
Join Patterns for Visual Basic

Claudio V. Russo
Microsoft Research Ltd., Cambridge, U.K.

crusso@microsoft.com

Abstract
We describe an extension of Visual Basic 9.0 with asyn-
chronous concurrency constructs - join patterns - based on
the join calculus. Our design of Concurrent Basic (CB)
builds on earlier work on Polyphonic C# and Cω. Since
that work, the need for language-integrated concurrency has
only grown, both due to the arrival of commodity, multi-core
hardware, and the trend for Rich Internet Applications that
rely on asynchronous client-server communication to hide
latency. Unlike its predecessors, CB adopts an event-like
syntax that should be familiar to existing VB programmers.
Coupled with Generics, CB allows one to declare re-useable
concurrency abstractions that were clumsy to express pre-
viously. CB removes its ancestors’ inconvenient inheritance
restriction, while providing new extensibility points useful
in practical applications that must co-exist with or want to
exploit alternative threading models available on the plat-
form. CB is implemented as an extension of the production
VB 9.0 compiler.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language constructs and features—Concurrent
programming structures;control structures; classes and ob-
jects

General Terms Languages

Keywords Visual Basic, join patterns, asynchronous mes-
sage passing.

1. Introduction
This paper presents Concurrent Basic (CB), an extension of
Visual Basic 9.0 (11) with asynchronous concurrency con-
structs - join patterns - derived from the join calculus (5).
The name CB is a deliberate pun on the channel-based Citi-
zen’s Band radio popular in Basic’s heyday. Our motivation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-215-3/08/10. . . $5.00

is to let VB rise to the occasion of both parallel program-
ming on multi-core hardware, and distributed programming
of Rich Internet Applications, using asynchronous commu-
nication to hide latency. Unlike its C# based predecessors,
Polyphonic C# (4) and Cω (12), CB adopts an accessible,
event-like syntax that should be familiar to modern VB pro-
grammers. By exploiting Generics in Visual Basic, CB al-
lows one to declare parametric, thus reusable, concurrency
abstractions that were awkward to express, less efficient
and less safe in the original C# proposals: these pre-dated
Generics and had to resort to expensive boxing and failure-
prone casts. CB offers more natural support for inheritance,
enabling a subclass to augment the set of patterns declared
on inherited channels: the C# variants forced users to copy
existing patterns into the subclass, breaking encapsulation.
CB also provides novel, semi-declarative hooks to let users
control the execution of patterns as an ad-hoc, yet impor-
tant, concession to manual optimization and the integration
with other concurrency frameworks available on the plat-
form. The CB compiler is an extension of the production
Visual Basic 9.0 compiler that generates code for the Com-
mon Language Runtime (CLR) with performance similar to
C#. Our compiler is available both from the command-line
and from within Visual Studio.

Although less fashionable amongst researchers, Visual
Basic is hugely popular. Having evolved into a statically
typed, class-based object-oriented language there is very lit-
tle to distinguish VB 9.0 from C# 3.0. Both support Gener-
ics, type inference, language integrated query (LINQ), and
lambda expressions. Where they currently differ is in C#’s
support for CLU-style iterators, unsafe code, and lambda
statements. VB, for its part, provides optional and named ar-
gument passing, Cω-style XML literals, dynamic typing and
late-binding (runtime member resolution).

Interestingly, one of the features that has distinguished
VB and C# from the start is VB’s support for declarative
event handling. Events support a simple publish/subscribe
model: a class publishes some internally raised events that
zero or more, typically unknown, subscribers can handle.
While both languages let you define event members, only
VB allows a method to declare that it handles some named
events - C# users have to add and remove event callbacks
imperatively.

Public Class Document

Inherits Form

Private WithEvents SaveButton As Button

Private WithEvents SubmitButton As Button

Public Event Saved(sender As Object, args As EventArgs)

Private Sub CaseSaveOrSubmit(sender As Object, args As EventArgs) _

Handles SaveButton.Click, SubmitButton.Click

’ Save this document to disk

RaiseEvent Saved(Me, Nothing)

End Sub

Public Event Submitted(sender As Object, args As EventArgs)

Private Sub CaseSubmit(sender As Object, args As EventArgs) Handles SubmitButton.Click

’ Submit this document to the server

RaiseEvent Submitted(Me, Nothing)

End Sub

End Class

Figure 1. Declarative event handling in Visual Basic.

For instance, a VB GUI application might declare the
class Document in Figure 1.1 This class publishes two 2-
argument events, Saved(s,e) and Submitted(s,e), raised
by methods CaseSaveOrSubmit and CaseSubmit. Method
CaseSaveOrSubmit is a handler that runs whenever the but-
ton in variable SaveButton or SubmitButton raises its Click
event.2 This relationship is established by the Handles key-
word after the method header, followed by a list of qual-
ified event identifiers. The Click events (not shown) have
the same argument signature as the handler. A single event
may have more than one handler. When the event is raised,
all of its handlers are executed, on the raising thread and
in the order in which they were added to the event. Here,
CaseSaveOrSubmit and CaseSubmit will both run (sequen-
tially) in response to SubmitButton.Click. Since events may
have zero or many registered handlers they are, by design,
not allowed to have a return type.3

CB leverages the Basic programmer’s familiarity with
event-based programming but then turns it on its head. In ad-
dition to events, a CB class can declare channels on which to
receive asynchronous messages and synchronous requests.
A method may be declared to execute when communication
has occurred on a particular set of local channels, forming
a join pattern. Communications are queued until or unless
some method is enabled and run. More precisely, a message
that enables some join pattern causes its method to run (on
some other thread) otherwise the message is queued until
one of its patterns is enabled; a request that enables some

1 VB is line-based, _ is the line-continuation marker.
2 The WithEvent modifiers on the button declarations expose their events
for event handling. Since WithEvent variables are mutable, setting the
value of a WithEvents variable implicitly causes its handlers to be re-
moved from the current value’s event and added to the new value’s event.
3 VB includes a few more event-related constructs: property-like custom
event declarations and imperative AddHandler and RemoveHandler
statements. We can ignore these for our purposes.

join pattern runs its method (on the same thread) otherwise
the request blocks until one of its patterns is enabled. Unlike
an event handler, which services one of several alternative
events at a time, in conjunction with all other handlers on
that event, a join pattern waits for a conjunction of channels
and competes for execution with any other enabled pattern.

Figure 2 is the simplest interesting example of CB,
a module declaring a thread-safe, unbounded, unordered
string buffer. This example presents all three keywords intro-
duced by CB: Asynchronous, Synchronous and When (which
already exists for exception handling). This module declares
two channels: an asynchronous channel, Put(s), which takes
a string argument and (like all asynchronous methods) re-
turns no result; and a synchronous channel, Take(), which
takes no arguments but returns a string. The private method
CaseTakeAndPut is the continuation of a join pattern that
can run only When both the Take and Put methods have been
called. (The name CaseTakeAndPut is arbitrary; as a conven-
tion, we choose to derive the name of the continuation from
the channels following When.)

Suppose several producer and consumer threads wish
to communicate via the Buffer module. Producers call
Buffer.Put(s) to post a string, without blocking. Con-
sumers call Buffer.Take() to request a string, possibly
blocking. Once Buffer has received both a Put(s) and a
Take() the body of CaseTakeAndPut can run, returning the
actual argument s of Put as the result of the call to Take.
Since this is the only applicable pattern, a caller of Take will
wait until or unless a call to Put has arrived. Multiple calls
to Take may be pending before a Put is received to reawaken
one of them, and multiple calls to Put may be queued before
their arguments are consumed by a subsequent Take. Note
that:

1. The body of the continuation runs in the (reawakened)
thread corresponding to the matched call to Take. Hence
no new threads are spawned in this example.

Module Buffer

Public Asynchronous Put(s As String)

Public Synchronous Take() As String

Private Function CaseTakeAndPut(s As String) As String When Take, Put

Return s

End Function

End Module

Figure 2. An unbounded, unordered string buffer in CB.

2. The code produced for the Buffer module is completely
thread-safe. The compiler generates the necessary lock-
ing to ensure that channel invocations are consumed
atomically. Furthermore, this locking is fine-grained and
brief - method CaseTakeAndPut does not lock the en-
tire Buffer module during its execution. More generally,
continuation methods are not executed with “monitor se-
mantics”, acquiring and releasing their object’s lock like
Java’s synchronized methods.

3. The result of a continuation is returned on its syn-
chronous channel, of which there can be at most one
following When.

In general, a channel may be involved in more than one
join pattern, each of which defines a different continuation
that may run when the channel is invoked (provided the rest
of the pattern is enabled). For example, in the Either module
of Figure 3, calls to Receive synchronize with calls to First

or Second. Now we have two asynchronous channels and
a synchronous channel that can wait for either one, with a
different continuation and argument type in each case.

A single join pattern may involve more than one asyn-
chronous channel; module Both in Figure 4 contains one
synchronous join pattern that waits for messages on both
First and Second (as well as Receive). Notice that it takes
two parameters, one from each channel.

A join pattern may also be purely asynchronous, provided
its continuation is a subroutine and its When clause only lists
asynchronous channels. The pattern CaseAsyncTakeAndPut

in Figure 5 spawns a new thread that executes the call-
back c(i) whenever messages arrive on both AsyncTake and
Put (in any order).4 Merging the declarations of Buffer and
AsyncBuffer would yield a module that supports both syn-
chronous and asynchronous consumers.

The paper is structured as follows: Section 2 describes
our proposal in more detail; Section 3 gives more motivating
examples; Section 4 describes our implementation; Section
5 considers two pragmatic extensions (custom dispatch of
patterns and synchronous rendezvous); Section 6 surveys
related work and concludes.

4 The Delegate declaration defines a nominal type, Callback, for first-
class methods matching the specified signature. Delegate values are con-
structed by applying VB’s AddressOf operator to a named static or in-
stance method or, in VB 9.0, by writing an anonymous lambda-expression.

2. Detailed Proposal
CB extends VB with just two new constructs: channels and
declarative message handling. The syntactic extensions to
VB 9.0 (11) appear in Figure 6.

Channels are used to synchronize and pass messages be-
tween concurrently executing threads. A channel declaration
consists of any optional attributes and access modifiers, op-
tional Shadows or Shared keyword, followed by keyword
Asynchronous or Synchronous, a method signature (iden-
tifier, parameter list and optional return type) and an op-
tional Implements clause. If the channel is Asynchronous,
it must not have a return type. A channel may not declare
type parameters. The parameter list may not contain ByRef,
Optional or ParamArray parameters. A channel may not
overload another member of the same name. Channels may
be declared in modules, classes and structs. A channel in a
struct must be marked Shared. A channel may implement an
interface method of a matching signature, but there is no spe-
cial syntactic support for specifying channels in interfaces.

From a client’s perspective, a channel just declares a
method of the same name and signature. The client posts
a message or issues a request by invoking the channel as a
method.

Methods can declaratively service requests and consume
messages arriving on channels belonging to the same in-
stance or type. To do so, a method declaration specifies
the When keyword and lists one or more (distinct) chan-
nels. A When clause may appear wherever a Handles or
Implements clause can in the existing VB syntax. A channel
in the When list is specified by an identifier, possibly pre-
fixed by MyClass, MyBase or Me. The (qualified) identifier
must denote a Synchronous or Asynchronous channel de-
clared in the containing type of the method or one of its base
classes. The When clause of a Shared method may only men-
tion Shared channels, conversely, the When clause of a non-
Shared method may only mention non-Shared channels. The
argument types of the method must exactly match the con-
catenation of the (inherited) argument types of the channels
in the When clause. The return type of the method must match
the return type of the first channel following When. Only the
first channel following a When clause may be Synchronous,
all subsequent channels must be Asynchronous. A type in-
herits all non-Shared When clauses provided by its base type.

Module Either

Public Asynchronous First(s As String)

Public Asynchronous Second(i As Integer)

Public Synchronous Receive() As String

Private Function CaseReceiveAndFirst(s As String) As String When Receive, First

Return s

End Function

Private Function CaseReceiveAndSecond(i As Integer) As String When Receive, Second

Return i.ToString()

End Function

End Module

Figure 3. Waiting on a disjunction of channels.

Module Both

Public Asynchronous First(s As String)

Public Asynchronous Second(i As Integer)

Public Synchronous Receive() As String

Private Function CaseReceiveAndFirstAndSecond(s As String, i As Integer) As String _

When Receive, First, Second

Return s + i.ToString()

End Function

End Module

Figure 4. Waiting on a conjunction of channels.

Module AsyncBuffer

Public Delegate Sub Callback(i As Integer)

Public Asynchronous AsyncTake(c As Callback)

Public Asynchronous Put(i As Integer)

Private Sub CaseAsyncTakeAndPut(c As Callback, i As Integer) When AsyncTake, Put

c(i)

End Sub

End Module

Figure 5. Spawning new tasks.

A derived type cannot in any way alter the When clauses it
inherits from its base type, but may declare additional ones.

Intuitively, a continuation method must wait until/unless a
single request or message has arrived on each of the channels
following the continuation’s When clause. If the continuation
gets to run, the arguments of each channel invocation are de-
queued (thus consumed) and transferred (atomically) to the
continuation’s parameters. For this reason, the method’s ar-
gument signature must be compatible with the concatenation
of the argument signature of its channels. Similarly, when
the continuation returns, it will return its value to the in-
voker of the synchronous channel (if any). Thus the return
type of the continuation must match the return type of any
synchronous channel in its When clause.

A type may declare multiple channels and multiple join
patterns on subsets of those channels. Patterns may (but are
not recommended to) specify overlapping sets of channels,
in which case the patterns will compete for execution. A

subclass may extend its set of inherited channels and/or
reference accessible channels of its base classes in its own
patterns.

The act of invoking a channel may enable zero, one or
more join patterns involving that channel:

• If no pattern is enabled then the channel invocation is
queued up. If the channel is asynchronous, then this sim-
ply involves adding the arguments of the invocation (the
contents of the message) to a queue. If the channel is syn-
chronous, then the calling thread is blocked, joining a no-
tional queue of threads waiting on this channel.

• If there is a single enabled pattern, then the arguments
of the channels involved in the match are de-queued, and
any blocked thread involved in the match is awakened to
run the join pattern’s continuation in that thread. The con-
tinuation of a join pattern involving only asynchronous
channels is run in a newly spawned thread.

ModuleMemberDeclaration := . . . | ChannelMemberDeclaration

ClassMemberDeclaration := . . . | ChannelMemberDeclaration

StructMemberDeclaration := . . . | ChannelMemberDeclaration

ChannelMemberDeclaration∗ := [Attributes] [ChannelModifiers+] ChannelSignature [ImplementsClause]
[StatementTerminator]

ChannelSignature∗ := Asynchronous Identifier [([ParameterList])]
| Synchronous Identifier [([ParameterList])] [As [Attributes] TypeName]

ChannelModifiers∗ := AccessModifier | Shadows | Shared
HandlesOrImplements := . . . | WhenClause

WhenClause∗ := When WhenList

WhenList∗ := ChannelMemberSpecifier

| WhenList, ChannelMemberSpecifier

ChannelMemberSpecifier∗ := Identifier

| MyBase.Identifier

| Me.Identifier

| MyClass.Identifier

Figure 6. Required extensions to the VB 9.0 syntax (11); nonterminals marked with ∗ are additions.

• If several join patterns are enabled, an unspecified one is
selected to run.

• If multiple calls to one channel are queued up, which call
will be de-queued by a match is unspecified.

The underspecification in this idealized description is de-
liberate. While CB’s implementation of asynchronous mes-
sage queues have FIFO semantics, the programmer is not
meant to exploit this. In a distributed setting, asynchronous
calls issued in one sequential order may well arrive in a dif-
ferent one (due to latency and routing effects). The FIFO or-
der of synchronous calls (from separate threads) is not guar-
anteed because the underlying CLR/Windows locks used to
implement synchronous call queues do not, for performance
reasons, guarantee deterministic ordering. Finally, in the im-
plementation, the message that awakens a synchronous call
may not be the one consumed by it since the message is ac-
tually left available in the queue to be stolen by some in-
tervening thread; indeed, the awakened thread may have to
wait again if none of its patterns are enabled by the time it
actually wakes up (4).

3. Examples
3.1 Example: A One-Place Buffer
The original Buffer module is unbounded: any number of
calls to Put could be queued up before matching a Take.
We now describe a variant in which only a single data value
may be held in the buffer at any one time. This time, we
define a generic class, OnePlaceBuffer(Of T), to support

multiple instances of varying content types T (Figure 7):
The public interface of OnePlaceBuffer(Of T) is similar to
that of Buffer, but calling Put(t) is now synchronous and
will block if the buffer is not empty. The implementation
of OnePlaceBuffer makes use of two private asynchronous
messages: Empty and Contains(t). These are used to carry
the state of the buffer and illustrate a very common pro-
gramming pattern in CB. The class is best understood by
reading its code declaratively. When a New buffer is cre-
ated, it is initially Empty(). If someone calls Put(t) on an
Empty() buffer then it subsequently Contains(t) and the
call to Put(t) returns. If someone calls Take() on a buffer
which Contains(t) then the buffer is subsequently Empty()

and t is returned to the caller of Take(). Implicitly, in all
other cases, calls to Put(t) and Take() block. The construc-
tor establishes and the patterns maintain the invariant that
there is always exactly one Empty() or Contains(t) mes-
sage pending on the buffer.

3.2 Example: Futures
Futures are an established concurrency abstraction used to
represent the eventual value of a concurrent computation.
Generic futures with explicit waiting are simple to code up
with CB (Figure 8). Creating a new Future(Of T) from a
Computation returning a value of type T (expressed as a del-
egate or VB 9.0 lambda expression) spawns a new thread
to Execute the computation in parallel. When the current
(or another) thread actually needs the value of the compu-
tation it calls a method on the future to Wait until/unless

Public Class OnePlaceBuffer(Of T)

Private Asynchronous Empty()

Private Asynchronous Contains(t As T)

Public Synchronous Put(t As T)

Public Synchronous Take() As T

Private Sub CasePutAndEmpty(t As T) When Put, Empty

Contains(t)

End Sub

Private Function CaseTakeAndContains(t As T) As T When Take, Contains

Empty()

Return t

End Function

Public Sub New()

Empty()

End Sub

End Class

Figure 7. A generic, one-place buffer.

Public Class Future(Of T)

Public Delegate Function Computation() As T

Public Synchronous Wait() As T

Private Asynchronous Execute(Comp As Computation)

Private Asynchronous Done(t As T)

Private Function CaseWaitAndDone(t As T) As T When Wait, Done

Done(t)

Return t

End Function

Private Sub CaseExecute(Comp As Computation) When Execute

Done(Comp())

End Sub

Public Sub New(Comp As Computation)

If Comp Is Nothing Then Throw New ArgumentNullException()

Execute(Comp)

End Sub

End Class

Figure 8. Generic Futures.

the worker has finished the computation and issued Done(t).
Between creating the future and obtaining its value, the cur-
rent thread is free to perform other tasks. Notice the use
of the asynchronous pattern, CaseExecute, to spawn a new
thread. The motivation for reposting the consumed Done(t)

message in CaseWaitAndDone is to allow multiple Waits (i.e.
reads) to succeed. Modifying this class to propagate excep-
tions thrown by Comp, cancellation of Comp or to execute Comp
using a thread from the thread pool is straightforward. A use-
ful optimization is to cache the value of Comp() in a private
field of type T protected by an argument-less Done() chan-
nel. This would be an improvement because an argument-
less asynchronous channel is actually represented more effi-
ciently as a count of pending invocations rather than a heap-
allocated queue of arguments.

3.3 Example: Active Objects
Active object or actors are a popular pattern for asyn-
chronous programming (1). Active objects communicate
by asynchronous messages that are processed sequentially
by object-specific threads: each active object runs a pri-
vate event loop. One way of programming active objects
in CB is by inheritance from a common base class, the
class ActiveObject in Figure 9. Sending a Start() mes-
sage spawns a new thread that loops calling the synchronous
channel ProcessMessage() waiting until or unless the next
enabled pattern on ProcessMessage can run. The Halt mes-
sage terminates the loop.

Concrete subclasses of ActiveObject declare additional
patterns on the protected ProcessMessage channel, joining
it with locally declared asynchronous messages particular to
that class.

Public Class ActiveObject

Private Done As Boolean

Protected Synchronous ProcessMessage()

Public Asynchronous Start()

Private Sub CaseStart() When Start

While Not Done

ProcessMessage()

End While

End Sub

Public Asynchronous Halt()

Private Sub CaseHalt() When ProcessMessage, Halt

Done = True

End Sub

End Class

Figure 9. The base class for an active object.

To illustrate, here is an extract from a lift (elevator) sim-
ulation sample written in CB. The sample is derived from
the Erlang Lift controller example (1), but we added some
animation and people to drive the simulation. In the code, a
subclass of ActiveObject is used to represent each type of
agent (lift, cabin, floor or person) involved in the simulation.

Figure 10 contains an extract from the Person class. It
publishes a GotoFloor() message whose executions, by syn-
chronizing with ProcessMessage(), are guaranteed to be se-
rialized. Hence there is no need to protect the private floor

(and indeed Done) field with a lock.
Notice the use of inheritance: Person declares an addi-

tional pattern on the inherited ProcessMessage() channel.
Similarly, a derived class of Person will inherit this pattern
but is free to declare additional channels and patterns. CB’s
support for inheritance and incremental extension of patterns
is an important feature that distinguishes it from its predeces-
sors Polyphonic C# and Cω (see Section 6).

Although active objects typically communicate asyn-
chronously, if needed, an object can synchronize with an-
other (here floor) by posting, with its message, an explicit
acknowledgement, a, to wait on (a.Receive() waits for an
asynchronous call to a.Send()). The join based implementa-
tion of class Ack is trivial and similar to our Buffer module.
We will revisit and simplify this code in Section 5.2.

Threads are expensive on the CLR; having more than
a few hundred ActiveObjects around at once will typically
exhaust the machine’s resources or bring execution to a
crawl. However, active objects are not built-in to CB: they
are just an example of an abstraction built with join patterns.
Implementing variants of this abstraction, such as families of
active objects that share a thread pool for better scalability,
is also possible.

3.4 Example: Parallel Life
Another application we developed is a simple parallel im-
plementation of Conway’s Game of Life. The virtual grid of
cells is partitioned, vertically and horizontally, amongst p×q

concurrent nodes. Each node computes an m× n subregion
of the grid using a dedicated worker thread. A node main-
tains a (double buffered) private array with (m+2)∗ (n+2)
cells, overlapping one edge with each neighbour. To syn-
chronize, a node repeatedly:

• posts its 4 interior edges to its neighbours;
• waits to receive 4 exterior edges on 4 separate channels

from its neighbours;
• computes new cell values in parallel with other nodes.

To simplify the algorithm, exterior nodes post exterior edges
to themselves.

Figure 11 outlines the code for a Node (ignoring boundary
conditions). Nodes Up through Left reference neighbouring
nodes. The arrays TopBuff through LeftBuff are buffers, al-
located (just once) in New(). The buffers migrate between
nodes, but are only owned and modified by one node at a
time. Send copies the node’s computed interior edge values
into the buffers, before posting them on its neighbours’ chan-
nels. Receive() waits to receive exterior edge values and
then copies them into the current subgrid. Relax() computes
the next generation of the node’s subgrid (code omitted).

Some observations are in order. Since no subgrids are
shared, this algorithm is easy to distribute across machines.
All synchronization is local: for this reason, two nodes
(x1, y1) and (x2, y2) may be working on different iterations
in parallel, but will never be more than |x1−x2|+ |y1− y2|
iterations apart. Waiting simultaneously on four separate
channels is both simpler and more efficient than waiting for
one edge to arrive from each neighbour over a single, shared
channel. The latter design would require a node to wakeup
more often and manually queue edges arriving from differ-
ent neighbours until it had received at least one edge from
each. Finally, Cell is a type parameter of an enclosing class,
so we can reuse this algorithm for different cell types (i.e.
automata).

Public Class Person

Inherits ActiveObject

Private floor As Floor

Public Asynchronous GotoFloor(f As Floor)

Private Sub CaseProcessMessageAndGotoFloor(f As Floor) When ProcessMessage, GotoFloor

floor = f

Dim a As New Ack()

floor.PersonArrived(Me, a)

a.Receive()

ChooseDir(floor)

End Sub

...

End Class

Figure 10. A derived active object class representing a person in the lift simulation.

Class GenericPCA(Of Cell)

Class Node

...

Private Asynchronous StartWorker()

Private Sub CaseStartWorker() When StartWorker

While True

Send()

Receive()

Relax() ’ Relax() computes the next subgrid

End While

End Sub

Private TopBuff, RightBuff, BottomBuff, LeftBuff As Cell()

Public Up, Right, Down, Left As Node

Public Asynchronous TopChan(Edge As Cell())

Public Asynchronous RightChan(Edge As Cell())

Public Asynchronous BottomChan(Edge As Cell())

Public Asynchronous LeftChan(Edge As Cell())

Private Sub Send()

... ’ Copy computed edge values from grid into buffers

Up.BottomChan(TopBuff) : Right.LeftChan(RightBuff)

Down.TopChan(BottomBuff) : Left.RightChan(LeftBuff)

End Sub

Private Synchronous Receive()

Private Sub CaseReceiveAndEdges _

(TopEdge As Cell(),RightEdge As Cell(), BottomEdge As Cell(), LeftEdge As Cell()) _

When Receive, TopChan, RightChan, BottomChan, LeftChan

TopBuff = TopEdge : RightBuff = RightEdge

BottomBuff = BottomEdge : LeftBuff = LeftEdge

... ’ Copy received exterior edge value from buffers into grid

End Sub

End Class

Figure 11. Nodes of a generic parallel cellular automata class (outline).

Figure 12. Speedup of Life on a dual, quad-core processor
using N nodes executing in parallel.

Running an instrumented version of this code on a work
station with 2 quad-core 2.33MHz Intel Xeon chips and
3GB of memory (running 32-bit Vista) shows, unsurpris-
ingly, near linear speedups as we up the number of nodes
(keeping the overall grid size fixed), up until we exceed the
8-core count. The graph in Figure 12 plots the ratio between
running times of a 1-node sequential and N -node parallel
simulation, each computing a 2048 x 2048 cell grid for 1000
iterations. The nodes are arranged horizontally, halving the
subgrid width as we double N . Running times are wall-clock
times measured from a master thread as the time between
starting the simulation and receiving a final “done” signal
from the last node to finish. The graph plots the speedups
averaged over 8 runs, with standard deviation marked using
error bars. For a fair comparison, the single node simulation
is modified to avoid the cost of self-synchronization.

Figure 13 shows a screenshot of a (slower) animated ver-
sion - notice the utilization of all 8 cores and that neighbour-
ing nodes may be computing adjacent generations (shown
centred in each node).

4. Compilation
The CB compiler uses the author’s Joins library (14; 15) as
a runtime. Consequently, adding join patterns to Microsoft’s
production VB 9.0 compiler (implemented in C++) required
relatively modest changes, mostly to the front-end of the
compiler. Indeed, the implementation closely follows the
current implementation of events and declarative event han-
dling. All code is generated as intermediate source code for
“synthetic” members of various kinds, using pre-existing
compiler support. The body of each synthetic member is
later compiled to MSIL bytecode by the back end. The syn-
thesized source code relies heavily on type inference and
would be tedious to emit directly as explicitly typed MSIL.

4.1 The Joins Runtime Library
This section gives a brief overview of the supporting Joins
library, with enough detail to support the translation pro-
cess described in later sections. We omit some library fea-
tures that are not exploited in the translation. This section
is adapted from (14), which describes the full API and its
implementation in more detail.

In the Joins library, the scheduling logic associated with
a CB module, class or struct has a separate, first-class rep-
resentation as an object of a special Join class. It is best to
think of a join object as a mini-scheduler (or glorified lock)
responsible for managing its own set of channels and pat-
terns. Instead of representing channels as special methods
belonging to some type, in the library, channels are special
delegate values (first-class methods) obtained from some
common Join object. Communication and/or synchroniza-
tion takes place by invoking these delegates, passing argu-
ments and optionally waiting for return values. In the library,
a join pattern is some code whose execution is guarded by a
(linear) combination of distinct channel delegates owned by
the same Join object. The continuation of a join pattern is
provided by the user, not as a method as in CB, but as a
delegate. The continuation delegate is free to manipulate re-
sources external to the Join object simply by accessing the
continuation’s private target object.

Users of Joins reference the assembly

Microsoft.Research.Joins.dll

and import the namespace Microsoft.Research.Joins.
A new Join instance j is allocated by calling a factory

method:

Join.Create(size, allowRedundantPatterns)

The integer size bounds the number of channels supported
by j; it also sets the constant property j.Size. The boolean
allowRedundantPatterns determines whether the join ob-
ject accepts or rejects patterns declared on overlapping sets
of channels. Its value affects the scheduling of patterns (a
round-robin scheduler is used if allowRedundantPatterns is
True; otherwise, a default first-match scheduler is used).
CB’s compiler always passes True to allow overlapping pat-
terns.

A Join object notionally owns a set of asynchronous and
synchronous channels, each obtained by calling an overload
of method Initialize, passing the location of a channel
using a VB call-by-reference (ByRef or C# out) argument:

j.Initialize(channel)

Channels are instances of the following delegate types,
summarized by a simple grammar of type expressions:

(Asynchronous|Synchronous[(Of R)]).Channel[(Of A)]

Figure 13. Screenshot of the animated, parallel Game of Life (at reduced resolution for printing).

A channel’s outer class, Asynchronous, Synchronous
or Synchronous(Of R), should be read as a modifier that
specifies its blocking behaviour and optional return type
R. Type A, if present, determines the channel’s optional
argument type. The six channel flavours support zero or
one arguments of type A and zero or one results of type
R. Multiple arguments or results must be passed in tuples,
using the provided generic Pair(Of A, B) struct or by other
means.

Apart from its channels, a Join object notionally owns a
set of join patterns. A join pattern is constructed by invoking
an overload of the instance method When followed by zero
or more invocations of instance method And (or AndPair),
followed by a final invocation of instance method Do. A
constructed join pattern typically takes the form:

j.When(a1).And(a2) · · · .And(an).Do(d)

where a1 through an are channel delegates and d is a con-
tinuation delegate. Argument a1 of When(a1) may be a
synchronous or asynchronous channel or an array of asyn-
chronous channels. Each subsequent argument ai to And(ai)
(for i > 1) must be an asynchronous channel; it cannot be a

synchronous channel. The argument d to Do(d) is a continu-
ation delegate that defines the body of the pattern. Although
its precise type varies with the pattern, the continuation al-
ways has a delegate type of the form:

Delegate Function
Continuation(p1 As P1, . . . , pm As Pm) As R

or
Delegate Sub

Continuation(p1 As P1, . . . , pm As Pm)

The precise type of the continuation d, including its arity
or number of arguments m, is determined by the sequence
of channels guarding it. If the first argument a1 in the pat-
tern is a synchronous channel with return type R, then the
continuation is a function with return type R; otherwise the
continuation is a subroutine.

The continuation receives the arguments of the joined
channel invocations as delegate parameters p1 As P1, . . .,
pm As Pm, for m ≤ n. The presence and types of any ad-
ditional parameters p1 As P1 . . ., pm As Pm varies accord-
ing to the type of each argument ai joined with invocation
When(ai)/And(ai) (for 1 ≤ i ≤ n):

• If ai is of type Channel (regardless of flavour), then
When(ai)/And(ai) adds no parameter to delegate d.

• If ai is of type Channel(Of P) (regardless of flavour),
then When(ai)/And(ai) adds one parameter pj of type
Pj = P to delegate d.

Parameters are added to d from left to right, in increasing
order of i. A continuation can receive at most m ≤ max pa-
rameters (max = 8 in the current implementation). If nec-
essary, it is possible to join more than max generic chan-
nels by calling method AndPair(ai) instead of And(ai).
AndPair(ai) modifies the last argument of the new contin-
uation to be a pair consisting of the last argument of the pre-
vious continuation and the new argument contributed by ai.

Readonly property j.Count is the current number of
channels initialized on j; it is bounded by j.Size. Any in-
vocation of j.Initialize that would cause j.Count to ex-
ceed j.Size throws JoinException. Join patterns must be
well-formed, both individually and collectively. Executing
Do(d) to complete a join pattern will throw JoinException
if d is null, the pattern repeats an asynchronous channel (i.e.
is non-linear), an (a)synchronous channel is null or foreign
to this pattern’s Join instance, or the join pattern is redun-
dant (and allowRedundantPatterns was False). A channel is
foreign to a Join instance j if it was not allocated by some
call to j.Initialize. A pattern is redundant when the set
of channels joined by the pattern subsets or supersets the
channels joined by another pattern on this Join instance.

The code generated by CB will, in fact, never raise a
JoinException: CB’s syntactic restrictions and static checks
ensure this. A dedicated CB runtime library could avoid
checking for these errors and provide a leaner, more tailored
API than Joins does.

The implementation described here differs only slightly
from the one in (14). The bitmask-indexed tables of pat-
terns used to find pattern matches (called Actions and
Patterns in (14, Section 5.1)) are now cyclic instead of
null-terminated linked lists. Our support for overlapping
patterns, exploited by CB but not described in (14), is im-
plemented simply by advancing the pointer to Actions or
Patterns, respectively, to the node following the selected
one, each time an enabled action or pattern is selected for ex-
ecution (leaving the pointer unchanged if there is no match).
Since this round-robin strategy does not, as far as we are
aware, guarantee any formal fairness property, users should
not assume that competing patterns are executed fairly.

4.2 Basic Translation
To give a taste of the source to source transformation
from CB to vanilla VB using the Joins library, consider
the Buffer module from the introduction (Figure 2). The
translation performed by the CB compiler yields the code
in Figure 14. The Put channel is compiled to a pair of
a method named Put and a field named PutChannel that
contains the actual Joins library asynchronous channel.

The compiler-generated body of the Put method invokes
the delegate PutChannel to enqueue its argument. The
<AsynchronousChannel()> attribute on method Put records
that it is a channel to support separate compilation, so that,
for instance, a subclass can register patterns on an instance
channel from an imported base class.

Similarly, the Take channel is compiled to a pair of a
method named Take and a field named TakeChannel that
contains the actual Joins library synchronous channel.
The compiler-generated body of Take invokes the delegate
TakeChannel to enqueue its request. Again, the attribute
<SynchronousChannel()> on Take aids separate compila-
tion.

Each join pattern is compiled to a pair of methods: the
original continuation method (e.g. CaseTakeAndPut), and a
new wrapper method (e.g. CaseTakeAndPutContinuation)
that is the actual continuation registered with the Joins
library. Although redundant in this simple example, the
xxxContinuation method for source method xxx typically
receives all of the arguments from its channels as a single
tuple. The n components of this tuple are then forwarded as
separate arguments to the source continuation xxx.

Finally, the compiler adds a field, SharedJoin that holds
the Join object for the module. The Join object itself is
initialized by a call to Join.Create(2,True). The size ar-
gument, 2, specifies the number of channels required. The
True argument tells the Join object to allow overlapping
patterns. A synthetic shared constructor calls the generated
method SharedJoinInitialize(). This method takes the lo-
cation of each channel (as a ByRef argument) and uses the
Join object to initialize them. It then registers each gen-
erated xxxContinuation method (one per source join pat-
tern) with the Join object as the continuation delegate of
a pattern constructed from the generated channel delegates.
Although the channel fields are declared Readonly (to pre-
vent direct or indirect malicious updates), since the call to
SharedJoinInitialize() is from within a constructor, this
particular call can take the addresses of our Readonly fields
without violating the VB or CLR type system.

4.3 Compiling Inheritance
The translation for a class with instance channels and pat-
terns is slightly more involved: a subclass can extend both
the set of channels and the set of patterns declared in that
class. Our first problem is that when compiling a class, the
compiler will only know the size of the Join object to allo-
cate for an instance of that class, but not for any of its sub-
classes. Our second problem is that a subclass may declare
additional patterns involving both its own and any inherited
channels, all of which must be properly initialized before the
patterns are registered on the Join object.

Our solution to these problems relies on virtual dispatch
and base calls. The class that declares the first channel (and
is thus uppermost in the inheritance hierarchy) declares a
protected field, called Join, of library type Join. This field

Module Buffer

Private ReadOnly PutChannel As [Asynchronous].Channel(Of String)

<AsynchronousChannel()> _

Public Sub Put(t As String)

PutChannel(t)

End Sub

Private ReadOnly TakeChannel As [Synchronous](Of String).Channel

<SynchronousChannel()> _

Public Function Take() As String

Return TakeChannel()

End Function

Private Function CaseTakeAndPut(t As String) As String

Return t

End Function

Private Function CaseTakeAndPutContinuation(Arg As String) As String

Return CaseTakeAndPut(Arg)

End Function

Private ReadOnly SharedJoin As Join = Join.Create(2, True)

Sub New()

SharedJoinInitialize(TakeChannel, PutChannel)

End Sub

Private Sub SharedJoinInitialize(_

ByRef TakeChannel As [Synchronous](Of String).Channel, _

ByRef PutChannel As [Asynchronous].Channel(Of String))

SharedJoin.Initialize(TakeChannel)

SharedJoin.Initialize(PutChannel)

SharedJoin.When(TakeChannel).And(PutChannel).Do(AddressOf CaseTakeAndPutContinuation)

End Sub

End Module

Figure 14. Generated code for the buffer module.

is initialized with Join.Create(JoinSize(),True). The
compiler-generated JoinSize() method that is Protected,
but Overridable, computes the size (number of channels) of
the Join object. Each derived class that declares a new in-
stance channel must override the virtual JoinSize() method
to return the required number of channels for that class, ex-
pressed as an increment of MyBase.JoinSize(). Since the
Join field is Protected, each class that declares new chan-
nels or patterns can reference it to initialize any channels
and/or construct any patterns. When necessary, this is han-
dled by a private, compiler generated JoinInitialize() in-
stance method, called from a (possibly synthetic) constructor
method. The usual chaining of constructor calls ensures that
the channels of a base class are properly initialized before a
derived class can attempt to add patterns involving them.

For a concrete example, the ActiveObject and derived
Person class compile to the code in Figures 15 and 16. No-
tice that only ActiveObject declares the protected Join field
but that Person overrides the JoinSize() method to calcu-
late the size of the Join field from MyBase.JoinSize(). It
also obtains a private JoinInitialize() method to perform
its own channel initialization and pattern construction. In
this way, calling New ActiveObject() creates a Join object
of size 3 (for channels Start, Halt and ProcessMessage), but

calling New Person() creates a Join object of size 3+1+n
(n is for channels declared in Person but not shown).

4.4 Compiling Multi-Parameter Channels and
Continuations

The final wrinkle in the translation is dealing with channels
and continuations that take multiple parameters. The first
problem is that the Joins library only supports channels that
take zero-or-one parameters. The second is that the library
has a ceiling (max) on the number of arguments that may
be bound in a continuation. Fortunately, both limitations are
easily avoided by tupling arguments before sending them
on a channel and by untupling arguments before passing
them to a join pattern continuation. Tuples are constructed
as nested values of a generic Pair(Of A,B) structure, not a
class, avoiding some allocation.

5. Extensions
5.1 Customizing Dispatch via Attributes
As described so far, the semantics of CB is that:

1. the continuation of a synchronous pattern runs in the
thread of the synchronous sender;

Public Class ActiveObject

Private Done As Boolean

Protected ReadOnly ProcessMessageChannel As [Synchronous].Channel

<SynchronousChannel()> _

Protected Sub ProcessMessage()

ProcessMessageChannel()

End Sub

Protected ReadOnly StartChannel As [Asynchronous].Channel

<AsynchronousChannel()> _

Public Sub Start()

StartChannel()

End Sub

Protected ReadOnly HaltChannel As [Asynchronous].Channel

<AsynchronousChannel()> _

Public Sub Halt()

HaltChannel()

End Sub

Private Sub CaseStartContinuation()

CaseStart()

End Sub

Private Sub CaseStart()

While Not Done : ProcessMessage() : End While

End Sub

Private Sub CaseHaltContinuation()

CaseHalt()

End Sub

Private Sub CaseHalt()

Done = True

End Sub

Protected Overridable Function JoinSize() As Integer

Return 3

End Function

Protected ReadOnly Join As Join = Join.Create(JoinSize(), True)

Private Sub JoinInitialize(ByRef ProcessMessageChannel As [Synchronous].Channel, _

ByRef StartChannel As [Asynchronous].Channel, _

ByRef HaltChannel As [Asynchronous].Channel)

Join.Initialize(ProcessMessageChannel)

Join.Initialize(StartChannel)

Join.Initialize(HaltChannel)

Join.When(StartChannel).Do(AddressOf CaseStartContinuation)

Join.When(ProcessMessageChannel).And(HaltChannel).Do(AddressOf CaseHaltContinuation)

End Sub

Sub New()

JoinInitialize(ProcessMessageChannel, StartChannel, HaltChannel)

End Sub

End Class

Figure 15. Generated code for the ActiveObject base class with instance channels.

Public Class Person

Inherits ActiveObject

Private floor As Floor

Protected ReadOnly GotoFloorChannel As [Asynchronous].Channel(Of Floor)

<AsynchronousChannel()> _

Public Sub GotoFloor(f As Floor)

GotoFloorChannel(f)

End Sub

Private Sub CaseProcessMessageAndGotoFloorContinuation(Arg As Floor)

CaseProcessMessageAndGotoFloor(Arg)

End Sub

Private Sub CaseProcessMessageAndGotoFloor(f As Floor)

floor = f : Dim a As New Ack() : floor.PersonArrived(Me, a) : a.Receive() : ChooseDir(floor)

End Sub

Protected Overrides Function JoinSize() As Integer

Return (MyBase.JoinSize() + 1 + n) ’ n is the number of other channels declared in Person

End Function

Private Sub JoinInitialize(ByRef GotoFloorChannel As [Asynchronous].Channel(Of Floor), ...)

MyBase.Join.Initialize(GotoFloorChannel)

... ’ Initialize other n channels

MyBase.Join.When(MyBase.ProcessMessageChannel).And(GotoFloorChannel). _

Do(AddressOf CaseProcessMessageAndGotoFloorContinuation)

... ’ construct remaining local patterns

End Sub

Public Sub New()

JoinInitialize(GotoFloorChannel)

...

End Sub

...

End Class

Figure 16. Generated code for the Person derived class with a new channel and pattern.

2. the continuation of an asynchronous pattern runs in a
newly spawned thread.

One criticism of this design is that it integrates poorly
with other threading models available on the platform such
as the CLR ThreadPool, Windows.Forms event loops and Mi-
crosoft’s new parallel task library (10). Even disregarding
other models, spawning a new thread is often unnecessary
when the body of an asynchronous pattern is known to exe-
cute quickly. Examples of this are when the body just does
some trivial calculation before posting a message on another
asynchronous channel or when the body just queues a task
to some task library. Ideally, the compiler should be able to
identify and optimize these cases using some static analy-
sis. However, until such an analysis materialises, it might be
preferable to simply let the programmer annotate patterns to
indicate how they should be dispatched. The only question
is how to surface this in the syntax, without detracting from
the pleasing similarity with declarative event handlers.

This section describes a simple proposal that addresses
these issues in a semi-declarative yet extensible manner. The
idea is that instead of enlarging the syntax of patterns to ac-
commodate some fixed set of options, we instead allow the
programmer to use user-defined custom attributes to con-

trol the execution aspect of individual patterns. Although at-
tributes are typically used to define custom metadata, here
we (ab)use them to provide both data and behaviour. This
experimental feature turns out to be surprisingly useful.

To support this extension, we extended the Joins library
to expose a well-known (abstract) custom attribute class,
ContinuationAttribute, that provides two virtual methods
(Figure 17). Method BeginInvoke(task) should execute its
continuation argument asynchronously (somehow). Method
Invoke(task) should execute its continuation argument syn-
chronously (somehow).5 A user may define derived classes
of ContinuationAttribute and then use them to specify the
execution behaviour of individual patterns, simply by an-
notating a pattern with an instance of the derived attribute.
An attribute on a type implicitly applies to each pattern in
its definition, giving a simple way to specify default be-
haviour. The CB compiler recognizes derived instances of
ContinuationAttribute placed on modules, types or meth-
ods and squirrels away a fresh instance of the attribute for
each pattern that specifies one. The runtime library then uses

5 The names BeginInvoke and Invoke, though odd, follow .NET con-
ventions.

Public MustInherit Class ContinuationAttribute

Inherits Attribute

Public MustOverride Sub BeginInvoke(task As Continuation)

Public MustOverride Sub Invoke(task As Continuation)

End Class

Public Delegate Sub Continuation()

Figure 17. The abstract ContinuationAttribute class.

the attribute to (a)synchronously dispatch the pattern’s con-
tinuation.

For the optimization scenario, where the user wants
to execute a quick asynchronous pattern immediately, she
might decorate the method with an instance of attribute
Immediate() (Figure 18).

An example of ImmediateAttribute’s use is the generic
Cell(Of T) class in Figure 19 that supports an asynchronous
Write(v) and a synchronous Read() channel. The operations
are rendered atomic by joining each with a private Token()

message (acting as a lock). Since CaseWriteAndToken just
stores its value before reposting Token(), we can execute it
immediately in the last thread to issue Write or Token instead
of spawning a transient thread.

If the user wishes to run asynchronous patterns in the
CLR’s built-in ThreadPool, to save creating new OS threads,
she can define the ThreadPoolAttribute class in Figure
20. In the following example, the <ThreadPool()> attribute
ensures that CaseStartAndIdle is executed in the CLR
ThreadPool in response to a Start and Idle message, with-
out the cost of spawning a new thread each time.

Asynchronous Start()

Asynchronous Idle()

<ThreadPool()> _

Private Sub CaseStartAndIdle() When Start, Idle

’ do some work

Done(Not cancelled)

End Sub

Similarly, to ensure that a continuation is marshalled back
to the Windows.Forms user-interface thread, she might define
the UI attribute in Figure 21, and use it as follows:

Asynchronous Done(completed As Boolean)

<UI()> _

Sub CaseDone(completed As Boolean) When Done

Status.Text = _

If(completed, "Completed", "Cancelled")

End Sub

The <UI()> attribute ensures CaseDone(b) is executed
asynchronously when Done, but on the UI thread, where it
is safe to modify the state of the control Status. Note that,
without the <UI()> attribute, CaseDone would be executed in
a new thread which would then have to marshal the modifi-
cations back to the UI thread using the form’s eponymous,
but weakly typed, BeginInvoke(d As Delegate) method.
Here’s one of several ugly alternatives using plain CB:

Asynchronous Done(completed As Boolean)

Sub CaseDone(completed As Boolean) When Done

BeginInvoke(Function() CaseDoneBody(completed))

End Sub

Function CaseDoneBody(completed As Boolean)

Status.Text = _

If(completed, "Completed", "Cancelled")

End Function

This is expensive, type-unsafe and clumsy: Delegate is the
base class of all delegates, so d is invoked by Reflection;
VB’s lack of lambda-statements forces us to wrap our state-
ment in a function, called from a lambda-expression.

Custom patterns are supported by the CB compiler by
copying any attribute that is placed on a pattern xxx and
derives from ContinuationAttribute to its corresponding
xxxContinuation method. The Joins library has been mod-
ified to allocate a fresh instance of the attribute, if any, when
a pattern is constructed from an xxxContinuation method.
The library currently uses Reflection to retrieve the attribute
instance from a continuation delegate’s target method or
its declaring class or module. This is expensive and re-
quires some security permissions. However, since attributes
are statically known, a better implementation could short-
cut Reflection by allocating the required attributes in the
(Shared)JoinInitialize method and passing them on to a
modified Joins library.

5.1.1 Example
Figure 22 contains a more realistic example, a form that
uses the thread pool to execute a cancellable background
task. The task executes concurrently, perhaps in parallel,
periodically updating the form asynchronously to indicate
progress and final completion. This is a simplified version
of what the .NET Framework’s existing BackgroundWorker

class accomplishes.
The code assumes that class Form declares four con-

trols: two buttons, Go and Cancel, a ProgressBar and a
Status label. Clicking Go starts one ThreadPool thread that
asynchronously does some (presumably expensive) work in
a loop, updating the Form’s ProgressBar until Cancelled

or Done. Clicking Cancel sets the Cancellation cell to
True. The task polls the cancellation cell to continue work-
ing or exit prematurely. Since there is a race between
sending a cancellation signal and the task completing, the
task’s Done(completed) message reports the actual comple-

Class ImmediateAttribute

Inherits ContinuationAttribute

Public Overrides Sub BeginInvoke(task As Continuation)

task()

End Sub

Public Overrides Sub Invoke(task As Continuation)

task()

End Sub

End Class

Figure 18. Executing quick asynchronous tasks immediately.

Class Cell(Of T)

Private value As T

Public Asynchronous Write(v As T)

Public Synchronous Read() As T

Private Asynchronous Token

<Immediate()> _

Private Sub CaseWriteAndToken(value As T) When Write, Token

Me.value = value : Token()

End Sub

Private Function CaseReadAndToken() As T When Read, Token

Dim value = Me.value : Token() : Return value

End Function

Sub New(value As T)

Me.value = value : Token()

End Sub

End Class

Figure 19. An asynchronous write, synchronous read cell class.

Class ThreadPoolAttribute

Inherits ContinuationAttribute

Public Overrides Sub BeginInvoke(task As Continuation)

ThreadPool.QueueUserWorkItem(AddressOf task.Invoke)

End Sub

Public Overrides Sub Invoke(task As Continuation)

task()

End Sub

End Class

Figure 20. Delegating asynchronous tasks to the CLR ThreadPool.

Class UIAttribute

Inherits ContinuationAttribute

Private SC As System.Threading.SynchronizationContext = _

System.Threading.SynchronizationContext.Current()

Public Overrides Sub BeginInvoke(task As Continuation)

SC.Post(Function(state As Object) task(), Nothing)

End Sub

Public Overrides Sub Invoke(task As Continuation)

SC.Send(Function(state As Object) task(), Nothing)

End Sub

End Class

Figure 21. Marshalling asynchronous tasks to the UI thread.

Public Class Form

Inherits System.Windows.Forms.Form

Private Asynchronous Start()

Private Asynchronous Idle()

Private Asynchronous Done(completed As Boolean)

Private Asynchronous Progress(i As Integer)

Private Synchronous Await()

Private Cancelled As New Cell(Of Boolean)(False)

<ThreadPool()> _

Private Sub CaseStartAndIdle() When Start, Idle

Dim cancelled = False

For i As Integer = 1 To 100

cancelled = Me.Cancelled.Read()

If cancelled Then Exit For

’ Do some work

Progress(i)

Next

Done(Not cancelled)

Idle()

End Sub

<UI()> _

Private Sub CaseDone(completed As Boolean) When Done

Cancel.Enabled = False : Go.Enabled = True

Status.Text = If(completed, "Completed", "Cancelled")

End Sub

<UI()> _

Private Sub CaseProgress(i As Integer) When Progress

ProgressBar.Value = i

End Sub

Sub New()

InitializeComponent()

Go.Enabled = True : Cancel.Enabled = False

Idle()

End Sub

Private Sub Go_Click() Handles Go.Click

Go.Enabled = False : Cancel.Enabled = True : Status.Text = Nothing

Cancelled.Write(False)

Start()

End Sub

Private Sub Cancel_Click() Handles Cancel.Click

Go.Enabled = True : Cancel.Enabled = False

Cancelled.Write(True)

End Sub

Public Sub CaseAwaitAndIdle() When Await, Idle

End Sub

Protected Overrides Sub OnClosing(e As CancelEventArgs)

Cancelled.Write(True)

Await()

MyBase.OnClosing(e)

End Sub

End Class

Figure 22. Using continuation attributes to control the execution of patterns.

tion reason back to the Form. Both the CaseProgress and
CaseDone patterns carry the UI attribute since they must be
executed on the Form’s event loop in order to safely modify
its controls. Not that the Progress channel is asynchronous
to prevent a non-responsive Form from blocking the task.

The Idle() message merits further explanation. It is used
to prevent the form from “closing” while a background task
is active. Otherwise, the form could receive a CaseDone

or CaseProgress task after its event loop has shut down,
causing a run-time error. To avoid this, we override the
OnClosing method to cancel the task and (synchronously)
Await the Idle token before calling its base method. The
Form itself is initially Idle, but the Idle token is consumed
and reissued on entry and completion of CaseStartAndIdle.

5.2 Synchronous Rendezvous, Revisited
One subtle restriction of CB is that a pattern may mention at
most one synchronous channel. This restriction is inherited
from its C# based predecessors. It has the nice property of
guaranteeing that the continuation of a synchronous pattern
will be run on the thread of its (one and only) synchronous
caller. This property is important when the continuation has
to run on the same thread as the caller, say to release a lock
or access thread local storage. But the guarantee is certainly
not always required. Relaxing the restriction would make the
syntax of patterns more symmetric and, more importantly,
support Ada-style synchronous rendezvous.

Addressing the issue of rendezvous, Cardelli, Benton and
Fournet (4)[Section 3.1] propose some syntax (inspired by
JoCaml (7)) that allows a pattern’s body to “return” to any
of several synchronous method headers independently, using
a generalized return e to m; statement. The statement
returns the value of e to the waiting synchronous caller of
m. For example, the following Polyphonic C# class would
allow two threads to exchange values passed to synchronous
yet joined methods f and g.

class rendezvous {

public B f(A a) & public A g(B b) {

return a to g;

return b to f;

}

}

Whilst appealing, the authors do not discuss how to han-
dle continuations that fail to return exactly once to each
caller, and whether this should be detected statically (as in
JoCaml (7)) or dynamically. Instead, we propose a simpler
construct that is slightly less expressive, but much easier to
explain to users, and no more difficult to implement - in fact,
we expect that implementation will be simpler. The idea is
to allow multiple channels in a pattern to be synchronous,
provided they all have the same return type (if any). All syn-
chronous callers involved in a pattern block until the con-
tinuation returns one value or exception (the same one) to
all of them. This still allows an efficient implementation

in which the last caller to enable the pattern can either (if
synchronous) immediately execute it without blocking or (if
asynchronous) wake up any one waiting caller as appropri-
ate. The drawback is that the continuation can no longer re-
turn earlier on some channels than others, forfeiting some
concurrency.

As a concrete example, supporting rendezvous would
allow us to simplify the code from Section 3.3, removing
the need to pass an explicit acknowledgement object, a, in
the call floor.PersonArrived(Me,a). In the original code,
the explicit synchronization after calling PersonArrived is
needed to avoid a race condition. The person agent needs to
be certain that the floor has noted its arrival before call-
ing ChooseDir(floor) to request a lift. So why can’t we just
make PersonArrived synchronous? Unfortunately, object
floor of class Floor (Figure 23) is also an active object that
serializes calls to PersonArrived using its own synchronous
ProcessMessage channel. This uses up the one synchronous
slot available to the pattern implementing PersonArrived,
forcing PersonArrived to be asynchronous. To work around
this restriction, CaseProcessMessageAndGotoFloor synchro-
nizes with completion of PersonArrived(Me,a) by waiting
on a.Receive() assuming that floor follows protocol and
acknowledges with a message a.Send().

However, allowing PersonArrived to be synchronous
and joined with the synchronous ProcessMessage lets us
simplify the code considerably (Figure 24). The revised
CaseProcessMessageAndPersonArrived just waits for two
synchronous channels with the same (i.e. no) return type.
Notice that we have eliminated some complexity (and proto-
col) from both the caller of and the pattern on PersonArrived.

We intend to implement this simple but useful form of
rendezvous in future versions of CB.

6. Related Work and Conclusion
Join patterns first appeared in Fournet and Gonthier’s foun-
dational join calculus (5; 6), an asynchronous process alge-
bra designed for efficient implementation in a distributed set-
ting. JoCaml (7) and Funnel (13) are functional languages
supporting declarative join patterns. Cardelli, Benton and
Fournet later proposed an object-oriented version of join pat-
terns for C# called Polyphonic C# (3); (4) describes the
programming model and an implementation in more detail;
while (2) uses Polyphonic C# to provide a model solution
to the Santa Claus Problem. Similar extensions to (non-
generic) Java, JoinJava, were independently proposed by von
Itzstein and Kearney (8). Another implementation of a syn-
tactic variant of Polyphonic C# was included in the pub-
lic release of Cω (a.k.a. Comega) in 2004. Cω itself was an
extension of C# 1.1 with both concurrency and, separately,
LINQ-like features for SQL and XML data integration (9).

Mostly because of their age, rather than any fundamen-
tal restriction, neither Polyphonic C#, Cω nor JoinJava
supported Generics, limiting the range of reusable concur-

Public Class Floor

Inherits ActiveObject

Private people As List(Of Person)

Public Asynchronous PersonArrived(p As Person,a As Ack)

Private Sub CaseProcessMessageAndPersonArrived(p As Person,a As Ack) When ProcessMessage, PersonArrived

people.Add(p)

a.Send()

End Sub

...

End Class

Figure 23. The Floor class using emulated rendezvous.

Public Class Person

Inherits ActiveObject

Private floor As Floor

Public Asynchronous GotoFloor(f As Floor)

Private Sub CaseProcessMessageAndGotoFloor(f As Floor) When ProcessMessage, GotoFloor

floor = f

floor.PersonArrived(Me)

ChooseDir(floor)

End Sub

End Class

Public Class Floor

Inherits ActiveObject

Private people As List(Of Person)

Public Synchronous PersonArrived(p As Person)

Private Sub CaseProcessMessageAndPersonArrived(p As Person) When ProcessMessage, PersonArrived

people.Add(p)

End Sub

...

End Class

Figure 24. Simplified Person and Floor classes exploiting rendezvous.

rency abstractions that could be expressed with join patterns.
Though essentially for free, CB’s combination of join pat-
terns and Generics (also found in JoCaml and Funnel), is
hopefully much more compelling.

While JoinJava (8) provides no support for inheritance
(concurrent classes must be final), Polyphonic C# and Cω
had a more subtle inheritance restriction:

“(9) If any chord-declaration [pattern] includes a
virtual method m [channel] with the override mod-
ifier, then any method [channel] n that appears in a
chord with m in the superclass containing the over-
ridden definition of m must also be overridden in the
subclass.”(4, Section 3.2).

Although concisely stated, this condition is arguably dif-
ficult to understand. Since the compiler will reject code
that fails to override inherited, but conjoined, virtual meth-
ods, it effectively forces patterns, not just method signa-
tures, into the interface of a class. But the restriction also
has practical ramifications. In our ActiveObjects example

of Section 3.3 the restriction, if applied, prevents the user
from placing the common CaseHalt() pattern where it nat-
urally belongs - within the ActiveObject base class. In-
stead, the user is forced to re-declare the pattern within the
Person subclass and, transitively, within every subclass de-
rived from it. Since the “inherited” pattern accesses private
state (i.e. Done), that state must now either be revealed as
Protected Done or be accessed from a revealed method (i.e.
Protected Sub CaseHalt) in the base class, compromising
encapsulation (cf. (4, Section 4.4)).

The CB approach to inheritance, which allows incremen-
tal addition of join patterns, seems more natural. CB also
makes it easy to override the behaviour of individual pat-
terns, just by marking the declaration of the continuation
method as Overridable in the base class.

The syntax of Polyphonic C# and Cω, allowing a sin-
gle method to have multiple bodies and a single body to
have multiple method headers, is quite alien. The CB de-
sign, though verbose, does at least have some resemblance

to an existing language feature: declarative event handling.
We hope that this familiarity might ease adoption, by both
users and language architects. Nevertheless, one might con-
sider departing from the Handles-like syntax to use a pa-
rameter binding When construct that makes it easier to dis-
tinguish channel arguments. Our current syntax, with its
explicit method signature, has the advantage of supporting
overriding and recursion, which the other syntax does not.

The arrival of Generics in C# 2.0 and VB 8.0 made it
possible to encapsulate join pattern constructs in the Joins
library (15; 14). As well as exploiting Generics in its con-
struction, the library allows users to program generic con-
currency abstractions, increasing the utility of join patterns.
Compared with CB, a nice feature of Joins is that join
objects, channels and even partially constructed patterns
are first-class values, making it easier to construct higher-
level abstractions. The library’s main drawback is its re-
liance on runtime checking to detect what are static errors
in CB. While accessible from VB 8.0 and 9.0, VB’s lack of
support for C#’s anonymous delegates, let alone implicitly
typed lambda statements, means that Joins remains more
awkward to use from VB than C#(even VB 9.0’s lambda-
expressions are not quite enough).

Our implementation of CB relies on the Joins library
for runtime support, but it doesn’t have to. Although ade-
quate, performance could be further improved by adapting
and extending the static compilation techniques originally
described for Polyphonic C# and implemented in Cω (see
(14) for a comparison between Cω and Joins). However,
factoring most of the implementation into a runtime library
does make it easier to retarget CB to other platforms, by port-
ing the library without modifying the compiler.

One feature we’ve left out from CB, that was present in
Polyphonic C# and Cω, is the introduction of a new async

type as a subtype of void. Although useful for specifying
asynchronous behaviour in interfaces and on delegate return
types, the async type must be “erased” to void on the under-
lying platform (the CLR). So, in practice, CB code, expect-
ing to receive an async delegate argument, might actually be
passed a C# void returning delegate that blocks, violating
the expected async contract.

Our hope is that CB’s natural syntax, support for inher-
itance, interplay with Generics, and pragmatic extensibility
make join patterns viable for inclusion in a future release
of Visual Basic; the proposal is now under consideration by
Microsoft’s Visual Basic team.

Acknowledgments
Thanks to Erik Meijer for suggesting and supporting this
work, Harish Kantamneni for detailed code reviews, Danny
van Velzen for help with VB sources and Paul Vick, Amanda
Silver and the anonymous referees for feedback. Particular
thanks to Nick Benton whose examples and prose have been
adapted from Polyphonic C# and Cω to Joins and CB.

References
[1] J. Armstrong, R. Virding, C. Wikström, and M. Williams.

Concurrent programming in ERLANG (2nd ed.). Prentice
Hall, 1996.

[2] N. Benton. Jingle bells: Solving the Santa Claus problem
in Polyphonic C#, http://research.microsoft.com/

~nick/santa.pdf, March 2003.

[3] N. Benton, L. Cardelli, and C. Fournet. Modern concur-
rency abstractions for C#. In Proceedings of the 16th Euro-
pean Conference on Object-Oriented Programming (ECOOP
2002), number 2374 in LNCS. Springer-Verlag, June 2002.

[4] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency
abstractions for C#. ACM Transactions on Programming
Languages and Systems, 26, September 2004.

[5] C. Fournet and G. Gonthier. The reflexive chemical ab-
stract machine and the join-calculus. In Proceedings of the
23rd ACM-SIGACT Symposium on Principles of Program-
ming Languages (POPL’96), pages 372–385.

[6] C. Fournet and G. Gonthier. The join calculus: a language
for distributed mobile programming. In APPSEM Summer
School, Caminha, Portugal, September 2000, volume 2395 of
LNCS. Springer-Verlag, 2002.

[7] C. Fournet, F. Le Fessant, L. Maranget, and A. Schmitt. Jo-
Caml: a language for concurrent distributed and mobile pro-
gramming. In Advanced Functional Programming, 4th Inter-
national School, Oxford, August 2002, volume 2638 of LNCS.
Springer-Verlag, 2003.

[8] G. S. Itzstein and D. Kearney. Join Java: An alternative
concurrency semantics for Java. Technical Report ACRC-01-
001, University of South Australia, 2001.

[9] Microsoft Corporation. Language-Integrated Query (LINQ),
http://msdn2.microsoft.com/en-us/library/

bb397926(VS.90).aspx, 2007.

[10] Microsoft Corporation. Microsoft Parallel Extensions
Framework, http://msdn2.microsoft.com/en-us/

concurrency/default.aspx, 2007.

[11] Microsoft Corporation. Visual Basic Language Specification
9.0 (beta 2), available from http://www.microsoft.com/

downloads, 2007.

[12] Microsoft Research. Cω, http://research.microsoft.
com/Comega, 2004.

[13] M. Odersky. An overview of functional nets. In APPSEM
Summer School, Caminha, Portugal, September 2000, volume
2395 of LNCS. Springer-Verlag, 2002.

[14] C. Russo. The Joins Concurrency Library. In Michael Hanus,
editor, Ninth International Symposium on Practical Aspects of
Declarative Languages (PADL 2007), volume 4354 of LNCS,
pages 260–274. Springer-Verlag, January 2007.

[15] C. V. Russo. Joins: A Concurrency Library, 2006. Binaries
with tutorial and samples: http://research.microsoft.
com/research/downloads.

