The introduction
rule for applicative functors skolemises any existentials introduced in the
functor’s body on the type parameters to the functor. This is sound provided
the witnesses to these existentials are known functions of the functor’s type
parameters. In particular, they must not have a dynamic dependency on
the value of the functor’s argument. In the counter-example, the witness to
the functor body’s existential type is determined by the formal argument of
App. But the formal argument is specified to be a functor F with an opaque
functor signature:

∀∅.εS → ∃{α}.(t = α,x : α, f : α → int)
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Applicative Structures ` S applicative

∀X ∈ Dom(S). ` S(X) applicative
` S applicative (App-1)

Applicative Functors ` F applicative

` M′ applicative
` ∀P .M→ ∃∅.M′ applicative (App-2)

Applicative Modules ` M applicative

` S applicative
` S applicative (App-3)

` F applicative
` F applicative (App-4)

Figure 10.4: Applicative module types.

The type component returned by F is generative and bound in the range of
F. This means that it is unknown and allowed to vary with each application
of F. According to our rules, the body of App receives type:

∃{β}.(t = β,x : β, f : β → int)

But skolemising the new type β on the (empty) set of parameters in the
argument signature does not take β ’s dynamic dependency on F into account,
leading to this unsound type for App:

∀∅.(∀∅.εS → ∃{α}.(t = α,x : α, f : α → int)) →
∃∅.(t = β,x : β, f : β → int)

This type states that each application of App returns a constant type for
t, regardless of the actual argument. This is a lie: in the counter-example,
the two distinct applications of App yield radically different underlying types
for t and these must be kept distinct by the type system.

This kind of unsoundness never arises in the purely applicative semantics
of Chapter 5, because the less expressive functor signatures considered there
can only abstract over, but never hide, a functor’s argument-result type
dependencies.
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So how do can we avoid this unsoundness in Moscow ML? One draconian
solution, suggested in [DCH02], is to rule out opaque functor signatures alto-
gether, but this demotes Standard ML’s generative functors to second-class
citizens. A less restrictive alternative, adopted here and in a future release
of Moscow ML, is to place an additional restriction on the introduction
rule for applicative functors (Rule H-2): the type of the formal argument
must be applicative, according to the definition in Figure 10.4. The re-
striction is designed to prevent an applicative functor from taking a formal
argument, that, either directly by applicaton, or indirectly by projections
and/or curried application, may be used in a generative manner. Intuitively,
any (higher-order) argument of the functor must be strictly non-generative
in its positive positions. The restriction avoids the above counter-example
by ruling out the definition of App. Note that the introduction rule for gen-
erative functors remains unrestricted. The proof that this side-condition is
sufficient to ensure soundness is left to future work.
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10.1.5 Generalised Projections

In SML, one can only project a type component from a named module,
forcing the evaluation of that module binding. Moscow ML additionally
supports generalised type projections of the form

longtycon where strbind

Here, longtycon is a type path and strbind is a structure binding local to
that path. This makes it possible to refer directly to a type returned by
an applicative functor within another type expression, which is useful for
expressing sharing constraints:

signature S = sig functor F: functor X:sig type t end ->
sig type u end

type v = X.u where X = F(type t = int)
(* X is local to X.u *)

end

The local binding has no run-time effect and is only elaborated at compile-
time for its type information. This new phrase is nothing more than a syn-
tactic variant of the generalised dot notation for types, m.t, introduced in
Section 5.2.3, but fits better with the concrete grammar of SML. Moscow
ML does not add any new syntax for generalised projections of value or
module components because these can already be expressed using existing
constructs.

10.1.6 First-class Modules

In Moscow ML Modules, a structure or functor value can be packaged as a
Core value of package type, manipulated as any other first-class value of the
Core, and finally unpacked to access the enclosed structure or functor:

signature NAT = sig type nat
val Z:nat
val S:nat -> nat
val plus: nat -> nat -> nat

end



10.1 Moscow ML’s Extensions to Standard ML 385

structure SafeNat = (* unlimited range but slow *)

struct datatype nat = Z | S of nat
fun plus Z m = m

| plus (S n) m = S (plus n m)
end

structure FastNat = (* limited range but fast *)

struct type nat = int
val Z = 0
fun S n = n + 1
fun plus n m = n + m

end

type natpack = [ NAT ] (* package type *)

val safeNat = [ structure SafeNat as NAT ] (* packing *)

val fastNat = [ structure FastNat as NAT ]

structure Nat as NAT = (* unpacking *)

if (913 mod 7 = 5) then safeNat else fastNat
val natlist = [safeNat,fastNat] : [ NAT ] list

A functor may be packed using the similar Core expression [ functor
modexp as sigexp ] and unpacked using the functor binding functor fu-
nid as sigexp = exp.

Package type equivalence is determined by structure, not name, so the
following package types are equivalent:

[sig type t val x: t type u = t val y: u end]
[sig type u val x: u type t = u val y: t end]

because the signatures are equivalent (every structure that matches one also
matches the other).

For type soundness reasons, a package may not be unpacked in the body
of a functor (although it may be unpacked within a Core expression occurring
in that body):

(* illegal *)

functor Fail (val nat : [ NAT ]) =
struct structure Nat as NAT = nat end
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(* legal *)

functor Ok (val nat : [ NAT ]) =
struct val x = let structure Nat as NAT = nat in nat end
end

How do Moscow’s first-class modules relate to the proposal in Chapter
7? For syntactic reasons, Moscow uses separate Core expressions for packing
structures and functors, respectively, but the semantics of these constructs
is essentially the same as that of our single pack m as S construct. A more
significant departure is our use of a special definition (or declaration in
SML terminology), rather than a new Core expression, to eliminate package
types. The construct proposed in this thesis, open e as X : S in e′, is
inconvenient because it only allows a package value to be opened within the
scope of a Core expression, and not, for instance, at top-level or within a
structure body. In Moscow ML, we relax this restriction by omitting the
open construct, introducing in its place two new forms of structure and
functor definition. These definitions are used to eliminate package types
from Core expressions, by binding module identifiers to their contents. They
may appear wherever ordinary SML module definitions can. The declaration
of Nat above, illustrates the convenience of this construct for expressing
dynamic definitions: without it, we would have to express the rest of the
top-level program as the body of a Mini-SML open- expression.

The alternative elimination syntax can be formalised in Mini-SML by
adding a new module definition phrase,

b ::= . . . | module X as S = e; b ,

with classification rule:

C ` e : <∃P .M> P ∩ FV(C) = ∅
C[X : M] ` b : ∃P ′.S
P ′ ∩ (P ∪ FV(M)) = ∅ X 6∈ Dom(S)

C ` module X as S = e; b : ∃P ∪ P ′.X : M,S

Our open construct is subsumed by the ordinary SML let expression,
which can be captured in Mini-SML by adding a new Core expression:

e ::= . . . | let b in e end

Compared with the simpler let x = e′ in e expression of Chapter 3, this
more general expression allows an arbitrary sequence of definitions, b, to be
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declared within the expression e. In particular, b may contain bindings of
types and modules, not just values. The corresponding classification rule
can be formalised in Mini-SML as:

C ` b : ∃P .S P ∩ FV(C) = ∅
C,S ` e : u P ∩ FV(u) = ∅

C ` let b in e end : u

where C,S is the obvious pointwise extension of C by the components of S.
In SML, the static semantics for such expressions, like Rule (P-3), already
ensures that the type u of e cannot depend on any abstract type introduced
in b, which is prevented here by the side-condition P ∩ FV(u) = ∅. Clearly,
open e as X : S in e′ is definable as let module X as S = e in e′ end.

Unlike our original open construct, Moscow’s more liberal syntax can
violate the invariant needed to support applicative functors. Recall that the
required property is that the abstract types returned by a functor should
depend only on its type arguments and not the value of its term argument.
A small counter-example, similar to the one in Figure 7.12, demonstrates
how the new construct could break this invariant:

signature S = sig type t val x: t val y: t -> int end

functor F A:sig val b: bool end = struct
structure X as S = if A.b

then [structure struct type t = int
val x = 0
val y = fn x:t => x

end as S]
else [structure struct type t = int -> int

val x = fn x:int => x
val y = fn f:t => f 1

end as S]
end (* X.t depends on the value of A.b *)

structure Y = F(struct val b = true end)
structure Z = F(struct val b = false end)
(* since F is applicative, Y.X.t = Z.X.t *)

val z = Z.X.y (Y.X.x) (* applies 0 to 1, a run-time error *)

To restore the invariant, Moscow ML imposes a syntactic restriction:
a package eliminating module definition cannot appear in a functor body
(unless the definition is enclosed by an inner Core let-expression). This
rules out the previous counter-example and others like it.
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The syntactic restriction must be applied to all functors, even generative
ones. This is because a generative functor can always be turned into an
applicative one by an η-expansion:

(* G is generative *)
functor G (A:sig val b: bool end) = struct

structure X as S = if A.b
then [structure struct type t = int

val x = 0
val y = fn x:t => x

end as S]
else [structure struct type t = int -> int

val x = fn x:int => x
val y = fn f:t => f 1

end as S]
end (* X.t depends on the value of A.b *)

functor F A:sig val b:bool end = G(A)
(* F is an applicative η-expansion of G *)

structure Y = F(struct val b = true end)
structure Z = F(struct val b = false end)
(* since F is applicative Y.X.t = Z.X.t *)

val wrong = Z.X.y Y.X.x (* applies 0 to 1, a run-time error *)

The syntactic restriction rejects the (otherwise sound) definition of G, to
prevent the subsequent unsound definition of F.

Note that the restriction only applies to functor bodies, not top-level
structures or their substructures, which may still contain package-eliminating
module bindings. Recalling the discussion in Sections 7.4 and 7.4.1, intu-
itively, the reason it is sound to admit top-level package-elimination is that
any existential types introduced at top-level will never be skolemised on the
type parameters of an outer functor argument (since there can be no such
outer functor). For this reason, it is perfectly legal to allow the realisations of
these variables to depend on the dynamic as well as the static interpretation
of the context.

10.1.7 Recursive Structures and Signatures

SML Modules does not support the recursive definition of modules. For
instance, two structures Even and Odd cannot refer to each other, nor can
the body of a single structure depend on its own definition. In Moscow ML
Modules, structures can be defined recursively:
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structure S =
rec(X:sig structure Odd : sig val test : int -> bool end end)
struct structure Even = struct fun test 0 = true

| test n = X.Odd.test (n-1)
end

structure Odd = struct fun test 0 = false
| test n = Even.test (n-1)

end
end

Here, X is a forward declaration of the structure’s body that allows the Core
value Even.test to refer to X.Odd.test before it has been defined. In this
new form of structure expression, rec(X : S)s, X is a forward declared struc-
ture, S is its signature, and s is the actual body of the structure. The body
of a recursive structure must enrich the signature of the forward declaration;
any opaque type or datatype specified in the signature must be implemented
in the body by copying it using a forward reference:

(* well-typed *)

structure Ok =
rec(X:sig datatype t = C

type u
type v = int

end)
struct datatype t = datatype X.t

type u = X.u
type v = int

end

(* ill-typed *)

structure Fail =
rec(X:sig datatype t = C

type u
type v = int

end)
struct datatype t = C

type u = int
type v = int

end
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In the dynamic semantics, the body of a recursive structure is evaluated
eagerly, under the initial assumption that its forward declaration is unde-
fined. If evaluation of the body reaches a value, the assumption is updated
with that value. Attempting to evaluate the forward reference of a recursive
structure before its body has been fully evaluated raises the exception Bind:

structure Fail = rec(X:sig end)X (* raises Bind *)

structure Fail = rec(X:sig val x: int end)
struct val x = X.x end (* raises Bind *)

structure Ok = rec (X:sig val f: int -> int end)
struct fun f n = X.f n end (* terminates *)

val res = Ok.f n (* loops *)

On their own, recursive structures cannot be used to declare mutually
recursive datatypes that span module boundaries. For this purpose, Moscow
ML also supports recursive signatures:

signature REC =
rec(X: sig structure Odd: sig type t end end)

sig structure Even: sig datatype t = Zero
| Succ of X.Odd.t

end
structure Odd: sig datatype t = One

| Succ of Even.t
end

end

Here, X is a forward declaration of a structure implementing the body
of the signature that allows the specification of Even.t to refer to the type
X.Odd.t before it has been fully specified. In this new form of signature
expression, rec(X : S)S′, X is a forward declared structure, S is its signature,
and S′ is the body of the signature, which may refer to its own components
via X. In a recursive signature, the body of the signature must match the
forward declaration and specify an implementation for any opaque types or
datatypes declared within the forward specification.

Once a recursive signature has been defined, it can be used to implement
a recursive structure that does contain datatypes spanning module bound-
aries. To illustrate, we can use the signature REC to define the structure
T:
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structure T =
rec(X:REC)
struct structure Even = struct datatype t = datatype X.Even.t

fun succ Zero = X.Odd.One
| succ E = X.Odd.Succ E

end
structure Odd = struct datatype t = datatype X.Odd.t

fun succ O = Even.Succ O
end

end

Note that T.Even.t and T.Odd.t are mutually recursive, and the construc-
tors of the datatype defined in one structure are visible to the other, sup-
porting the definitions of the two successor functions.

The formal details of recursive modules take us beyond the scope of
this monograph. An adequate exposition requires a proper formalisation of
SML’s datatype definitions and specifications as well as a presentation of
the dynamic semantics of recursive structure expressions. The interested
reader is referred to [Rus01], in which the extension is formulated for a
variant of Mini-SML. A notable feature of this work is that it builds directly
on the concepts and style of static semantics presented in this thesis. In
Moscow ML, this extension has the pleasant side-effect of extending the
language with (explicitly declared) polymorphic recursion, a feature missing
from SML. It also supports the construction of recursive values other than
Core functions (such as records, which are useful for encoding “objects”).

10.1.8 Relaxations of Other Standard ML Restrictions

In SML, functors and signatures may only be declared at top-level, and
structures may only be declared at top-level and within structures. None
of these may be declared within Core let-expressions. Moscow ML removes
these restrictions so that functors, signatures and structures may be declared
anywhere, which is particularly useful when programming with first-class
modules.

In SML, every parameterised type definition, and every type scheme
occurring within a signature, must be closed: it must not mention any
(simple) type variables that are not explicitly listed as type parameters.
Moscow ML does not impose this restriction, and allows free simple type
variables, provided they are (explicitly or implicitly) bound in an enclosing
scope. Again, this is useful when programming with first-class modules.
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(* illegal, since ’a is not in scope *)

type t = ’a -> ’a

(* legal Moscow ML, but illegal Standard ML *)

fun f (x:’a) = let type t = ’a * ’a
in (x,x):t
end

(* legal Moscow ML *)

type ’a stackpack =
[ sig

(* ’a occurs free in this type binding *)

type stack = ’a list
(* ’a occurs free in this type scheme *)

val push : ’a -> stack -> stack
end ]

10.1.9 Miscellaneous Static Semantic Issues

Scaling the extensions described here to SML involves revising some other
features of the SML static semantics, including the formalisation of datatypes
and equality types in the presence of higher-order type variables and func-
tions (introduced by applicative functors and transparent functor signa-
tures), extending the definition of implicit scoping of explicit type parame-
ters, and enlarging the class of non-expansive Core expressions to support
non-expansive package expressions. The details of these modifications are
not surprising but require too much preparatory material to present here,
in the simple format of an extension to our Mini-SML semantics. The in-
terested reader should contact the author for more details and a copy of the
original design document [Rus00c].

10.1.10 Compiling Modules

In Moscow ML, we adopt a conventional compilation scheme and compile a
structure whose type contains n named values to a vector of n anonymous
values identified by their position (type components have no run-time rep-
resentation). More elaborate schemes are possible [Els99] but this one is
reasonably simple and efficient. The vector position of each named compo-
nent within a structure is calculated at compile-time; because enrichment
can remove some components from a structure’s type, a coercion is inserted
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wherever the enrichment relation occurs in the typing derivation (e.g. in
instances of Rule (P-2)). These coercions are constructed by induction on
the structure of the types related by enrichment. The vector representation
thus offers efficient component access at the cost of some run-time coercions.
It is a simple optimisation to prune those coercions that turn out to be the
identity. When compiling ordinary SML Modules, it is sufficient to assign
vector positions to a structure’s components according to their textual order
of definition in the structure body and to assume vector positions for a sig-
nature’s components according to their textual order of specification in the
signature body. However, in the presence of first-class structures, one must
additionally ensure that packaged structures with equivalent types share the
same vector representation (even if the components of the structures were
declared or specified in a different textual order). In our Moscow ML im-
plementation, we assume a total ordering on term identifiers, use it to sort
the domain of each structure’s type and finally assign vector positions to
components according to the relative order of their names. Since equivalent
package types have equivalent domains (a property that extends to their
sub-structures) their values receive compatible representations. Adopting
this canonical representation has no run-time cost: in fact, it can improve
the compilation of ordinary SML programs by revealing more optimisation
opportunities (identity coercions) than the non-canonical scheme. To illus-
trate, the array example of Section 7.3 requires no run-time coercions at all,
as all the intermediate structure expressions have exactly the same domain
as the signature Array.

Functors, whether generative or applicative, are simply compiled as func-
tions in the untyped intermediate language of Moscow ML.
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en Caml-Light. Technical Report N◦ 2449, INRIA,Rocquencourt,
January 1995. 3

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965. 8.1, 8.4, 8.3.1



400 Bibliography

[RRS00] Sergei Romanenko, Claudio V. Russo, and Peter Ses-
toft. Moscow ML Version 2.0, 2000. Available at
http://www.dina.kvl.dk/~sestoft/mosml. (document), 1.2,
10

[Rus96] Claudio V. Russo. Standard ML Type Generativity as Existential
Quantification. Technical Report ECS-LFCS-96-344, Laboratory
for Foundations of Computer Science, University of Edinburgh,
June 1996. 4

[Rus98a] Claudio V. Russo. An Implementation of First-Class Modules,
March 1998. Available on request from the author. 1.3, 8.5, 9.3

[Rus98b] Claudio V. Russo. Types For Modules. PhD thesis, LFCS, Uni-
versity of Edinburgh, 1998. (document), 10

[Rus00a] Claudio V. Russo. First-Class Structures for Standard ML. In
European Symposium on Programming (ESOP), pages 336—350.
Springer Verlag, 2000. 10.1

[Rus00b] Claudio V. Russo. First-Class Structures for Standard ML.
Nordic Journal of Computing, 7(4):348—374, November 2000.
10.1

[Rus00c] Claudio V. Russo. The Definition of Non-Standard ML (Syn-
tax and Static Semantics). Unpublished manuscript available on
request, 2000. 10, 10.1.9

[Rus01] Claudio V. Russo. Recursive Structures for Standard ML. In
International Conference on Functional Programming (ICFP).
ACM Press, 2001. 10.1, 10.1.7

[SH96] Chris Stone and Robert Harper. A Type-Theoretic Account of
Standard ML 1996. Technical Report CMU-CS-96-136, School of
Computer Science,Carnegie Mellon University, May 1996. 2.3.3,
3, 3, 3.3.1, 7.1, 9.2.1, 9.2.2

[Tho91] Simon Thompson. Type Theory and Functional Programming.
Addison-Wesley, 1991. 2.2

[Tof88] Mads Tofte. Operational Semantics and Polymorphic Type Infer-
ence. PhD thesis, Department of Computer Science, University
of Edinburgh, May 1988. 2.3.4, 8.1, 8.1, 8.3.2

http://www.dina.kvl.dk/~sestoft/mosml


Bibliography 401

[Tof89] Mads Tofte. Four Lectures on Standard ML. Technical Report
ECS-LFCS-89-73, Department of Computer Science, University
of Edinburgh, March 1989. 2.1

[Tof92] Mads Tofte. Principal Signatures for Higher-Order Program Mod-
ules. In Principles of Programming Languages. ACM Press, Jan-
uary 1992. 2.3.4, 5.1

[Tof93] Mads Tofte. Principal Signatures for Higher-order Program Mod-
ules. Journal of Functional Programming, January 1993. 2.3.4,
5.1

[Wir88] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 4
edition, 1988. 3, 6.1





Index

α-Equivalence, 129
Q-Generality, 312
Q-Substitutions, 312
Q-Unification Problems andQ-Unifiers,

313
η̂-expansion of Types, 71
η-expansion of Type Names, 71, 89

Characterisation, 181
Closure, 195
Closure and Weakening, 315
Closure under Realisation, 249
Closure under Realisation of Enrich-

ment, 179
Closure under Realisation of Value Type

Enrichment, 179
Closure under Substitution, 304
Completeness, 205
Composition, 315
Contexts, 73, 173
Core Contexts, 89
Core Judgements, 79
Core Phrase Classes, 62
Core-ML Judgements, 91
Core-ML Phrase Classes, 85
Core-ML Semantic Objects, 87
Correctness of W, 303
Correctness of Q-Unification, 314
Correctness of Core-ML Type Infer-

ence, 326
Correctness of Higher-Order Modules

Type Inference, 330
Correctness of Matching, 325
Correctness of Unification, 301
Correctness of Value Type Matching,

321

Elimination, 219
Enrichment, 176, 177, 249, 376, 377
Enrichment between Structures, 77
Enrichment between Value Types, 76,

91
Equivalence, 130
Equivalence of Package Types, 267
Equivalence of Types, 71, 171
Existential Modules, 173
Existential Structures, 118

Filtering, 207
Finite Sets and Maps, 68
Free and Bound Simple Type Vari-

ables, 89
Free and Bound Type Variables, 74
Free Variables, 128, 138, 220
Functor Instance, 180
Functor Propagation, 127
Functors, 73, 173

Generativity, 101
Ground and Solvable Modules, 191
Ground Functors and Contexts, 126
Grounding, 195

Invariance, 221
Invocation, 220

Judgements, 250, 283, 284, 313, 338
Definable Types, 92, 328
Applicative Functors, 382
Applicative Modules, 382
Applicative Structures, 382
Classification Inference Rules, 339
Definable Types, 240
Denotation Inference Rules, 339

403



404 Index

Existential Module Enrichment,
378

Existential Module Matching, 380
Functor Enrichment, 178, 206, 378
Functor Matching, 189, 325, 380
Ground Contexts, 127, 219
Ground Existential Modules, 219
Ground Functors, 127, 192
Ground Modules, 192
Ground Structures, 192
Module Enrichment, 178, 206, 378
Module Expressions, 185, 242, 335
Module Matching, 189, 325, 380
Monomorphic Values, 93, 269, 298,

302, 328
Polymorphic Values, 94, 298, 302,

330
Signature Bodies, 79, 182, 241,

333
Signature Expressions, 81, 183,

241, 333
Simple Types, 92, 269, 327
Solvable Functors, 193
Solvable Modules, 193
Solvable Signatures, 126, 219
Solvable Structures, 126, 193
Structure Bodies, 82, 119, 134,

184, 242, 334
Structure Enrichment, 76, 178,

206, 378
Structure Expressions, 84, 121
Structure Matching, 189, 324, 379
Structure Paths, 81
SubTyping, 35
Term Classification, 22, 27, 32,

35, 39, 43
Term Equivalence, 22, 27, 39, 43
Type Classification, 22, 27, 32,

38, 43
Type Equivalence, 32, 39, 43
Type Occurrences, 81, 183, 334
Unification of Definable Types,

316
Unification of Simple Types, 301,

315

Unification of Type Names, 317
Unification of Types, 317
Valid Contexts, 22
Valid Kinds, 22, 38
Value Occurrences, 82, 187, 336
Value Type Matching, 321
Value Types, 93, 328

Kinds, Type Variables, Type Names
and Types, 70, 168

Lifting, 244

Mini-SML, 94

Prefixes, 311
Principal Value Types, 299
Projection, 248, 250
Propagation, 126

Raising, 219
Realisation is well-defined, 174
Realisation of Core Definable Types

and Value Types, 75
Realisation of Definable and Value Types,

89
Realisation of Type Names and Types,

75, 174
Realisations, 74, 173, 175
Reflexivity, 179
Reflexivity of Value Type Enrichment,

179
Renaming, 130
Renamings, 129
Representable Contexts, 250
Representation, 237, 251
Rigidity, 101

Satisfaction, 181
Semantic Objects of the Core, 67
Signature Matching, 77, 177
Signature Matching Algorithm, 188
Signatures, 73, 173
Solvability, 125
Solvable Structures and Signatures, 125
Soundness, 196



Index 405

Soundness — Part I, 134
Soundness — Part II, 134
Strengthening, 195, 248, 250
Strong Enrichment, 205
Strong Induction, 205
Structures, 72, 172
Substitution, 246, 249, 299
Substitution in a Prefix, 314
Substitutions, 88

Termination, 190
Transitivity, 180
Transitivity of Value Type Enrichment,

180
Type Soundness, 285

Unification Problems and Most Gen-
eral Unifiers, 300

Value Types Generalising Simple Types,
90

Weakening, 195, 249
Well-formed Contexts, Existential Mod-

ules, Signatures, 219


	Introduction
	Objectives and Approach
	Thesis Outline
	Implementation

	Background
	An Overview of Standard ML
	The Standard ML Core language
	The Standard ML Modules Language
	Summary

	An Introduction to Type Theory
	The Simply Typed Lambda Calculus
	Quantification over Types of a Kind
	Parameterisation over Types of a Kind
	Subtypes
	First-Order Quantification
	Strong Higher-Order Existentials
	Summary

	Related Work
	Type-Theoretic Approaches to Modular Programming
	Type-Theoretic Accounts of Standard ML Modules
	Type-Theoretic Alternatives to Standard ML Modules
	Miscellaneous Related Work
	Summary


	The Static Semantics of Mini-SML
	Modules
	Phrase Classes
	Semantic Objects
	Static Semantics

	An Example Core Language: Core-ML
	Phrase Classes
	Semantic Objects
	Static Semantics

	Discussion of Mini-SML
	Discussion of the Syntax
	Discussion of the Semantic Objects
	Discussion of the Judgements
	The Different Roles of Bound Type Variables
	Is Mini-SML dependently typed?

	Conclusion

	Type Generativity as Existential Quantification
	Generativity: An Informal Account
	The Rationale for Distinguishing Syntactic Type Identifiers From Semantic Type Variables
	The Rationale for Maintaining a State of Generated Type Variables
	The Rationale for Generative Functor Application

	A Type-Theoretic Semantics
	Static Semantics
	An Example

	The Equivalence of the Generative and State-less Classification Judgements
	Completeness
	Soundness

	Conclusion

	Higher-Order Modules
	Motivation
	Programming with Higher-Order Functors
	Functor Generalisation as Enrichment
	Decomposition Need Not Compromise Efficiency

	From Modules to Higher-Order Modules
	Functor Signatures
	Incorporating Generativity
	Generalising the Dot Notation

	Phrase Classes
	Semantic Objects
	Specifying Enrichment
	Defining Enrichment

	Static Semantics
	An Algorithm for Matching
	Ground and Solvable Modules
	Soundness
	Completeness

	A Type Checking Algorithm for Higher-Order Modules
	Contribution and Relation to Biswas's Work

	Separate Compilation for Modules
	Modules and Separate Compilation
	Identifying Compilation Units with Constrained Definitions
	Identifying Compilation Units with Abstracted Definitions
	A Lingering Problem: The Lack of Syntactic Interfaces
	Eclipsed Identifiers
	Anonymous Abstract Types

	A Module Language with Syntactic Representations of Types
	A Strategy to Establish the Representation Property
	Syntactic Operations on Phrases
	Properties

	Conclusion

	First-Class Modules
	Core-ML with First-Class Modules
	Phrase Classes
	Semantic Objects
	Static Semantics

	An Example: The Sieve of Eratosthenes
	Another Example: Dynamically-Sized Functional Arrays
	Soundness and Package Elimination
	Towards a Proof of Type Soundness

	Conclusion

	Type Inference for Core-ML with Higher-Order and First-Class Modules
	A Review of ML Type Inference
	Type Inference Issues
	Type Inference for Core-ML with Higher-Order Modules
	Unification of Core-ML Simple Types
	Value Type Enrichment modulo Unification
	Matching modulo Unification
	A Type Inference Algorithm

	Type Inference for Core-ML with First-Class Modules
	Extending the Unification Algorithm
	Extending the Type Inference Algorithm

	Conclusion

	Conclusion
	Summary
	Comparison with Related Work
	The Adequacy of MacQueen's Type-Theoretic Analogy
	Leroy's Modules and Harper and Lillibridge's Translucent Sums
	Leroy's applicative functors

	Further Research

	Epilogue
	Moscow ML's Extensions to Standard ML
	Higher-Order Modules
	Generative and Applicative Functors
	Opaque and Transparent Functor Signatures
	Closing the Loopholes
	Generalised Projections
	First-class Modules
	Recursive Structures and Signatures
	Relaxations of Other Standard ML Restrictions
	Miscellaneous Static Semantic Issues
	Compiling Modules


	Bibliography
	Index

